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SIRT6-dependent cysteine monoubiquitination in
the PRE-SET domain of Suv39h1 regulates the NF-
κB pathway
Irene Santos-Barriopedro1, Laia Bosch-Presegué1,2, Anna Marazuela-Duque1, Carolina de la Torre3,

Carlota Colomer4, Berta N. Vazquez5, Thomas Fuhrmann6, Bárbara Martínez-Pastor7, Wenfu Lu8,

Thomas Braun9, Eva Bober9, Thomas Jenuwein6, Lourdes Serrano5, Manel Esteller10,11,12, Zhenbang Chen8,

Silvia Barceló-Batllori3, Raúl Mostoslavsky7, Lluis Espinosa4 & Alejandro Vaquero 1

Sirtuins are NAD+-dependent deacetylases that facilitate cellular stress response. They

include SirT6, which protects genome stability and regulates metabolic homeostasis through

gene silencing, and whose loss induces an accelerated aging phenotype directly linked to

hyperactivation of the NF-κB pathway. Here we show that SirT6 binds to the H3K9me3-

specific histone methyltransferase Suv39h1 and induces monoubiquitination of conserved

cysteines in the PRE-SET domain of Suv39h1. Following activation of NF-κB signaling Suv39h1

is released from the IκBα locus, subsequently repressing the NF-κB pathway. We propose

that SirT6 attenuates the NF-κB pathway through IκBα upregulation via cysteine

monoubiquitination and chromatin eviction of Suv39h1. We suggest a mechanism based on

SirT6-mediated enhancement of a negative feedback loop that restricts the NF-κB pathway.
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Adaptation to stress is a major survival challenge at
the cellular and organism levels. The Sir2 proteins
(or sirtuins) are major coordinators of cellular response

to diverse types of stress, such as genotoxic, oxidative, and
metabolic stress1,2. They perform their regulatory roles through
NAD+-dependent deacetylation of histone and non-histone
proteins3–5. A second enzymatic activity, mono[ADP-ribosyl]
transferase (ADPRT) activity, has been also detected in some
sirtuins6–8, although the functional implications of this dual
activity are not well understood. There are seven mammalian
sirtuins, named SirT1–7. Among the most important roles
performed by sirtuins is to preserve genome stability, which they
do at many levels, including regulation of chromatin structure,
cell cycle control, gene expression, DNA replication, and DNA
repair9. One of the best described examples is the functional
relationship between SirT1 and Suv39h1, the principal
mammalian H3K9 histone methyltransferase (HMT)10. Suv39h1
regulates the structure of both constitutive heterochromatin (CH)
and facultative heterochromatin (FH) regions by depositing
H3K9me3, and through interplay with heterochromatin-specific
factors such as HP1 proteins11,12. Under stress conditions SirT1
promotes FH formation in specific genomic regions (e.g., rDNA
regions) in a coordinated sequence of events, including
recruitment of Suv39h1 and subsequent activation of it through
deacetylation of K266 in its catalytic SET domain13,14. In
contrast, under oxidative stress, SirT1 promotes protection of CH
structures by stabilizing Suv39h115.

SirT6 is, together with SirT1, one of the sirtuins most clearly
involved in maintaining genome stability. SirT6 exhibits both
enzymatic activities (deacetylase and ADPRT), although the
former seems to be predominant7,16,17. SirT6 has been shown to
deacetylate histone and non-histone proteins (e.g., CtIP)18. In the
case of histones, SirT6 targets mainly two histone H3 marks,
H3K9Ac and H3K56Ac16,19,20. H3K9Ac is involved in gene
silencing and regulation of chromatin structure, whereas
H3K56Ac participates in DNA damage signaling21,22. Loss of
SirT6 in mice induces a phenotype that resembles accelerated
aging: it includes high levels of genome instability and myriad
metabolic defects, including low serum glucose and IGF-1,
lymphopenia, loss of subcutaneous fat, and lordokyphosis23.
SirT6 has been involved in three major functions, all of which it
executes via chromatin regulation. First, SirT6 controls genome
stability by regulating telomere structure and by participating in
DNA repair16,18,24–26. Second, it also has an important role in
glucose and lipid homeostasis27–29. Third, SirT6 apparently serves
a protective role by inhibiting expression of a specific set of genes
involved in critical pathways, such as the hypoxia factor HIF1α30,
and the master regulator of stress response and inflammation
nuclear factor-κB (NF-κB). The functional link between SirT6
and NF-κB seems to be very relevant in vivo, as suggested by the
finding that the progeria phenotype of sirt6−/− mice is at least
partly caused by hyperactivation of the NF-κB pathway31.

NF-κB is a family of five proteins (RelA, RelB, c-Rel, p50, and
p52) that form homodimeric or heterodimeric complexes that
function as transcription factors. The family members regulate
cellular response to many internal or external stimuli including
apoptosis inhibition, cell cycle control and proliferation, cell
adhesion, tissue remodeling, inflammatory response, immunolo-
gical adaptation, and the circadian clock32–34. Based on the
mechanism of activation, the NF-κB pathway can be divided into
two forms: the canonical pathway and non-canonical
pathway35,36. The general regulatory mechanism of the
canonical pathway involves sequestering of the NF-κB factors in
the cytoplasm by direct interaction with the general inhibitors of
NF-κB (or IκBs), the best studied of which is IκBα. Upon
activation of the pathway, the IKK kinase complex (comprising

IKKα, β, and γ) phosphorylates IκBα, inducing its degradation
and promoting the release and relocalization of NF-κB
(RelA/p50) to the nucleus, where it exerts its role in gene
expression32. Suv39h1 has been shown to localize to some
NF-κB-regulated genes and repress their expression37,38. Upon
tumor necrosis factor-α (TNFα) activation, IKKα localizes to
the promoter and phosphorylates H3S1039,40, which in turn
correlates with the loss of Suv39h1 in the same region37.

Interestingly, SirT1 and SirT2 have also been involved in
NF-κB regulation. Both have been shown to deacetylate RelA in
K310 inhibiting its transcriptional capacity41,42. As for SirT6,
evidence suggests that its main role is to attenuate hyperactive
NF-κB. Thus, upon activation of the pathway and arrival of
NF-κB to the target genes, SirT6 localizes to the promoters of
these genes, deacetylates H3K9Ac and consequently, promotes
silencing of the target genes31. However, no additional
information is currently available on the functions, mechanism or
signaling partners of SirT6 in this repression.

Seeking to understand the role of SirT6 in epigenetic silencing,
we have identified a link between SirT6 and Suv39h1, where SirT6
induces cysteine monoubiquitination (mUb) of Suv39h1 PRE-
SET through the E3 ubiquitin ligase SKP2 in the context of NF-
κB pathway activation. We report that loss of Suv39h1 in 293F
cells or in wild-type (wt) mouse embryonic fibroblasts (MEFs)
attenuates the general response to TNFα treatment at the gene-
expression level, except for certain critical genes including the
general repressor IκBα. Based on our results, we propose a novel
mechanism whereby, in addition to attenuating NF-κB-mediated
transcription activation gene-by-gene, SirT6 also promotes global
inhibition of the pathway by reinforcing IκBα expression.

Results
SirT6 co-elutes with the H3K9-specific HMTs Suv39h1 and
G9a. Aiming to understand the role of SirT6 in chromatin reg-
ulation and considering the close link between histone deacety-
lation and methylation, we first decided to determine whether
SirT6 co-fractionates with an HMT activity that could provide
clues on said function. Thus, we purified SirT6-HA from 293F
cells and tested the elution in an in vitro HMT assay. We clearly
observed that a histone H3-specific HMT activity was present in
purified SirT6 fractions (Fig. 1a). To determine the specific residue
(s) targeted by this HMT activity, we performed the in vitro HMT
assay with purified GST (glutathione S-transferase)-fusion pro-
teins containing the histone H3 N-terminal tail (aa1–28), either as
WT, or as mutants in which we replaced one or more (in different
combinations) of the main lysine residues methylated in histone
H3 with arginine residues43. The results indicated that the HMT
activity specifically targeted K9 in histone H3 (Fig. 1b).

We next aimed to identify the HMT related to SirT6. We
employed immunoprecipitation experiments to determine
whether SirT6 interacts with any of the principal H3K9-specific
HMTs (Suv39h1, G9a, GLP, and SETDB1). Two of these
enzymes, Suv39h1 and G9a, interacted with SirT6 (Fig. 1c).
Although Suv39h1 is a known partner of SirT113, several evidence
strongly suggested a distinctive relationship between SirT6 and
Suv39h1. First, SirT6-Suv39h1 interaction was not mediated by
SirT1, as co-immunoprecipitation experiments showed no
interaction between SirT1 and SirT6 (Supplementary Figure 1a).
Second, using different deletion mutants of Suv39h1 (Fig. 1d, and
Supplementary Figure 1b and 1c), we determined that in contrast
to SirT1, which interacts with Suv39h1 through the N-terminal
region (Fig. 1e, lane 8)13, SirT6 specifically binds to a the last 172
residues of Suv39h1 containing the C-terminal catalytic SET
domain (aa 240–370) and POST-SET domain (aa 370-412)
(Fig. 1e, lane 15, and Supplementary Figure 1b, c). Loss of the
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POST-SET domain (SETΔC) decreased significantly the capacity
of the SET domain to bind to SirT6, suggesting that this region of
the protein is also involved in the interaction (Supplementary
Figure 1b, c). Third, H3K9me3 was completely lost in in
pericentric heterochromatin of sirt1−/− MEFs but was unaffected
in sirt6−/− MEFs (Fig. 1f).

SirT6 induces a posttranslational modification in Suv39h1. In
the previous experiments, we realized that overexpression of
SirT6, but not of SirT1, induced an 8–10 kDa modification in
both exogenous myc-tagged and endogenous Suv39h1 (Fig. 2a, b,
red asterisk). Short hairpin RNA (shRNA)-driven downregulation
of Suv39h1 confirmed that the observed band corresponded to
endogenous modified Suv39h1 (Supplementary Figure 2a). The
modification was not only SirT6-dependent (Fig. 2c)—but that it
also required the enzymatic activity of SirT6, as the catalytically
dead point-mutant SirT6 H133Y (HY) could not induce the

modification (Fig. 2e, lane 3). A SirT6 mutant with inactive
ADP-ribosylation activity G60A (GA) induced the modification
just as WT SirT6 did, suggesting the deacetylation activity of
SirT6 is involved (Fig. 2e, lane 4). We estimated that the popu-
lation of modified Myc-Suv39h1 represents a 3% of unmodified
Myc-Suv39h1 (Fig. 2d). SirT6 overexpression increased the levels
of the modification to around 9% of unmodified Suv39h1.
Endogenous modified Suv39h1 was significantly less abundant.
Although we could not generate a reliable quantification, we
roughly estimated that the endogenous modification was around
10 times less abundant than Myc-Suv39h1 modification. The
ability of SirT6 to induce the modification seemed to depend on
cell type as it was detected in 293F, H1299, HCT116, and NIH3T3
but not in HeLa or U2OS cells (Supplementay Figure 2b). We also
confirmed that induction of the modification by SirT6 required
direct binding to Suv39h1 as loss of the SET domain in Suv39h1
completely abrogated the ability of SirT6 to induce the band
(Fig. 2f, g, red asterisks).
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Fig. 1 SirT6 co-elutes with the H3K9me-specific HMTs Suv39h1 and G9a. a In vitro HMT assay of SirT6-HA using [3H]-labeled SAM and core histones as
substrates. HA-affinity purification of extracts from 293F cells transfected with either empty vector (C) or SirT6-HA. As a loading control, a Coomassie
blue-staining of the PVDF membrane is shown (CBB). b HMT assay performed as in a, but using, as substrate, purified recombinant proteins formed by
GST fused to the N-terminal H3 histone tail (with the indicated mutations). GST-fused N-terminal H3 histone tails proteins were stained with CBB. c HA
immunoprecipitation of extracts from 293F cells transfected with SirT6-HA together with each of the nuclear H3K9 HMTs. d Schematics of the different
Myc-tagged constructs of Suv39h1 used in e. e HA immunoprecipitation of extracts from 293F cells transfected with SirT6-HA and the indicated Myc-
tagged mutants of Suv39h1. f Immunofluorescence analysis of H3K9me3 and DAPI in wild type (wt), sirt1−/−, and sirt6−/− MEFs. A representative 5 μm
scale bar is included in DAPI sirt1 wt image
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Fig. 2 SirT6 induces a modification in Suv39h1. a Western blotting of extracts from 293F cells transfected with Myc-Suv39h1 in the presence or
absence of HA-tagged SirT1 or SirT6 (lanes 2 and 3, respectively). A SirT6-induced modification in Suv39h1 is indicated (red asterisk). b Endogenous
Suv39h1 is also modified upon SirT6 upregulation. Suv39h1 Western-blot of extracts from 293 cells overexpressed or not with SIRT6-HA. c Western
blotting of extracts from 293F cells expressing non-tagged Suv39h1 in the presence or absence of either Ubiquitin-HA15 and/or SirT6-HA. The effect of a
titration of SirT6-HA (1, 3 and 6 μg transfected) on Suv39h1 (2 μg transfected) was tested (lanes 3–5). A lower exposition of the Suv39h1 main band is also
shown. Red and blue asterisks indicate endogenous or HA-tagged ubiquitination in Suv39h1, respectively. d Quantification of the levels of modified
Myc-Suv39h1 in the absence or presence SirT6-HA expression. Relative levels (%) of Suv39h1 modification compared to unmodified Suv39h1 are shown.
The results were obtained from n= 3 replicas of experiment shown in lanes 1–2 of Fig. 4c. e Analysis, as in a, of Myc-Suv39h1 cotransfected with different
HA-tagged SirT6 mutants. WT: SirT6 wild type; HY: H133Y; GA: G60A. f Schematics of the different Myc-tagged constructs of Suv39h1 used in g. g
Western blotting with the indicated different Myc-Suv39h1 constructs − / + SirT6-HA. h Fractionation of 293F cells co-transfected with Myc-Suv39h1 and
SirT6-HA. Nuclear extracts (NE) and nuclear insoluble pellet (NP) were generated using the Dignam method. NP was step-washed with increasing
concentrations of NaCl (from 100–1000mM). i Schematic summary of the experiment shown in j. j Fractionation of 293 cells transfected with
Myc-Suv39h1 and − / + SirT1 or SirT6. Fractionation with the RIPA method generated a soluble fraction (RIPA, lanes 1–3) and a NP, which was further
digested with Benzonase (lanes 4–6)
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Finally, two experiments provided important evidence on the
modification. First, the modification was present mainly in
nuclear extract, and the fraction that remained bound to the
chromatin pellet was washed away in low stringency conditions
(Fig. 2h). Second, RIPA buffer extraction revealed that the SirT6-
induced modified Suv39h1 was present almost exclusively in the
soluble fraction, and that the digested chromatin insoluble pellet,
did not contain a significant amount of it (Fig. 2i, j). Altogether,
our findings strongly suggested that the modification does not
affect Suv39h1 in the more compacted and insoluble chromatin
regions, leading us to consider that it might actually be a
mechanism for evicting Suv39h1 from chromatin.

Suv39h1 PRE-SET domain is ubiquitinated in cysteines. We
sought to identify exactly how SirT6 modifies Suv39h1. As SirT6-
dependent modification involves an 8–10 kDa increase in
Suv39h1 molecular weight, we reasoned that it might involve
ubiquitin or a related protein (e.g. SUMO or Nedd8). Supporting
this hypothesis, hemagglutinin (HA)-tagged Ubiquitin was
incorporated into Suv39h1 upon SirT6 overexpression (Fig. 2c,
lane 6). To confirm that ubiquitination was involved, we immu-
nopurified Myc-Suv39h1 in the presence of SirT6, excised the
modified Suv39h1 band and analyzed it by mass spectro-
metry (MS). The analysis revealed peptides from Suv39h1 and
ubiquitin, strongly supporting that SirT6 had induced mUb of
Suv39h1 (Suv39h1mUb) (Fig. 3a, Supplementary Figure 3, and
Supplementary Data Set 1).

Next, we performed further MS analysis (see Supplemental
Methods) to identify the modified residue(s) in Suv39h1.
Specifically, we were searching for signs of Gly–Gly, the hallmark
of ubiquitin after trypsin digestion44. Strikingly, we did not detect
any Gly–Gly signature associated to a lysine residue, but did find
four associated to cysteine residues (C49, C222, C226, and C232),
plus one, to serine (S29) (Fig. 3b, c). We used another experiment
to confirm that Suv39h1 mUb had not occurred at any lysine
residues (amide bond): incubation of monoubiquitinated
Suv39h1 under strong reducing conditions at pH11 led to
cleavage of the ubiquitin (Fig. 3d)45. Interestingly, of the four
cysteine residues that we identified, three (C222, C226, and C232)
were located in the PRE-SET domain of Suv39h1; in fact, they are
among the nine conserved residues that define the domain.

Armed with the aforementioned findings, we decided to focus
on mUb of the PRE-SET domain. Although the role of this
domain is not clear, it has been suggested that it might participate
in binding of Suv39h1 to DNA46, which would make it, together
with H3K9me3 and HP147,48, a determinant in the ability of
Suv39h1 to bind to chromatin. Altogether, our data suggest that
the real target of the Suv39h1 mUb induced by SirT6 is not a
single residue, but rather the entire PRE-SET domain.

Loss of PRE-SET cysteine residues impairs Suv39h1 function.
Considering the results shown in Fig. 2h–j, we reasoned that mUb
of conserved cysteine residues in Suv39h1 promoted by SirT6
deactivates the PRE-SET domain specifically. This in turn could
interfere with the ability of Suv39h1 to bind to chromatin and
consequently, would trigger eviction of the deactivated Suv39h1
from chromatin. To test our hypothesis, we performed a rescue
experiment in MEFs derived from either WT or Suv39h1/h2
double knockout mice (Suv39h KO)49. We re-expressed Myc-
Suv39h1 as either full length (FL), mutated in the three cysteine
residues found in our MS analysis (Suv39h1-3C or simply, 3C), or
as a mutant with eight of the nine conserved cysteine residues
(Suv39h1-8C or simply, 8C) of the PRE-SET domain (Fig. 3e). As
these cysteine residues are required for the structure of the PRE-
SET domain, we reasoned that these mutants should have a

drastic impact in the structure of the domain, in a similar way as
mUb. We clearly observed that the only HMT that was able to
rescue the global levels of H3K9me3 was FL (Fig. 3f). The
explanation for that result became clear when we checked the
localization of these proteins. Strikingly, only Suv39h1 WT
relocalized in PCH foci, where it restored the H3K9me3 levels.
Contrariwise, both 3C and 8C exhibited a disperse localization
outside of the PCH foci, in which, accordingly, the H3K9me3 was
not recovered (Fig. 3g). In agreement with these findings, in these
cells only FL expression was able to recover the silencing of minor
and major satellites, and of LINE-L1s (Fig. 3h).

TNFα induces SirT6-dependent mUb of Suv39h1. We next
sought to determine the functional implications of cysteine mUb
in Suv39h1. First, we observed that it appeared to be directly
related to proliferation, as its cellular levels peaked between 30
and 70% cell confluence and dropped to nil at 100% confluence
(i.e., when the cells had stopped dividing; Fig. 4a and Supple-
mentary Figure 4a). To explore this relationship, we stopped cells
at various phases of the cell cycle—G1/early S-phase (via double
thymidine block), G0 (by serum starvation), and in early mitosis
(with nocodazole)—and then evaluated the capacity of SirT6 to
induce mUb of Suv39h1 relative to control (untreated) cells.
Interestingly, even without SirT6 overexpression cells halted in
G1/S-phase or in early mitosis exhibited much higher levels of
Suv39h1mUb than control cells: the levels in the S-phase cells
were the highest, whereas those in the G0-phase cells were lower
than in the control (Fig. 4b and Supplementary Figure 4b, c).
Interestingly, this increased levels of the modification in S-phase
correlates with the observation that SirT6 binds to many of its
targets during S-phase16. Overall, these data corroborated a role
for Suv39h1mUb in cell-cycle progression.

We then endeavored to ascertain whether any stress stimuli
could induce specifically the modification. To this end, we
irradiated cells to damage their DNA, and then compared their
levels of monoubiquitinated Suv39h1 to those in control cells
(Supplementary Figure 5a). However, we did not observe any
significant effects. This was a very surprising result, given the
known role of SirT6 in DNA repair23,25. We then tested for the
effects of other forms of stress. Interestingly, oxidative stress
(H2O2) and replicative stress (hydroxyurea or camptothecin) did
not affect the modification, but the treatment with the cytokine
TNFα, an activator of the NF-κB pathway, induced increased
levels of Suv39h1mUb (Fig. 4c and Supplementary Figure 5b, c).
Interestingly, TNFα treatment did not seem to alter the
localization of Suv39h1 in the foci of pericentric heterochromatin
(Supplementary Figure 5d). Furthermore, silencing of SirT6 by
shRNA (Sh6) considerably decreased the levels of the modifica-
tion upon TNFα induction, whereas treatment with scramble
shRNA (Sc) did not (Fig. 4d, e and Supplementary Figure 5e).
Interestingly, the effect of SirT6 downregulation on Suv39h1mUb
was very mild, which suggested that the role of SirT6 on Suv39h1
is relevant in the context of specific stimuli such as TNFα
activation. Together, these results suggested a role for SirT6 in
inducing mUb in the context of the NF-κB pathway. Confirming
the biological significance of our findings, TNFα treatment also
induced the modification in endogenous Suv39h1 (Fig. 4f). As
shown for Myc-tagged Suv39h1, modified endogenous Suv39h1
induced by TNFα was excluded from chromatin insoluble
fraction (Fig. 4f) and abrogated upon SIRT6 downregulation by
shRNA (Fig. 4g). In contrast to the partial effect on overexpressed
Myc-Suv39h1, SirT6 downregulation completely abrogated the
ability of TNFα to induce endogenous Suv39h1mUb (Fig. 4g, lane
2 vs 4), which strongly suggested that SirT6 is the main mediator
of TNFα-induced Suv39h1mUb.
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Considering the above findings in light of the aforementioned
link between SirT6 and NF-κB, we reasoned that Suv39h1mUb by
SirT6 might be involved in the NF-κB pathway. In line with this
premise, we found that overexpression of RelA (the p65 NF-κB
member) induced Suv39h1mUb equally in both Myc-tagged
(Fig. 4h) or untagged Suv39h1 (Supplementary Figure 5f).
Interestingly, RelA had a maximal effect on co-overexpression
with SirT6 (Fig. 4h), which suggested that an important part of
the effect of RelA on this mUb is mediated by SirT6. Moreover,
the ability of TNFα to increase the modification was abrogated
when RelA and SirT6 were both overexpressed (Fig. 4h), but was
conserved when RelA was overexpressed and SirT6 levels were
normal (Fig. 4h). These observations suggested that TNFα acts

through both SIRT6 and RelA. Lastly, immunoprecipitation
experiments revealed that RelA interacts directly with Suv39h1
(Fig. 4i) in the absence or presence of TNFα, further corroborat-
ing a link between the modification and NF-κB.

The E3-ubiquitin ligase SKP2 is involved in Suv39h1mUb. The
SirT6 interactome has been extensively studied, leading to iden-
tification of numerous interacting partners50,51. Seeking to iden-
tify the E3-ubiquitin ligase involved in Suv39h1mUb, we closely
examined the two E3 that have been described as SirT6-
interacting partners: chromatin immunoprecipitation (ChIP)
and the SKP, Cullin, F-box containing complex (SCF)-related
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SKP252,53. We first tested each one for the ability to induce
Suv39h1mUb: only SKP2 exhibited this activity. Consistently,
overexpression of scaffold factor Cul1, a partner of SKP2 in the
SCF complex, also induced mUb (Fig. 5a and Supplementary
Figure 6a). Other pieces of evidence strongly supported SKP2 as
being the E3-ubiquitin involved in this modification. First,
SKP2 specifically interacts with Suv39h1, SirT6 and RelA (Fig. 5b
and Supplementary Figure 5b, c). The interaction between SirT6
and SKP2 did not require SirT6 catalytic activity as the SirT6
catalytic-inactive point mutant H133Y bound to SKP2 with a
similar efficiency as the WT protein (Supplementary Figure 6c).
We also detected interaction of SKP2 and SIRT6 with members of
the IKK complex (Supplementary Figure 6d), suggesting a func-
tional link between all three factors in NF-κB pathway activation.
Second, the ability of SKP2 to induce the mark was restricted to

the same cell types in which SirT6 induced it in Supplementary
Figure 2b (Fig. 5c and Supplementary Figure 6e). Third, SKP2
catalyzed Suv39h1 in vitro mUb (Fig. 5d). Accordingly, the
in vitro Suv39h1mUb by SKP2 was drastically reduced in
Suv39h1-8C mutant (Fig. 5f). Furthermore, MS analysis of the
modification induced by SKP2 overexpression also identified
cysteine mUb in the PRE-SET domain of Suv39h1 (Fig. 5e and
Supplementary Figure 6f). Fourth, shRNA-induced decrease of
SKP2 levels in 293F cells54 dramatically decreased the ability of
SirT6 to induce Suv39h1mUb (Fig. 5g and Supplementary Figure
6g). Fifth, supporting the link between SKP2 and the PRE-SET
domain, the ability of SirT6 or SKP2 to induce Suv39h1mUb was
drastically reduced in the mutant Suv39h1-3C (Suvmut3C) as
well as in a ΔPRE-SET mutant of Suv39h1, which lacks the PRE-
SET domain (Fig. 5h). Lastly, overexpression of IκBα, a general
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repressor of the NF-κB pathway, inhibited the ability of both to
induce the modification, while overexpression of the activator
IKKα increased it (Fig. 5i and Supplementary Figure 6h). These
last findings confirmed that the Suv39h1mUb induced by SirT6
or SKP2 is somehow linked to said pathway.

SirT6 stabilizes SKP2 through deacetylation of the NLS. We
next aimed to define the mechanism through which SirT6 reg-
ulates mUb of Suv39h1. We noted that increased levels of SirT6

correlated with increased levels of SKP2 in 293F cells, but not in
HeLa cells (Fig. 6a and Supplementary Figure 7a). Moreover, HA-
tagged ubiquitin was incorporated into Suv39h1 upon over-
expression of either SirT6 or SKP2 in 293F but not in HeLa cells
(Supplementary Figure 7a). These observations suggested a direct
link between regulation of SKP2 stability by SirT6, and the ability
of SKP2 to monoubiquitinate Suv39h1. As shown before (Fig. 2e),
SirT6 requires its deacetylase activity for this function. As we
were unable to identify Suv39h1 as a SirT6 substrate, we tested
whether SKP2 was targeted by SirT6. We first observed that
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SIRT6 downregulation overexpression induced an increase in
acetylation levels of SKP2 (monitored by anti acetyl-lysine anti-
bodies), whereas SIRT6 overexpression in SIRT6-downregulated
cells induced the opposite effect (Fig. 6b). MS analysis of SKP2
purified from cells expressing SKP2 alone or together with SirT6,
we did identify two lysine residues (K73 and K77) that were
deacetylated in the presence of SirT6 (Fig. 6c, d and Supple-
mentary Data Set 2). Strikingly, these two residues are located in
the nuclear localization signal of SKP2. Previous studies showed
that acetylation of these two residues, as well as nearby K68 and
K71, were involved not only in the localization of SKP2, but also
in stabilizing SKP2 protein52 through inhibition of S72 and S75

phophorylation in SKP255,56. Further supporting a role for SirT6
in SKP2 stability (through lysine deacetylation), the presence of
SirT6 correlated with a significant decrease in the nuclear acet-
ylation levels of these two lysines and with a significant increase
in the phosphorylation levels of the two close serine residues S72
and S75 (Fig. 6c, d and Supplementary Data Set 2). Phosphor-
ylation of S72 by Akt triggers subsequent phosphorylation of S75
by Casein Kinase I. In turn, when S72 and S75 are phosphory-
lated, the binding of APC-Cdh1 E3 ubiquitin-ligase is inhibited
and consequently, subsequent degradation of SKP2 is
prevented57,58.
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To confirm the involvement of SirT6 in this pathway, we
generated mutants containing different combinations of lysine-
to-arginine mutations (as mimics of deacetylated lysine) at the
four conserved lysine residues (K68, K71, K73, and K77) in the
NLS of SKP2. In agreement with that, mutation of these four
residues resulted in elevated nuclear levels of SKP2 that were not

further impacted by overexpression of SirT6. Interestingly, we
only observed this effect when all four lysine residues were
mutated (Fig. 6e, f and Supplementary Figure 7b), indicating that
K68 and K71 are also SirT6 targets. Accordingly, we obtained a
similar result when we mutated S72 and S75 to aspartic acid (as
mimics of phosphorylated serine) (Fig. 6g, h). Altogether, these
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findings reflect the importance of stabilization of nuclear SKP2
via deacetylation by SirT6.

IκBα expression is regulated by SirT6, Suv39h1 and SKP2. We
next aimed to define the functional consequences of the
mechanism that we had identified—namely, to ascertain the
contribution of Suv39h1 to the NF-κB pathway. Thus, we studied
the expression of various genes targeted by NF-κB in response to
TNFα treatment upon loss of Suv39h1. We tracked gene
expression at several time points following the treatment: 0 h, 30
min, 1 h, 2 h, 7 h, and 24 h (Fig. 7a). Considering that Suv39h1
had previously been identified in the promoters of at least one
gene induced by TNFα38, we were expecting that an shRNA-
induced decrease in Suv39h1 mRNA levels in more than 60%
(Supplementary Figure 7a) would result, if anything, in an
upregulation of a set of genes. However, upon loss of Suv39h1
and following TNFα treatment, many of the genes tested exhib-
ited attenuated expression (Fig. 7a), suggesting that Suv39h1 is
required in these cells to enable full activation of the pathway.
Interestingly, for the vast majority of these genes, expression
peaked at ca. 2 h of TNFα treatment. In contrast, a few genes were
upregulated under these conditions, including the general
repressor IκBα, an early-activated gene whose expression peaked
at ca. 1 h of TNFα treatment. Supporting the observation, the
response of IκBα expression to TNFα treatment in MEFs cells
deficient for Suv39h1/2 (Suv39hKO) showed an identical profile
(Fig. 7b). Interestingly, loss of SirT6 by shRNA in a similar
experiment as in Fig. 7a showed the opposite effect on IκBα
expression upon TNFα treatment, suggesting an antagonism
between SirT6 and Suv39h1 in the regulation of the IκBα gene
expression (Supplementary Figure 7b). This observation would fit
with our previous results indicating Suv39h1 chromatin eviction
induced by mUb (Figs. 2h-j, 3g, and 4f). Based on our results, we
postulated that Suv39h1 might be required for full activation of
the NF-κB pathway, because it would be important for silencing
of IκBα expression, thereby globally regulating the entire pathway
and affecting numerous target genes. In this scenario, the signal in
these genes would be attenuated via upregulation of the repressor
IκBα, which in turn would induce less nuclear RelA and less gene
expression. To confirm our hypothesis, we next analyzed the
status of the NF-κB pathway in Suv39h1/2-defficient MEFs
(Suv39hKO) at the protein level. Strikingly, these cells not only
harbored significantly higher levels of IκBα protein, but also
showed lower levels of pathway activation, as measured by
phospho-IκBα (Fig. 7c). As expected, the levels of p100, which is a
target of canonical NF-κB, were slightly increased in WT cells and
modulated by TNFα treatment. Identical results were detected in
an additional set of WT and Suv39hKO MEFs (Supplementary
Figure 7c). However, we failed to detect consistent difference in

the processing of p100 to p52 between WT and knockout MEFs
in the different experiments performed, suggesting that alter-
native NF-κB pathway is not a directly targeted by Suv39h1/2
function.

Given the cardinal role of IκBα, we asked ourselves whether
SirT6-induced regulation of Suv39h1 might occur in this context.
To answer this question, we performed ChIP experiments in
which we treated 293F cells with TNFα and then quantified the
levels of Suv39h1, SirT6, RelA H3K9me3, and H3K9Ac in the
IκBα promoter at 0, 1, and 2 h of treatment (Fig. 7d). Although
we observed Suv39h1 in the promoter at t0 (control), it had
dramatically decreased in occupancy by 1 h of treatment and had
completely disappeared by 2 h. In contrast, SirT6 was present in
low levels at t0, strongly increased in occupancy within 1 h, and
then plateaued up through 2 h. Interestingly, RelA levels had
peaked at 1 h and decreased significantly around 2 h. Consistently
with these observations, the levels of H3K9me3 decreased in
parallel to those of Suv39h1 in the promoter, although at 2 h the
levels of H3K9me3 had not decreased below 50% of the levels at
t0. This decrease was also associated with an increase in H3K9Ac
levels from t0 to 1 h, although they decreased at 2 h, reflecting
both the decrease in RelA and the plateau of SirT6 in the
promoter. In order to confirm our hypothesis that both SirT6 and
SKP2 play a role in Suv39h1 dynamics in the IκBα promoter, we
performed ChIP assays of Suv39h1 in SirT6 or SKP2-depleted
cells. As expected, we observed that shRNA-driven depletion of
SirT6 or SKP2 significantly inhibited Suv39h1 eviction from IκBα
promoter after 1 h of TNFα treatment, resulting in retention of
83.35% of initial Suv39h1 in the case of SKP2 and 70.85% in the
case of SIRT6 (Fig. 7e).

To confirm the role of the cysteine residues in Suv39h1
localization in IκBα promoter, we next expressed Suv39h1 in WT
or 8C-mutant 293F cells without using any TNFα treatment.
Supporting our hypothesis, the 8C mutant was not present in the
promoter, and this correlated with a concomitant dramatic
decrease of H3K9me3 levels in the promoter compared to
WT cells (Fig. 7f). Consistently, expression of mouse Suv39h1
WT but not 8C could rescue IkBα expression in human 293F cells
with downregulated Suv39h1 (Fig. 7g). Altogether, our findings
support our model suggesting that Suv39h1 plays a crucial role in
activation of the NF-κB pathway by controlling IκBα expression.

Discussion
We have identified a mechanism of action for gene expression in
the context of NF-κB pathway, whereby SirT6 induces mUb of
cysteine residues in the PRE-SET domain of Suv39h1. Of all the
regular conditions that trigger activation of sirtuins, our findings
indicate that only activation of the NF-κB pathway through
TNFα treatment or RelA overexpression induces this

Fig. 7 Suv39h1 and SirT6 regulate IkBα expression upon NF-κB pathway activation. a Quantitative RT-PCR analysis (n= 3, SD) of mRNA from 293F cells
transfected with scramble shRNA or shSuv39h1 and treated with TNFα. Cells were harvested at the indicated times of TNFα treatment. A representative
group of early genes activated by NF-κB pathway upon TNFα induction were analyzed. b Same experiment as in a of IκBα expression upon TNFα induction
in WT and Suv39h KO MEFs (n= 3, s.d). c Western blotting analysis of the levels of IκBα,phospho-IκBα (P-IκBα), p100, p52 and H3K92m3 in WT and
Suv39h KO MEFs treated with TNFα the indicated times. Tubulin and histone H3 were used as loading controls. d ChIP analysis of the indicated factors in
the IκBα promoter of 293F cells in non-induced conditions (ctrol) or upon treatment of TNFα for 1 and 2 h. Given the lack of a reliable Suv39h1 antibody, in
this case we transfected the cells with Myc-Suv39h1 and performed the ChIP analysis with α-myc antibody. The genomic IκBα promoter was quantified
with qRT-PCR(representative of n= 3; T-test; SEM, **p< 0.01, ***p< 0.005, ****p< 0.001). e ChIP analysis of IκBα promoter of Suv39h1 in 293F cells
expressing shRNA scramble, shSirT6, or shSKP2 and analyzed as in d (n= 5; T-test; SEM, *p< 0.05, **p< 0.01, ***p< 0.005, ****p< 0.001). f ChIP
analysis of IκBα promoter with the indicated antibodies of 293F cells transfected with Myc-Suv39h1 either WT or the 8C mutant described in Fig. 3 upon 1 h
of TNFα induction(representative of n= 3; T-test; SEM, ****p< 0.001). g Rescue experiment of human 293F expressing shScramble or shSuv39h1 with
mouse Suv39h1 WT or 8C. Relative expression levels of IkBα upon 1 h of TNFα induction relative to the expression levels in shScramble cells. ((n= 5; T-test;
SEM, *p< 0.05; **p< 0.01; ****p< 0.001). h Model of the novel mechanism proposed for the regulation of IκBα expression by the interplay between
Suv39h1, SirT6, and SKP2
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modification in Suv39h1 (Fig. 4). Moreover, overexpression of
either the pathway activator IKKα or the inhibitor IκBα promotes
a drastic increase or decrease, respectively, in the levels of
monoubiquitinated Suv39h1 (Fig. 5). This stress specificity is
striking, as DNA damage signaling seems to be one of the key
activation signals of SirT623,59. This observation strongly suggests
that Suv39h1mUb does not have a general role in Suv39h1
function and is involved in a restricted and specific function. Our
results from blocking cells in G1/S (by double thymidine block) or
early M (by Nocodazole) supports the link between this mod-
ification and the NF-κB pathway, which regulates both of these
cell cycle transitions60,61. Based on our evidence, we propose a
model whereby SirT6 controls the NF-κB pathway globally by
regulating IκBα expression (Fig. 7h). Before TNFα treatment,
Suv39h1 and SirT6 are present in the IκBα gene. Activation of the
NF-κB pathway by TNFα activates SirT6, which in turn activates
SKP2 by deacetylating it, which leads to subsequent phosphor-
ylation of S72 and S75. These results are in contrast to other
previous work that identified acetylation of K68 and K71 as
promoters of SKP2 stability52. Interestingly, our studies suggest a
more complex model, as mutation of all four lysine residues (K68,
K71, K73, and K77) induces S72/S75 phosphorylation and sub-
sequent upregulation of SKP2 levels. Considering the described
effect of K68 and K71 acetylation in SKP2 localization, a possible
explanation for these discrepancies may lie in the fact that our
studies are dealing with a nuclear population of SKP2, which may
not be regulated as cytoplasmic SKP2. Interestingly, SirT6 and
Akt, responsible for S72 phosphorylation, have been shown to
interact directly62, which may also indicate a direct effect of SirT6
on Akt activity. Our model suggests that Suv39h1 ubiquitinates
by SKP2 and promotes its exclusion from chromatin, thereby
enabling demethylation of H3K9 and subsequent phosphoryla-
tion at H3S10 by IKKα. Surprisingly, the levels of SirT6 and RelA
do not parallel each other at 2 h of TNFα treatment, as by this
time RelA enrichment in the promoter has decreased but not
SirT6. This suggests that other, unknown mechanisms regulate
the silencing of NF-κB by SirT6.

Interestingly, we have observed that the effect of SIRT6 on
Suv39h1 is cell type specific. In our experiments, SIRT6 induced
Suv39h1mUb in 293F (embryonic kidney), H1299 (lung),
HCT116 (colon), and NIH3T3 (mouse multipotent cells) but not
in HeLa (epithelial), MCF7 (breast), or U2OS (bone) (Fig. 5c and
Supplementary Figure 2b). The reason for this specificity is
unclear. A possible explanation may be NF-κB pathway itself, as it
has been shown that the mechanisms driven by the pathway upon
stress are very diverse depending on the stimuli involved and the
cell type63.

mUb of proteins in lysine residues has long been known. This
reversible modification can alter the activity, structure, or locali-
zation of proteins. To date, it has been reported in cell signaling,
chromatin structure, transcription, endocytosis, intracellular
trafficking, and even stress response55,56. There is extensive lit-
erature on lysine mUb in regulation of the NF-κB pathway, an
activity that seems to involve several factors, including RelA and
NEMO (IKKγ)64. Despite the dogma that ubiquitination chiefly
occurs in the ε-amino group of lysine residues through an iso-
peptide bond, recent evidence demonstrates that this modifica-
tion is far broader, as it can also affect serines, threonines, and
cysteines45,65. In this case, the resulting linkage is not an iso-
peptide bond, but either a hydroxyester (for serine and threonine)
or thioester (for cysteine) bond. Our knowledge on such non-
canonical ubiquitination is very limited. So far, they have been
reported in immunosuppression by viral E3-Ub ligases, in per-
oxisomal import66,67, and (serine and threonine only) in degra-
dation of defective ER proteins by viral and mammalian E3-Ub
ligases45,65,68. Interestingly, all of these cases involve

polyubiquitination and subsequent degradation of the target
protein, except for one: mUb of cysteines in the context of per-
oxisomal function in yeast69.

Here we have reported that SirT6 induces mUb of Suv39h1 at
four cysteines (C49, C222, C226, and C232) and one serine (S29).
Three of these residues are present in the PRE-SET domain, a
region comprising ca. 75–100 residues that is located just before
the catalytic SET domain. The PRE-SET domain is not general
among HMTs: in fact, is only present in the members of three of
the SET-containing HMT families, including the SUV39 family
(which includes Suv39h1 and G9a)70. In this family of HMTs, the
PRE-SET domain contains nine conserved cysteines
(CXCX5CX4CXCXN-CX3CXCX3C), which coordinate three Zn+2

molecules in a triangular structure71,72. The role of this domain
has not been fully characterized. Some authors have suggested
that it has a structural role, or that it participates in protein
dimerization and binding to ssDNA or RNA73. One major clue
stems from comparison of the PRE-SET domain and the CXC
domain of the component of the Drosophila Dosage Compensa-
tion Complex, MSL246. Surprisingly, these two domains are
similar: similar to the PRE-SET domain, the CXC domain con-
tains nine cysteines that coordinate three Zn+2 ions (Zn3Cys9)
and its recently solved structure strikingly resembles that of the
former71. The fact that MSL2 is a DNA-binding protein required
for proper targeting of the male X-chromosome in Drosophila74

strongly suggests that the PRE-SET domain is involved in
establishing links between Suv39h1 and DNA upon binding of
Suv39h1 to chromatin. Our results fully support this model as
Suv39h1mUb is excluded from tight chromatin (Fig. 2g–i), and
mutation of the three modified cysteines (Suv39h1–3C) abrogated
both localization of Suv39h1, as well as its capacity to catalyze
H3K9me3 in CH foci (Fig. 3e–h).

Although here we have focused on the PRE-SET domain, we
show that Suv39h1 is monoubiquitinated outside this domain.
This is clearly demonstrated both by our MS analysis, but also by
the significant equivalent mUb levels detected in ΔPRESET and
3C (Suvmut3C) (Fig. 5h). Our demonstration that the cysteines of
the PRE-SET domain are the main targets of SirT6-induced
Suv39h1mUb as shRNA-driven downregulation of SirT6 abro-
gated partially or completely overexpressed or endogenous
Suv39h1mUb, respectively (Fig. 4e, h and Supplementary Figure
5e). Nevertheless, the other identified mUb outside of the PRE-
SET domain are also potentially interesting, given their location
in two nearby regions or domains of Suv39h1 that are critical for
binding to chromatin: serine 29 is located in the N-terminal
region (1–43 residues), which is the binding site for HP1 pro-
teins75; and cysteine 49 is part of the H3K9me3-binding chro-
modomain, which spans residues 44–88. We hypothesize that
mUb of S29 or C49 might be equivalent to abrogating the ability
of Suv39h1 to bind to chromatin. Our hypothesis is supported by
the previous finding that a Suv39h1 deletion mutant that lacks the
first 89 N-terminal residues completely lost the ability to bind to
chromatin in metaphasic chromosomes75.

Here we have also identified SKP2 as the main E3-ubiquitin
ligase that catalyzes mUb of cysteines in Suv39h1. SKP2, a
component of the SCF multi-protein E3-ubiquitin ligase com-
plexes, has always been linked to polyubiquitination—and
therefore, to degradation—of crucial regulators of the cell cycle,
apoptosis, etc. Although our data suggests that SKP2 is the main
E3 activity involved in SirT6-dependent Suv39h1mUb, this may
not be the only one as SKP2 downregulation did not completely
abrogate the modification (Fig. 5g). In fact, we cannot exclude
that this may be result of another E3 ligase activity or that this
remaining modification may involve ubiquitin-like proteins
instead of ubiquitin. One open question is whether the protein
partners and the mechanism of action of SKP2 in this context are
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the same SCF components involved in polyubiquitination of
proteins. Supporting that this may be the case, overexpression of
a partner of SKP2 in the SCF complex, the scaffold protein Cul1,
also induced the modification in contrast to Cul2, a SCF-
unrelated close relative (Figs. 5a, b). Interestingly, SCF-dependent
protein polyubiquitination requires specific phosphorylation of
the target76,77. However, we have been unable to identify any
Suv39h1 phosphorylation related to SirT6-dependent mUb.

In summary, we describe a new mechanism in chromatin
regulation based on monoubiquitination of cysteines . We
hypothesize that this modification, which regulates access of
Suv39h1 to chromatin, is reversible and represents a fast, efficient,
and dynamic way to signal responses to different physiological
stimuli. Similar mechanisms have been proposed for canonical
(lysine) mUb in gene expression. The best example is the reg-
ulation of SMAD transcription factors under transforming
growth factor-β (TGF-β) activation. TGF-β-dependent SMAD4
lysine mUb by TIF1γ/TRIM33 induces SMAD4 dissociation from
the SMAD complex bound in the gene. Similarly, SMAD3 mUb
inhibits binding to DNA and to the rest of SMAD complex,
whereas its deubiquitination by USP15 has a reverse effect78,79.

Several issues remain to be resolved in future studies: for
instance, whether mUb of cysteines is also present in other
enzymes, involves other E3-ubiquitin ligases or associated
machinery, or participates in other nuclear events. Our work
opens a new path in the study of nuclear functions and suggests a
much more complex regulatory landscape than that previously
anticipated.

Methods
Antibodies and western blottings. The antibodies used were α-HA (Sigma-
Aldrich H6908; WB 1 : 1,000), α-FLAG (Sigma-Aldrich F7425, WB 1 : 1,000 ChIP
5 μg), α-myc (Cell Signaling 2276 S, WB 1 : 5,000 immunofluorescence (IF) 1:150
ChIP 5 μg), α-H3K9me3 (Millipore 07–442, WB 1 : 1,000; Abcam ab8898, IF 1 : 150
ChIP 5 μg), α-H3K9ac (Cell Signaling ab1191, ChIP 5 μg), α-actin (Sigma-Aldrich
A1978, WB 1 : 5,000), α-tubulin (Sigma-Aldrich T6199, WB 1 : 20,000), α-NFkB
p65 (Santa Cruz Biotechnology sc-372-x, WB 1 : 1,000), α-SirT6 (AbCam ab62739,
WB 1 : 1,000; ChIP 5μg), α-H3 (Cell Signaling 9715 S, WB 1 : 2,000), α-acetyl-lysine
(Cell Signaling 9814 S, WB 1 : 1,000), α-suv39h1(Millipore 07–550, WB 1 : 1,000), α
−SKP2 (Thermo Fisher Scientific 32–3300, WB 1 : 1,000), α-IκBα (Santa Cruz sc-
371, 1 : 1,000), α-P-IκBα (Cell Signaling 9246 S, WB 1 : 1,000), and α-p100/p52
(Millipore 05-361, WB 1 : 1,000).

WBs were performed as described elsewhere. Images of original WBs included
in the main figures are included in Supplementary Figure 9.

Cells and treatments. HEK293F, HeLa, H1299, HCT116, NIH3T3, and U2OS
(ATCC) were grown in DMEM (Life Technologies) supplemented by 10% fetal
bovine serum (Life Technologies). MEFs (Suv39DN, Jenuwein group; sirt1−/−,
Mostoslavsky group; sirt6−/− Bober group) were supplemented with 15% fetal
bovine serum. Cells were routinely tested for mycoplasm infection with PCR-
detection kit (BIOTOOLS-BIOT. & MED.L.). All transfections, except in the case
of MEFs, were carried out as previously described15 using the indicated plasmids.
Cells were collected after 48–72 h for analysis. MEF cells were infected by retrovirus
produced with Platinum packaging cells (Cell Biolabs) using the pMSCV vectors
(Clontech).

Cells were arrested at G1/S phase with double thymidine block. Cells were
plated at 60% of confluency and cultured for 24 h before adding 4 mM thymidine
(Sigma-Aldrich) to the media. After 12 h of incubation with 4 mM thymidine, the
media was removed and replaced by fresh media and cultured for 12 h. At that
moment, 4 mM thymidine was added again to the media and cultured for 12 h
before collecting. In the case of cells arrested at early mitosis, cells were plated and
cultured for 24 h and incubated 24 h more with media containing 4 mM thymidine.
The media was removed and replaced by fresh media. After 3 h, fresh media
containing 250 ng ml−1 nocodazole (Sigma-Aldrich). The cells were collected 12 h
later.

Cells under different forms of stress were transfected with the corresponding
plasmids, cultured for 48 h, and treated with the following conditions before
collecting: 5 mM of H2O2 (MERCK) for 2 h, 2 mM hidroxyurea (Sigma-Aldrich)
for 4 h, 1 μM campthotecin (Sigma-Aldrich) for 1 h and 20 ng ml−1 of TNFα
(Peprotech) for the indicated times. Cells were irradiated 48 h after transfection
with 10 Gy and collected at the indicated times.

Protein extraction and immunoprecipitation. Proteins were extracted according
to the Dignam protocol80: first extraction for the cytoplasmic soluble fraction was
made with Buffer A (10 mM Tris pH 7.8; 10 mM KCl; 1.5 mM MgCl2) and second
extraction for the nuclear soluble fraction was made with Buffer C (10 mM Tris pH
7.8; 0.42M NaCl; 1.5 mM MgCl2; 0.2 mM EDTA; 25% glycerol). In order to
separate soluble and chromatin insoluble proteins, soluble proteins were first
extracted with RIPA buffer (50 mM Tris-HCl pH 7.8; 150 mM NaCl; 0.5%
Deoxycholic acid; 0.1% SDS; 1% NP40) and the insoluble chromatin pellet was
digested with Benzonase (Sigma-Aldrich). Histone extraction was performed by
acid extraction method15.

Recombinant GST proteins were expressed in BL21 Escherichia coli strain and
resuspended in NETN buffer (20 mM Tris pH 7.8, 100 mM NaCl, 1 mM EDTA,
and 0.5% NP40) with 0.2 and 2% sarcosyl. The proteins were purified using
Glutathione sepharose beads (GE Healthcare). Beads were washed with NETN
buffer (20 mM Tris pH 7.8, 100 mM NaCl, 1 mM EDTA, and 0.5% NP40) and TST
buffer (50 mM Tris pH 7.8, 150 mM NaCl, and 0.1% Triton), and eluted with
reduced gluthatione (Sigma-Aldrich).

For immunoprecipitation experiments, cell extracts were incubated with either
α-FLAG, α-HA resin (Sigma-Aldrich), or α-Myc tag antibody (Cell Signaling)
crosslinked to proteinG-Agarose resin (MERCK), overnight. Beads were washed
three times with BC100 buffer (10 mM Tris pH 7.8, 0.5 mM EDTA, 0.1 mM
phenylmethylsulfonyl fluoride, 0.1 mM dithiothreitol (DTT), 10% glycerol, 100
mM KCl) and five times with BC500 buffer (500 mM KCl). Then, proteins were
eluted with 0.2 M Glycine pH 2 or by incubation with the corresponding
competing peptides. Incubation of nuclear extracts containing myc-Suv39h1 with
100 mM NaoH was performed as described65

Immunofluorescence. For IF experiments, cells were transfected and, after 24 h,
were replated on coverslips and then incubated for another 24 h. Cells were fixed in
2% paraformaldehyde for 10 min at room temperature and permeabilized for 10
min with 0.1% sodium azide phosphate-buffered saline (PBS), 0.1% Triton-X, and
5% bovine serum albumin (BSA). Primary and secondary antibodies were diluted
in 0.1% sodium azide PBS, 0.2% Triton-X, and 0.5-1% BSA. As secondary anti-
bodies, anti-rabbit Alexa Flour 488 and anti-mouse Alexa Flour 568, from Mole-
cular Probes, were used. Cells were counterstained with DAPI (4',6-diamidino-2-
phenylindole; Sigma) and slides were mounted on Vectashield (Vector Labora-
tories). Labeled cells were imaged using a Zeiss LSM510 Meta Confocal Laser
Scanning Microscope.

In vitro enzymatics assays. The HMT in vitro assay was performed as descri-
bed13,15 with purified proteins using HeLa purified core histones or GST-fused
mutants of N-terminal histone H3 tails. The signal was enhanced by EN3HANCE
spray (Perkin-Elmer) and the loading was controlled by Coomassie-Blue Staining
(Sigma-Aldrich).

For the in vitro ubiquitination assay, myc-Suv39h1 WT and Suv39h1-8C
purified with anti-Myc Agarose was incubated for 2 h at 30 °C in reaction buffer
(20 mM Hepes-HCl pH 7.4, 10 mM MgCl2, 2 mM DTT, and 2.5 mM ATP) with
0.5 μg E1, 1 μg E2 (Ubch13 and Ubch5c), and 60 μM ubiquitin (Sigma-Aldrich) in
the presence or absence of increasing amounts of the components of SKP2-SCF
complex (Skp2, Cul1, Skp1, and Roc1). The SCF complex was previously purified
with anti FLAG-agarose from cells transfected simultaneously with FLAG-SKP2,
Myc-Cul1, HA-Skp1, and Myc-Roc1, by FLAG-peptide specific elution. Reactions
were stopped with protein loading buffer, run in SD-polyacrylamide gel
electrophoresis (PAGE) gel and the presence of Suv39h1 monoubiquitinated band
was analyzed by WB.

Liquid chromatography-MS/MS for Post-translational modification (PTM)
identification. Proteins from SDS-PAGE gel bands were excised and subsequently
digested with trypsin. The resulting peptides were separated by reverse-phase liquid
chromatography using a nano-capillary analytical C18 column and then electro-
sprayed into an ion-trap mass spectrometer (Amazon ETD Ion Trap (Bruker
Daltonics) and LTQ Velos-Orbitrap (ThermoScientific)). Peptide masses were
analyzed at full scan MS and then at MS/MS fragmentation for the most intense
peaks. Data were analyzed using the Mascot search engine and the SwissProt
database. Detailed information is provided in the Supplementary Data Sets 1 and 2.

ChIP assays. Cells were crosslinked with 1% paraformaldehyde and the reaction
was stopped with 125 mM Glycine. The cells were then lysed with lysis buffer (50
mM Tris pH 7.8, 10 mM EDTA, and 1% SDS) and the chromatin was sonicated
with a Bioruptor (Diagenode) until a range of 300 or 1,000 bp was reached.
Samples were diluted in dilution buffer (1% Triton, 2 mM EDTA, 150 mM NaCl,
20 mM Tris pH 7.8) at least six times and then pre-cleared with Protein-G Mag-
netic beads (MERCK) that had been pre-incubated for at least 6 h (in rotation with
5% BSA and 1mgml−1 salmon sperm DNA). The pre-cleared samples were
incubated with the indicated antibodies for at least 6 h and then incubated with
Magnetic Protein G beads overnight. The beads were washed with TSE I buffer
(150 mM NaCl, 0.1% SDS, 1% Triton, 2 mM EDTA, 20 mM Tris pH 7.8), TSE II
buffer (500 mM NaCl, 0.1% SDS, 1% Triton, 2 mM EDTA, 20 mM Tris pH 7.8),
Buffer III (0.25 M LiCl, 1% NP−40, 1% deoxycholate, 1 mM EDTA, 10 mM Tris
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pH7.8) and PBS 1 ×. The beads were eluted with 0.1 M NaHCO3 and 1% SDS with
agitation. The crosslinking was reverted at 65 °C overnight and the DNA was
purified. Quantitative reverse transcriptase PCR (RT-PCR) was performed using
the hNFKBIA promoter primer (IκBα promoter).

mRNA extraction, RT-PCR, and quantitative PCR. mRNA was extracted from
cells using Trizol (Life Technologies) following the manufacturer’s protocol. Ret-
rotranscriptase PCR was performed with this mRNA using Transcriptor Reverse
Transcriptase (ROCHE). Quantitave PCR was performed with Sybr green Master
Mix of Applied Biosystems and the primers described in Supplementary Table 2
were used. The results were normalized using primers for EEF2, HPRT1, and NCL
for human samples and EEF2, HPRT1, and RPL38 for mouse samples.

Statistical analysis. Statistical analysis was performed using bivariant T-test
analysis. All analysis were performed with n ≥ 5 unless stated otherwise in the
corresponding figure legends. The data analyzed fit with a normal distribution and
showed no significant variance differences among sets of data according to a
variance F-test analysis. The graphs represent mean values and include SE (SEM)
unless stated otherwise. The p-values of each analysis are indicated in figure
legends.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.

Received: 21 June 2016 Accepted: 9 December 2017
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