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INTRODUCTION 
 
Clinical trials and epidemiological studies have revealed 
health benefits associated with green tea consumption, 
including a significant reduction in systolic blood pressure 
[1] and fasting glucose [2] as well as weight loss in type 2 
diabetes patients [3] and in women with central obesity [4]. 

The most abundant polyphenols in green tea leaves are 
epigallocatechin gallate (EGCG), epicatechin gallate 
(ECG), epigallocatechin (EGC), and epicatechin (EC), 
forming 30–42% of the solid green tea extract [5]. EGCG 
accounts for roughly 50% and ECG for 20% of the total 
catechin amount in green tea leaves [6]. A randomized, 
placebo-controlled clinical trial testing a daily 
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ABSTRACT 
 
Green tea catechins are associated with a delay in aging. We have designed the current study to investigate the 
impact and to unveil the target of the most abundant green tea catechins, epigallocatechin gallate (EGCG) and 
epicatechin gallate (ECG). 
Experiments were performed in Caenorhabditis elegans to analyze cellular metabolism, ROS homeostasis, 
stress resistance, physical exercise capacity, health- and lifespan, and the underlying signaling pathways. 
Besides, we examined the impact of EGCG and ECG in isolated murine mitochondria. 
A concentration of 2.5 µM EGCG and ECG enhanced health- and lifespan as well as stress resistance in C. 
elegans. Catechins hampered mitochondrial respiration in C. elegans after 6–12 h and the activity of complex I 
in isolated rodent mitochondria. The impaired mitochondrial respiration was accompanied by a transient drop 
in ATP production and a temporary increase in ROS levels in C. elegans. After 24 h, mitochondrial respiration 
and ATP levels got restored, and ROS levels even dropped below control conditions. The lifespan increases 
induced by EGCG and ECG were dependent on AAK-2/AMPK and SIR-2.1/SIRT1, as well as on PMK-1/p38 MAPK, 
SKN-1/NRF2, and DAF-16/FOXO. Long-term effects included significantly diminished fat content and enhanced 
SOD and CAT activities, required for the positive impact of catechins on lifespan. 
In summary, complex I inhibition by EGCG and ECG induced a transient drop in cellular ATP levels and a 
temporary ROS burst, resulting in SKN-1 and DAF-16 activation. Through adaptative responses, catechins 
reduced fat content, enhanced ROS defense, and improved healthspan in the long term. 
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supplementation with 400 mg EGCG confirmed the safety 
of a one-year administration with EGCG. It revealed 
further that plasma concentrations of EGCG reached a 
measurable level after six months [7]. A recent study tested 
the bioavailability of EGCG combined with various food 
supplements. After overnight fasting, consumption of 150 
mg green tea extracts already resulted in plasma level 
peaks of 10 ng/ml/kg after 60–180 min [8]. In vivo 
experiments in various model organisms suggested a 
beneficial effect of green tea catechins on lifespan due to 
metabolic adaptation and enhanced resistance to reactive 
oxygen species (ROS). For instance, dietary 
supplementation with EGCG-rich green tea extracts (10 
mg/ml EGCG) affected glucose metabolism and increased 
health- and lifespan in Drosophila melanogaster [9]. 
Besides, green tea polyphenol-containing water (80 mg/l) 
extended the lifespan of male C57BL/6 mice [10]. 
Moreover, treatment of Caenorhabditis elegans (C. 
elegans) with EGCG at concentrations of 50–300 µM 
during early-to-mid adulthood promoted lifespan, and 200 
µM EGCG was the most potent dosage to extend lifespan 
via inducing a mitohormetic response via AMPK/SIRT1 
and FOXO [11]. 
 
However, the poor bioavailability of green tea catechins 
in mammals [12, 13] makes it unlikely to achieve this 
concentration after oral administration in humans. 
Nevertheless, several independent clinical trials 
confirmed that green tea consumption improves various 
health parameters [1–4]. After administration of a 
maximum of 4.5 g of decaffeinated green tea solids, 
maximum plasma concentrations of EGCG, ECG, and 
EC reached in total roughly 2.5 µM in humans [14]. 
Consequently, we tested whether 2.5 µM is still 
sufficient to promote lifespan by inducing a 
mitohormetic response in C. elegans. In this work, we 
reveal that EGCG and ECG enhance fitness and 
increase the lifespan of C. elegans already at a 
concentration of 2.5 µM. This comparably low dosage 
is sufficient to inhibit the mitochondrial respiration 
chain activity in C. elegans. Experiments in isolated 
murine liver mitochondria revealed that EGCG and 
ECG hamper complex I activity. Inhibition of complex I 
was accompanied by transient ROS formation and an 
ATP drop after 6 h of EGCG and 12 h of ECG 
treatment in C. elegans. Lifespan extension of C. 
elegans by EGCG and ECG proved to be dependent on 
the presence of the energy sensors AMP-activated 
kinase AAK-2 and NAD-dependent protein deacetylase 
SIR-2.1, the homologs of mammalian AMPK and 
SIRT1, as well as on the ROS-sensing mitogen-
activated protein kinase PMK-1, the orthologue of 
mammalian mitogen-activated protein kinase p38 
MAPK, and in the following on its downstream targets 
protein skinhead-1 (SKN-1), the orthologue of nuclear 
factor erythroid 2-related factor 2 (NRF2), and DAF-16, 

the orthologue of a mammalian forkhead transcription 
factor (FOXO). These data suggest that the subsequent 
energy deficiency due to transient AMP drop triggers 
the energy sensors AAK-2 and SIR-2.1 in C. elegans. 
Moreover, the temporary increase in ROS levels might 
boost PMK-1 activity and, thereby, the respective 
signaling cascade, including SKN-1 and DAF-16 in C. 
elegans. Consistent with the concept of mitohormesis, 
these signaling pathways provoked an adaptive response 
by enhancing the activity of ROS defense enzymes 
superoxide dismutase (SOD) and catalase (CTL), 
increasing oxidative stress resistances, health, and 
lifespan. Moreover, metabolism changed in the long 
term, causing significantly reduced fat content in C. 
elegans. Taken together, inhibition of mitochondrial 
complex I once again proved to be a powerful tool to 
stimulate lifespan extension pathways. 
 
RESULTS 
 
EGCG and ECG promote lifespan, fitness, and 
stress resistance when applied at low doses 
 
Oral absorption and absolute bioavailability of green tea 
catechins are low in mammals [12], reaching total 
maximum plasma concentrations of 2.5 µM in humans 
after administration of maximal 4.5 g of decaffeinated 
green tea solids [14]. However, several independent 
clinical trials reported beneficial effects of EGCG and 
ECG regarding health parameters [1–4]. Therefore, we 
hypothesized that lower concentrations of EGCG and 
ECG than those studied previously [11] are still 
effective and improve lifespan and stress resistance in 
C. elegans. Indeed, EGCG and ECG applied at a 
concentration of 2.5 µM were sufficient to significantly 
extend the medium lifespan (Table 1) of C. elegans 
from 28.8 ± 0.3 to 30.8 ± 0.1 days (Figure 1A) and from 
28.8 ± 0.3 to 30.6 ± 0.3 days (Figure 1B), respectively, 
causing an extension of 6.9% for EGCG and 6.2% for 
ECG treatment. The maximum lifespan (Table 1) was 
extended from 35.7 ± 0.6 to 36.9 ± 0.1 days by EGCG 
treatment (Figure 1A) and from 35.7 ± 0.6 to 37.1 ± 0.3 
days by ECG treatment (Figure 1B), reaching an 
extension of 3.4% for EGCG and 3.9% for ECG. Next, 
we tested whether prolonged lifespan also correlates 
with improved fitness and stress resistance. Locomotion 
is dependent on functional muscle mass, connective 
tissues, and neuronal signaling. Consequently, motility 
is a suitable marker for health [15]. EGCG and ECG 
treatment improved the nematodes’ motility after 7 days 
of incubation (Figure 1C). Moreover, treatment of C. 
elegans with ECGC (Figure 1D) and ECG (Figure 1E) 
for 7 days significantly increased stress resistance 
(Table 2) to the free radical generator paraquat. 
Consequently, EGCG and ECG enhanced fitness and 
stress resistance, both crucial parameters for health.
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Table 1. Lifespan results and statistical analysis. 

Strains, Compounds 
Max lifespan in 

days ± SD 
(10th 

percentile) 

Medium lifespan 
in days ± SD 

(50th percentile) 

Number of 
experiments 

(n) 

P value 
versus 
control 

Number of 
nematodes 

N2 DMSO 35.7 ± 0.6 28.8 ± 0.3 18  2831 

N2 EGCG 36.9 ± 0.1 30.8 ± 0.1 18 <0.0001 2842 

N2 ECG 37.1 ± 0.3 30.6 ± 0.3 15 <0.0001 2777 
      

N2 BHA 36.4 ± 0.6 28.9 ± 0.4 9 0.3838 1548 

N2 BHA + EGCG 36.0 ± 0.3 29.2 ± 0.4 9 0.3114 1581 

N2 BHA + ECG 35.9 ± 0.5 29.6 ± 0.4 6 0.6682 1451 
      

aak-2 (ok524) DMSO 24.2 20.9 ± 0.2 3  462 

aak-2 (ok524) EGCG 24.4 ± 0.2 20.5 ± 0.3 3 0.1015 465 

aak-2 (ok524) ECG 24.6 ± 0.7 20.4 ± 0.4 3 0.9876 452 
      

sir-2.1 (ok434) DMSO 28.6 ± 0.1 24.3 ± 0.4 3  400 

sir-2.1 (ok434) EGCG 28.9 ± 1.2 24.5 ± 0.3 3 0.1858 355 

sir-2.1 (ok434) ECG 28.2 ± 0.5 23.7 ± 0.1 3 0.24 436 
      

pmk-1 (km25) DMSO 34.9 ± 0.6 27.9 ± 0.4 3  548 

pmk-1 (km25) EGCG 35.5 ± 1.5 28.2 ± 1.1 3 0.7759 567 

pmk-1 (km25) ECG 35.3 ± 0.7 28.0 ± 0.3 3 0.7363 581 
      

skn-1 (zu67) DMSO 16.5 ± 0.5 14.1 ± 0.1 6  424 

skn-1 (zu67) EGCG 17.0 ± 0.2 14.2 ± 0.1 6 0.5286 432 

skn-1 (zu67) ECG 16.8 ± 0.2 14.3 6 0.4823 440 
      

daf-16 (mgDF47) DMSO 22.5 ± 0.3 20.1 ± 0.1 3  660 

daf-16 (mgDF47) EGCG 22.2 ± 0.2 19.8 3 0.029 774 

daf-16 (mgDF47) ECG 21.7 ± 0.6 19.4 ± 0.2 3 <0.0001 707 
      

sod-2 (gk257) DMSO 33.3 ± 0.4 27.2 ± 0.4 3  730 

sod-2 (gk257) EGCG 33.1 ± 0.4 27.5 ± 0.4 3 0.9525 788 
      

ctl-2 (ok1137) DMSO 32.5 ± 0.4 26.8 ± 0.7 3  602 

ctl-2 (ok1137) ECG 32.9 ± 0.5 27.2 ± 0.4 3 0.1718 614 
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Complex I inhibition by EGCG and ECG hampers 
mitochondrial respiration temporarily and induces a 
transient ROS signal 
 
Previous reports have suggested that green tea catechins 
induce SIRT1/SIR-2.1 and FOXO/DAF-16 signaling by 
an initial increase in ROS levels. However, the ROS 
source has remained unidentified in previous reports 
[11]. We could confirm that ROS is essential for 

lifespan extension provoked by catechins, showing that 
the antioxidant butylated hydroxyanisole (BHA) 
prevents the life-prolonging effect of ECGC (Figure 
2A) and ECG (Figure 2B). Moreover, we found that 25 
µM of EGCG and ECG significantly hamper the activity 
of complex I in murine liver mitochondria (Figure 2C) 
and the mitochondrial respiration in mitochondria isolated 
from rat liver (Figure 2D). These findings are in line with 
reduced mitochondrial respiration in C. elegans  

 

 
 
Figure 1. Increased lifespan, locomotion activity, and stress resistance after EGCG and ECG treatment. The representative 
outcome of lifespan assay of N2 wild-type nematodes in the presence of 2.5 µM EGCG versus DMSO. (A) The representative outcome of 
lifespan assay of N2 wild-type nematodes in the presence of 2.5 µM ECG versus control. (B) Locomotion quantification for N2 wild-type 
nematodes after 7 days exposure to DMSO, 2.5 µM EGCG, or 2.5 µM ECG. (C) The representative outcome of the survival analysis (h) of N2 
nematodes in 50 mM paraquat solution after 7 days of pretreatment with EGCG (D) or ECG (E) in comparison to worms pretreated with 
DMSO. P-values are as indicated in the graphs. See Table 1 and Table 2 for corresponding detailed data and statistical analyses of lifespan 
assays and of paraquat stress assay, respectively. 
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Table 2. Paraquat stress assay results and statistical analysis. 

Treatments Number of experiments (n) P value versus control Number of nematodes 
N2 DMSO 6  94 
N2 EGCG 6 <0.0001 92 
N2 ECG 6 <0.0001 93 

 
after 6–12 hours exposure to 2.5 µM EGCG (Figure 2E) 
or ECG (Figure 2F). Notably, mitochondrial respiration 
recovered after 24 h and 120 h of treatment with EGCG 
(Figure 2E) and ECG (Figure 2F), pointing to 
compensation of an initially impaired mitochondrial 
function. The time course of initial diminution and the 
subsequent recovery of mitochondrial respiration 
correlates with ROS levels, which increased significantly 
after 6 h of ECGC (Figure 2G) and 12 h of ECG (Figure 
2H) administration and dropped significantly after 24 h 
and 120 h of catechin treatment (Figure 2G, 2H). 
 
AMPK and SIRT1 are essential for catechin-induced 
lifespan extension 
 
Inhibition of complex I reduces NADH’s oxidation to 
NAD+, necessary for glyceraldehyde 3-phosphate 
conversion to 1, 3-bisphosphoglycerate during 
glycolysis. Consequently, reduced levels of NAD+ 
hamper glycolysis and the production of pyruvate, 
which enters the Krebs cycle to be converted into water 
and CO2 [16]. In line with these reports, ECGC reduced 
the oxidation of radioactively labeled glucose by 20%, 
as shown by impaired production of the 14C-labeled 
CO2 (Figure 3A). ECG treatment also tended to reduce 
the glucose turnover. However, the effects remained 
non-significant (Figure 3A). The time course of 
metabolic manipulation by EGCG and ECG was also 
reflected in overall ATP levels. In line with catechin-
induced inhibition of mitochondrial respiration (Figure 
2E, 2F) and glycolysis (Figure 3A), overall ATP levels 
dropped after 6 h of EGCG (Figure 3B) and 12 h of 
ECG (Figure 3C) treatment in nematodes before 
recovering after 24 h. A lack of ATP, resulting in a 
higher AMP to ATP ratio, is well-known to activate the 
AMP-dependent kinase AMPK [17]. The C. elegans 
homolog of AMPK, AAK-2, is involved in lifespan 
extension in response to impaired glycolysis [18] and 
insulin/IGF-1 signaling [19]. Indeed, EGCG (Figure 
3D) and ECG (Figure 3E) failed to extend lifespan in 
aak-2 deficient mutants. Notably, AMPK enhances 
NAD+-dependent type III deacetylase sirtuin 1 activity 
by increasing cellular NAD+ levels [20]. In sir-2.1 
defective mutants, EGCG (Figure 3F) and ECG (Figure 
3G) did not achieve a lifespan extension, proving that 
EGCG and ECG prolong lifespan in an AMPK- and 
SIRT1-dependent manner. These findings align with 
previous reports showing that catechins’ lifespan 
extension depends on AMPK, SIRT1, and FOXO [11]. 

p38 MAPK, NRF2, and FOXO are required for the 
lifespan extension induced by catechins 
 
As shown in Figure 2, EGCG and ECG block complex I 
activity and, thus, induce a transient rise in ROS levels. 
ROS [21] and AMPK [22] are potential mediators of the 
p38 MAP kinase pathways. The homolog of the 
mammalian p38 MAPK, PMK-1, has been identified as a 
crucial component in the lifespan extension of C. elegans 
[23, 24]. In line with these previous reports, we found 
that neither EGCG (Figure 4A) nor ECG (Figure 4B) 
treatment extends lifespan in pmk-1 deficient mutants. 
Next, we tested the impact of whether the transcription 
factor SKN1, the worm homolog of NRF2 and a 
downstream target of PMK1 under conditions of 
oxidative stress [25–27], is involved in the lifespan 
extension provoked by catechins. Again, no EGCG- 
(Figure 4C) or ECG-induced (Figure 4D) lifespan 
extension could be observed in skn-1 mutant worms. 
DAF-16 is the homolog of a mammalian FOXO and is 
reported to respond to physical and environmental stress 
[28]. daf-16 mutant worms are sensitive to oxidative 
stress and have shortened lifespans. Moreover, DAF-16 
can activate or repress the transcription of target genes 
involved in dauer formation, life span, stress resistance, 
and fat storage of C. elegans [29]. EGCG and ECG 
decreased mean lifespan in daf-16 deficient nematodes 
from 20.1 ± 0.1 to 19.8 days (Figure 4E) and from 20.1 ± 
0.1 to 19.4 ± 0.2 days (Figure 4F), respectively. The 
maximum lifespan was decreased from 22.5 ± 0.3 to 22.2 
± 0.2 days by EGCG treatment (Figure 4E) and from 
22.5 ± 0.3 to 21.7 ± 0.6 days by ECG treatment (Figure 
4F). These results suggest that DAF-16 is indispensable 
for EGCG’s and ECG’s lifespan extension and show that 
daf-16 deficient nematodes are especially prone to a ROS 
level rise induced by catechins. 
 
EGCG and ECG induce adaptive responses in ROS 
homeostasis and cellular metabolism 
 
AMPK/SIRT1 and p38MAPK/NRF2/FOXO signaling 
cascades are associated with antioxidant defense 
mechanisms [30]. The major antioxidant enzymes in C. 
elegans include five distinct superoxide dismutases, 
converting superoxide to hydrogen peroxide, and two 
catalases, which ensure the subsequent conversion of 
hydrogen peroxide to water [31]. EGCG treatments 
increased SOD activity after 24 h (Figure 5A) and CTL 
activity after 7 days (Figure 5B). Meanwhile, ECG
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Figure 2. EGCG and ECG inhibit complex I, which results in a temporary hampering of mitochondrial respiration and a boost 
in ROS production. The representative outcome of lifespan assay of N2 wild type nematodes in the presence of 2.5 µM EGCG co-applied 
with an antioxidant; DMSO vs. 2.5 µM EGCG vs. 10 µM BHA vs. 2.5 µM EGCG in combination with 10 µM BHA. (A) The representative 
outcome of lifespan assay of N2 wild type nematodes in the presence of 2.5 µM ECG co-applied with an antioxidant; DMSO vs. 2.5 µM ECG 
vs. 10 µM BHA vs. 2.5 µM ECG in combination with 10 µM BHA. (B) Complex I activity in murine liver mitochondria after treatment with 
DMSO, 25 µM EGCG or 25 µM ECG. (C) Mitochondrial respiration of rat liver mitochondria after treatment with DMSO, 25 µM EGCG or 25 
µM ECG. (D) Mitochondrial respiration of N2 wild-type nematodes after treatment with DMSO or 2.5 µM EGCG for 6 h, 24 h, or 120 h 
measured as oxygen consumption rate and normalized to protein content. (E) Mitochondrial respiration of N2 wild-type nematodes after 
treatment with DMSO or 2.5 µM ECG for 12 h, 24 h, or 120 h, measured as oxygen consumption rate and normalized to protein content. (F) 
ROS production of N2 wild-type nematodes after treatment for 6 h, 24 h, or 120 h with 0.1% DMSO or 2.5 µM EGCG. (G) ROS production of 
N2 wild-type nematodes after treatment for 6 h, 24 h, or 120 h with 0.1% DMSO or 2.5 µM ECG. (H) P-values are as indicated in the graphs. 
See Table 1 for corresponding detailed data and statistical analyses of lifespan assays. 
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treatments did not significantly increase SOD activity 
(Figure 5A) but increased CTL activity after 24 h and 7 
days (Figure 5B). The enhanced activity of SOD and 
CTL correlates with the subsequent drop of ROS levels 
after 24 h of EGCG and ECG treatment. Notably, the 

lifespan-extending effect of EGCG and ECG is 
dependent on SOD-2 (Figure 5C) and catalase 2 (CTL-
2) (Figure 5D). As shown in Figure 3, complex I 
inhibition by EGCG and ECG was also accompanied by 
a reduction in glucose oxidation. In line with this 

 

 
 
Figure 3. EGCG and ECG induce a drop in cellular ATP levels and require AMPK/SIRT1 signaling to extend lifespan. 14CO2 
production of N2 wild-type nematodes after treatment with 0.1% DMSO, 2.5 µM EGCG or 2.5 µM ECG for the indicated time. (A) ATP 
content for various incubation periods of N2 wild-type nematodes with 0.1% DMSO or 2.5 µM EGCG. (B) ATP content for different 
incubation periods of N2 wild-type nematodes with 0.1% DMSO or 2.5 µM EGCG. (C) The representative outcome of lifespan assay of aak-2 
mutants treated with 0.1% DMSO versus 2.5 µM EGCG (D) or 2.5 µM ECG. (E) The representative outcome of lifespan assay of sir-2.1 
mutants treated with 0.1% DMSO versus 2.5 µM EGCG (F) or 2.5 µM ECG. (G) P-values are as indicated in the graphs. See Table 1 for 
corresponding detailed data and statistical analyses of lifespan assays. 
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finding, the fat content was found to be significantly 
lower after 120 h of EGCG or ECG treatment (Figure  
5E), pointing to a catechin-induced long-term 
reprogramming of cellular metabolism. 
 
DISCUSSION 
 
Green tea is one of the most widely consumed 
beverages worldwide [32]. The popularity of green tea 

makes it crucial to study its impact on health and aging. 
Although EGCG’s and ECG’s bioavailability is 
relatively low [7, 8], consuming 4 cups of green tea 
daily for 8 weeks significantly decreases body weight  
[33]. Previous reports already reported a lifespan 
extension in C. elegans after treatment with 50–300 µM 
EGCG [11]. Here, we show that already 2.5 µM of 
EGCG and ECG, a concentration also potentially 
achieved after green tea consumption [14], are sufficient 

 

 
 
Figure 4. EGCG and ECG mediate lifespan extension dependent on PMK-1/p38 MAPK, SKN-1/NRF2, and DAF-16/FOXO. The 
representative outcome of lifespan assay of pmk-1 mutants treated with 0.1% DMSO versus 2.5 µM EGCG (A) or 2.5 µM ECG. 
(B) The representative outcome of lifespan assay of skn-1 mutants treated with 0.1% DMSO versus 2.5 µM EGCG (C) or 2.5 µM ECG. (D) The 
representative outcome of lifespan assay of daf-16 mutants treated with 0.1% DMSO versus 2.5 µM EGCG (E) or 2.5 µM ECG. (F) P-values 
are as indicated in the graphs. See Table 1 for corresponding detailed data and statistical analyses of lifespan assays. 
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to induce an extension of lifespan and increase stress 
resistance by adaptational mechanisms. In this 
mitohormetic response, EGCG and ECG act initially as 
prooxidants by provoking a ROS rise. Since a transient 
ROS burst induces antioxidant defense mechanisms, 
EGCG and ECG display antioxidant properties in the 
long term. In higher concentrations, EGCG and ECG 
might show harmful effects due to excessive ROS 
production. This phenomenon gets obvious in studies 

performed on cancer cells. While the antioxidant 
potential of green tea catechins in low concentrations was 
suggested as a potential solution to prevent tumorigenesis 
[34, 35], higher dosages of catechins might serve as 
antitumor agents due to the induction of overwhelming 
ROS formation and apoptosis [36–41]. Notably, EGCG 
was more potent than ECG in human cancer cell lines in 
inducing cytotoxic effects [33] and inhibiting cancer cell 
motility [42]. Indeed, it took just 6 h for EGCG, but 12 h

 

 
 
Figure 5. EGCG and ECG induce SOD and CTL activity and a shift in lipid metabolism in the long term. SOD (A) or CTL (B) 
activity after treatment with 0.1% DMSO, 2.5 µM EGCG or 2.5 µM ECG for 24 h or 7 days. The representative outcome of lifespan assay of 
sod-2 mutants treated with 0.1% DMSO or 2.5 µM EGCG. (C) The representative outcome of lifespan assay of ctl-2 mutants treated with 
0.1% DMSO or 2.5 µM ECG. (D) Triglyceride content in N2 wild-type nematodes after treatment with 0.1% DMSO, 2.5 µM EGCG or 2.5 µM 
ECG for 5 days, normalized to protein content. (E) P-values are as indicated in the graphs. See Table 1 for corresponding detailed data and 
statistical analyses of lifespan assays. 
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for ECG to affect mitochondrial respiration, ROS, and 
ATP levels. However, the impact of these compounds 
was similar when applied in the long term, yielding 
similar effects on lifespan, motility, and stress resistance. 
 
Besides triggering a mitohormetic response through 
their effects on transcription factors and enzyme 
activities, catechins were speculated to exert direct 
antioxidant potential by scavenging ROS [43, 44]. 
While a modest increase in the plasma antioxidant 
capacity following green tea consumption was reported 
[43], the fraction of structurally intact catechins 
reaching target tissues is insignificant compared to the 
antioxidant potential due to intracellular glutathione 
achieving levels of 1–11 mM [45–47]. Besides, EGCG 
even induced hydrogen peroxide formation in the cell 
culture and liquid NGM system [44–46]. Moreover, 
hydrogen peroxide mimicked the effect of EGCG on 
signaling pathways, while antioxidants abolished the 
impact of catechins [37, 41, 48–50]. We could show 
that BHA prevented lifespan extension by EGCG and 
ECG, suggesting that an initial rise in ROS levels is 
necessary to induce adaptational mechanisms causing 
improved antioxidant properties. 
 
Previous studies already revealed increased hydrogen 
peroxide levels and a dose- and time-dependent 
decrease in glutathione levels in cell culture models 
after applying 50 µM of EGCG [43, 51]. However, the 
mechanism of how EGCG and ECG induce ROS 
formation was not described so far [11]. In the current 
study, we revealed that EGCG and ECG inhibit 
complex I of the ETC. Experiments in rat cerebellar 
granule neurons have shown that EGCG accumulates 
explicitly in mitochondria, reaching 90–95% 
mitochondrial accumulation of this polyphenol [52]. 
This finding is well aligned with the plethora of 
literature describing polyphenols as compounds 
targeting mitochondria [53, 54]. Consequently, we 
isolated mitochondria to investigate the impact of 
EGCG and ECG on the complexes of the mitochondrial 
ETC. Isolated mitochondria are separated from their 
natural environment and signaling processes, and the 
isolation process brings the risk of damaging 
mitochondrial membranes due to shear forces [55]. 
However, drug uptake by mitochondria is dependent on 
the integrity of the outer and inner mitochondrial 
membrane, including the function of transporter 
proteins and carriers [56]. Since 25 µM of EGCG and 
ECG were necessary to achieve a significant inhibition 
of complex I activity in mitochondria isolated from 
murine liver samples and to hamper mitochondrial 
respiration in mitochondria isolated from rat liver, we 
assume that the isolation process affected the integrity 
of mitochondrial membranes and, thereby, 
mitochondria’s potential to take up catechins efficiently. 

Besides, the isolation of mitochondria yields a relatively 
homogenous population of spherical organelles with 
disorganized cristae and diluted matrix content. The 
structural alterations affect ETC activity and mitochondrial 
respiration rate [57]. We assume that structural changes in 
cristae organization due to the isolation process might be 
another reason why 25 µM of EGCG and ECG were 
necessary to significantly block complex I activity and 
mitochondrial respiration rate in isolated mitochondria. 
 
In addition, we present that a temporary hampered 
mitochondrial respiration goes along with a transient rise 
in ROS levels and a brief drop in ATP, triggering 
signaling pathways associated with lifespan extension in 
C. elegans. Our findings align with reports about the C. 
elegans mutant nuo-6(qm200), carrying a mutation in a 
conserved subunit of mitochondrial complex I (NUDF84). 
This specific mutant has reduced complex I function, 
increased ROS levels [58], and a prolonged lifespan [59]. 
It was also speculated that blockage of the complex I of 
the mitochondrial electron transport chain delays aging 
due to slowed embryonic development and larval growth, 
decreased pumping and defecation rate, or a reduced 
accumulation of ROS damage [60–62]. However, RNAi-
induced knockdown of the mitochondrial electron 
transport chain’s complexes at the L3/L4 stage is 
sufficient to initiate lifespan extension in C. elegans. At 
this stage, mitochondria are already undergoing a period 
of dramatic proliferation and massive mitochondrial DNA 
expansion [63]. Moreover, inhibiting respiratory chain 
components during adulthood did not provoke lifespan 
extension anymore [64–66]. Consequently, one has to 
assume that a temporary sub-lethal rise in mitochondrial 
ROS during early adulthood induces lifespan extension by 
provoking changes in the homeostasis of proteins [59, 67] 
and metabolism [58]. Notably, glucose restriction by 2-
deoxy-D-glucose (2-DG)-mediated inhibition of 
glycolysis increases the lifespan in C. elegans in a ROS-
dependent manner [18], suggesting that the temporary 
drop in ATP levels due to complex I inhibition is an 
additional trigger to prolong lifespan. 
 
Our data demonstrate that life span extension by EGCG 
and ECG involves energy sensors AAK-2/AMPK and 
SIR-2.1/SIRT1 as well as the ROS-sensing PMK-1/p38 
MAPK, and the transcription factors SKN-1/NRF2 and 
DAF-16/FOXO. By activating these signaling cascades, 
the function of ROS defense enzymes, SOD and CTL, 
and the oxidative stress resistance gets boosted. A 
previous report presented that catechins’ lifespan 
extension depends on AMPK, SIRT1, and FOXO [11]. 
Ahead of this report, SOD-3, DAF-16, and SKN-1 were 
already suggested as targets of EGCG due to enhanced 
expression [68] or translocation into the nucleus after 
respective compound treatment [48]. Oxidative stress 
was reported to stimulate SKN-1’s translocation to the 
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nucleus, a process tightly regulated by protein kinases, 
including PMK-1, GSK-3, MKK-4, IKK epsilon-1, 
NEKL-2, and PDHK-2 [26]. Notably, SKN-1 activation 
in neurons is necessary for dietary restriction-mediated 
lifespan extension [69]. Moreover, reduced insulin/IGF-
1 signaling causes nuclear accumulation of SKN-1, a 
process needed for long-lived daf-2 mutants with 
increased stress resistance and lifespan [19, 70]. DAF-
16, the orthologue of mammalian FOXO, is a crucial 
regulator of longevity, metabolism, and dauer diapauses 
in C. elegans [28, 29, 71, 72]. Consequently, it seems 
reasonable that the ROS-sensing p38 MAPK and the 
energy-sensing AMPK activate the respective signaling 
cascades after blockage of complex I by EGCG and 
ECG. Reports showed that AMPK activates p38 MAPK 
[73]. Consequently, these two kinases might even 
augment each other’s activity and the potential of the 
respective signaling cascade. 
 
The long-term effects also included reduced fat 
content in C. elegans after 5 days of catechin 
treatment. Align with this finding, inhibition of 
complex I and complex IV by rotenone and NaN3 
reduced lipid accumulation in 3T3-L1 cells [74]. 
Moreover, a previous report revealed reduced body fat 
content in C. elegans after catechin treatment [75]. 
Besides, green tea catechins were associated with 
reduced obesity in zebrafish [76], mice [77], rats [78, 
79], and humans [80, 81], suggesting a catechin-
induced metabolic remodeling. 

Clinical trials have already confirmed the safety of 
EGCG [7] and highlighted the potential in counteracting 
age-related cardiovascular and metabolic diseases [1–4]. 
Experiments in rodents studying physical and clinical 
parameters over time and further clinical trials are 
required to identify the best timing and dosage for 
administering catechins. Finally, these studies might 
characterize additional effects and downstream 
mechanisms of complex I inhibition. Despite the 
promising results obtained in animal experiments, the 
low bioavailability of EGCG [7] still raises the question 
of whether green tea catechins can reliably provoke 
beneficial effects in humans. Consequently, additional 
efforts might be needed to identify complex I inhibitors 
with increased bioavailability. 
 
CONCLUSIONS 
 
We conclude that applying the green tea catechins 
EGCG and ECG at a low dose extends the lifespan of C. 
elegans via inducing a mitohormetic response. Thereby, 
the inhibition of complex I causes a transient ROS rise 
that stimulates the antioxidant defense enzymes SOD 
and CAT and activates the PMK-1/SKN-1/DAF-16 
pathway (Figure 6, Scheme). Besides, complex I 
inhibition causes a temporary drop in cellular ATP 
levels and consequently activation of AAK-2/SIR-2.1 
signaling. In the long term, the re-wiring of these 
energy- and ROS-dependent pathways reduces the fat 
content and extends health- and lifespan. 

 

 
Figure 6. Scheme. Green tea catechins enhance fitness and lifespan of Caenorhabditis elegance by complex I inhibition. 
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METHODS 
 
Nematode strains and maintenance 
 
C. elegans strains used in the current study were 
obtained from the Caenorhabditis Genetics Center 
(CGC, University of Minnesota). Nematodes were 
grown and maintained at 20°C in 10 cm Petri dishes on 
nematode growth media (NGM), with Escherichia coli 
(E. coli) OP50 bacteria as the food resource as 
previously described [18, 82, 83]. The strains used in 
this study included the following: N2 (wild type), 
GA1001 aak-2(ok524), VC199 sir-2.1(ok434), KU25 
pmk-1(km25), EU1 skn-1(zu67), IU10 daf-
16(mgDF47), GA184 sod-2(ok257), and VC754 ctrl-
2(ok1137). 
 
Compound treatment 
 
EGCG, ECG, and BHA dissolved in DMSO, reaching a 
stock concentration of 2.5 mM of EGCG and ECG and 
10 mM of BHA. The NGM agar solution was autoclaved 
and subsequently cooled to 55°C, before supplements 
and compounds (EGCG, ECG, BHA, or DMSO) were 
added under continuous stirring. The final concentration 
for compounds was calculated regarding the volume of 
agar, and the same volume of DMSO was added to 
control plates. NGM agar plates were supplemented with 
100 µg/ml ampicillin to induce metabolic inactivity in E. 
coli. Agar plates were poured and dried, sealed with 
parafilm, and stored at 4°C. Before experiments, NGM 
plates were spotted with a bacterial lawn of heat-
inactivated bacteria (OP50 HIT) to avoid interference by 
a potential xenobiotic-metabolizing activity of E. coli. 
To exclude any effects on development, the incubation 
period with compounds started at the L4 stage by 
transferring nematodes to the respective NGM plates 
[84]. To analyze oxygen consumption rate, glucose 
oxidation, ATP levels, enzyme activity, and fat content, 
adult worms at the L4 stage were transferred on NGM 
agar plates containing 25 µM 5-fluoro-2′-deoxyuridine 
(Sigma-Aldrich, St. Louis, MO, USA) to prevent 
progeny formation. After 16 h, we transferred animals to 
respective treatment groups and harvested them at the 
indicated time points [18]. 
 
Lifespan analyses 
 
According to standard protocols, all lifespan assays 
were performed at 20°C as previously described [18, 
19]. Briefly, the C. elegans population was 
synchronized with hypochlorite/NaOH solution except 
for skn-1 mutant worms. Eggs from heterozygous skn-1 
hermaphrodites were harvested after overnight egg-
laying without applying hypochlorite/NaOH solution to 
increase the yield of viable larvae [85]. Eggs of 

nematodes were transferred to NGM plates with fresh 
OP50 bacteria to allow hatching and development. After 
approximately 64 h, at the L4 stage, we moved 200 
nematodes manually to freshly prepared NGM plates 
containing the respective compounds and supplied them 
with a lawn of OP50 HIT. During the first 10–14 days, 
nematodes were transferred to freshly prepared NGM 
treatment plates every day and later every second day. 
Nematodes without any reaction to gentle stimulation 
were classified as dead. Nematodes that crawled off the 
plate or suffered from non-natural death like internal 
hatching were censored and excluded from statistics on 
the day of premature death. Notably, for lifespan 
analysis using BHA, nematodes were propagated on 
BHA-containing NGM plates for four generations 
before synchronization; the same applied for the 
respective DMSO controls. 
 
Locomotion assay 
 
Following the L4 stage, nematodes were treated with 
0.1% DMSO, 2.5 µM of EGCG, and 2.5 µM of ECG 
for 7 days. Afterward, we transferred single worms into 
S-buffer containing 0.01% Triton X-100 to wash off 
bacteria and then pipetted them on a glass slide. 
Movements of single worms within the liquid system 
were recorded for 20 seconds by a digital CCD camera 
(Moticam 2300, Motic, St. Ingbert, Germany) coupled 
microscope (SMZ 168, Motic, St. Ingbert, Germany) 
equipped with Motic Images Plus 2. We analyzed the 
videos using the DanioTrack software (Loligo Systems, 
Tjele, Denmark), subtracting the background and 
determining the center of gravity of all object pixels 
compared to the background. As described previously, 
the center’s shift distance was accumulatively 
calculated and normalized per second [84]. 
 
Paraquat stress resistance assay 
 
Resistance to lethal oxidative stress by paraquat 
(Sigma-Aldrich, Munich, Germany) was assessed as 
previously described [18, 19]. Briefly, worms were 
treated with 0.1% DMSO, 2.5 µM of EGCG, and 2.5 
µM of ECG for 7 days after L4 stage. Afterward, we 
transferred worms into 96-well plates: 6 nematodes in 
100 µl of S-buffer, containing freshly dissolved 50 mM 
paraquat. Dead worms were scored every hour until all 
control worms were dead. 
 
Basal oxygen consumption rate 
 
Mitochondrial respiration was quantified using a 
DW1/AD Clark-type electrode (Hansatech, King’s Lynn, 
England) as previously described [18]. Briefly, we 
treated worms with 0.1% DMSO, 2.5 µM EGCG, or 2.5 
µM ECG for the indicated periods, then washed off the 
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respective NGM plates with S-buffer and allowed them 
to settle by gravitation to remove offspring and bacteria. 
Worms were also washed twice with S-buffer and 
transferred into the DW1 chamber to monitor oxygen 
consumption for 10 mins. Afterward, we collected worms 
for Bradford protein determination [86]. 
 
ROS quantification 
 
Before the ROS measurement, MitoTracker Red CM-
H2X ROS (Invitrogen, Carlsbad, CA, USA) incubation 
plates were prepared as previously described [19]. 
Briefly, we treated worms with 0.1% DMSO, 2.5 µM 
EGCG, or 2.5 µM ECG for the indicated periods, then 
washed off the respective NGM plates and allowed 
them to settle by gravitation to remove offspring and 
bacteria. Worms were additionally washed twice with 
S-buffer and transferred to freshly prepared 
MitoTracker Red CM-H2X incubation NGM plates 
containing 500 µl of OP50 HIT mixed with 100 µl 
freshly prepared MitoTracker Red CM-H2X stock 
solution (100 µM). After 2 h at 20°C, worms were 
washed off MitoTracker Red CM-H2X incubation 
NGM plates and transferred to NGM agar plates with 
0.1% DMSO, 2.5 µM EGCG or 2.5 µM ECG for 1 h to 
remove excess dye from the gut. Aliquots of 100 µl 
worm suspension in S-buffer were distributed into a 
96-well FLUOTRAC™ plate (Greiner Bio-One, 
Frickenhausen, Germany). Fluorescence intensity was 
measured on a microplate reader (FLUOstar Optima, 
BMG Labtech, Offenburg, Germany) using well-
scanning mode (ex: 570 nm; em: 610 nm). We 
collected worms from plates for Bradford protein 
determination [86]. 
 
Glucose oxidation assay 
 
[14C] D-glucose oxidation rates were determined as 
described previously [87]. Uniformly labeled [14C] D-
glucose was purchased from PerkinElmer, and the 
specific activity of the batch used was 300 mCi/mmol. 
We placed an equal number of nematodes on the NGM 
plates containing 0.1% DMSO, 2.5 µM EGCG, or 2.5 
µM ECG for the indicated period. After collection and 
two subsequent washes in S-buffer, worm pellets were 
resuspended in the incubation buffer. 700 µl of the 
suspension were transferred to 4 cm Petri dishes. The 
latter were placed in 10 cm Petri dishes together with a 
second 4 cm Petri dish containing 600 µl of 0.1 M KOH 
solution to trap CO2 as described previously [18, 88]. 
Hence, each 10 cm dish was equipped with two 4 cm 
dishes, one carrying nematodes and the other containing 
KOH. We added labeled glucose to a final 
concentration of 17 µM U-[14C] D-glucose (5 µCi/ml) 
in the nematode suspension as a substrate. We added 
nonradioactive glucose into each sample to reach a final 

concentration of 0.5 mM. The 10 cm Petri dishes were 
covered, sealed with parafilm in an air-tight manner, 
and incubated at 20°C for 3 h. Subsequently, an aliquot 
of 500 µl of KOH was immersed in 4.5 ml of 
scintillation fluid and placed in a liquid scintillation 
counter (Beckmann LS 6000, Global Medical 
Instrumentation, Inc.) to quantify the amount of trapped 
14CO2. We normalized 14CO2 signals to incubated 
worms’ protein content. 
 
ATP quantification 
 
We treated nematodes with 0.1% DMSO, 2.5 µM 
EGCG, or 2.5 µM ECG for the indicated time. After 
collection and washing with S-buffer twice, worm 
pellets were shock frozen in liquid nitrogen and grinded 
in a nitrogen-chilled mortar. The grinded samples were 
boiled with 4 M Guanidine-HCl at 99°C for 15 min to 
destroy ATPase activity [58, 89]. Precipitated proteins 
were separated by centrifugation (30 min, 13200 g at 
4°C), and the supernatant was analyzed regarding the 
ATP content using CellTiter Glo (Promega, Fitchburg, 
WI, USA) according to the manufacturer’s instructions. 
ATP values were normalized to protein content using 
the Bradford assay [86]. 
 
Activity assays for Catalase (CTL) and Superoxide 
Dismutase (SOD) 
 
After treating nematodes with 0.1% DMSO, 2.5 µM 
EGCG, or 2.5 µM ECG for the indicated period, the 
respective enzyme activities were determined by 
standard photometric assays as previously described 
[18, 19, 84]. Briefly, CTL activity was estimated by the 
production of formaldehyde due to the enzyme’s 
reaction with methanol in the presence of an optimal 
concentration of H2O2. The produced formaldehyde was 
determined spectrophotometrically with 4-amino-3-
hydrazino-5-mercapto-1, 2, 4-triazole (Purpald, 
Applichem, Darmstadt, Germany). We measured SOD 
activity photometrically with a tetrazolium salt, forming 
a water-soluble formazan dye upon reduction with a 
superoxide anion. 
 
Fat content analysis 
 
We determined fat content by applying a triglyceride 
determination kit (Roche, Mannheim, Germany) as 
previously described [18, 88] and normalized to protein 
content using the Bradford assay [86]. Briefly, worms 
were incubated with 0.1% DMSO, 2.5 µM EGCG, or 
2.5 µM ECG for 5 days, washed, and shock-frozen in 
liquid nitrogen. Afterward, worm pellets were grinded 
in a nitrogen-chilled mortar with Milli-Q water 
supplemented with 5% Triton X-100 and sonicated 3 
times. We centrifuged 200 µl of the homogenized 
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extract and extracted the supernatant for protein 
determination. 400 µl of lysate was heated to 80°C for 5 
min and then cooled down to room temperature. The 
heating was repeated once to dissolve all triglycerides. 
After heating and cooling, the lysate was centrifugated 
at 12000 g for 10 min, and we collected the supernatant 
for triglyceride determination according to the 
manufacturer’s protocol.  
 
Quantification of complex I activity in mitochondria 
from the murine liver 
 
We measured the activity of complex I 
spectrophotometrically at 600 nm in 1 ml of 25 mM 
potassium phosphate buffer containing 3.5 g/L BSA, 60 
µM 2,6-dichloroindophenol (DCIP), 70 µM 
decylubiquinone, 1.0 µM antimycin A, and 0.2 mM 
NADH, adjusted to pH 7.8 [90]. Decylubiquinone and 
antimycin A were dissolved in DMSO as 17.5 mM and 
1.0 mM, respectively. DCIP and NADH were dissolved 
in water as 10 mM for both. BSA stock solution was 70 
g/L in 5 mM potassium phosphate buffer, pH 7.4. 
Mouse liver mitochondria stocks contained 10 µg/µl in 
10 mM Tris (pH 7.6) and were stored at −80°C. After 
being thawed, 30 µl of mitochondria were treated with 
470 µl of 10 mM Tris-Cl, pH 7.6, to disrupt the 
mitochondrial membrane. Subsequently, 20 µl 
mitochondria fragments were preincubated in a 960 µl 
incubation mixture without NADH for 3 mins. After 3 
mins, we added 20 µl of 10 mM NADH into the 
incubation mixture and measured the absorbance at 20 s 
intervals for 2 mins. 2 mins later, 1 µl of DMSO, 
EGCG, or ECG were added into the incubation mixture 
as fast as possible and measured absorbance again at 
20s intervals for 4 mins. The effect of chemicals on 
complex I activity was expressed as the slopes’ ratio of 
decreasing absorbances before and after adding 
substances. 
 
Isolation of mitochondria from murine liver 
 
We did the isolation of mitochondria from rat liver 
according to Frezza’s protocol [91], except for the 
homogenization, which was done using a tissue glass 
Dounce Homogenizer (Wheaton, VWR, Darmstadt, 
Germany). Briefly, rodents were fasted overnight and 
killed by cervical dislocation. The liver was rapidly 
explanted, immersed, and sliced in the isolation buffer 
containing 200 mM sucrose, 1 mM EGTA/Tris, and 10 
mM Tris/MOPS, pH 7.4. The washed liver fragments 
were placed into the tube with around 25 ml isolation 
buffer. The loose-fitting pestle was inserted, pressed 
down, and lifted four times, and then the tight-fitting 
pestle was applied in the same way twice. The mixture 
was poured into the 50 ml polypropylene falcon tube 
and centrifuged at 600 g for 10 min at 4°C. We 

carefully removed the fat on the top of the supernatant 
by using tissue paper. The supernatant was extracted to 
a second polypropylene falcon tube centrifuged at 7000 
g for 10 min at 4°C. Afterward, the fat was removed, 
the supernatant discarded, and the mitochondrial pellet 
resuspended in the remaining buffer. The suspension 
containing mitochondria was centrifuged again at 7000 
g for 10 min at 4°C. The supernatant was removed 
entirely, and the mitochondrial pellet was resuspended 
in 200 µl isolation buffer as described above. The 
concentration of isolated mitochondria was determined 
with Bradford (1976). 
 
Quantification of oxygen consumption rate in 
murine liver mitochondria 
 
Mitochondria respiration was quantified using a 
DW1/AD Clark-type electrode (Hansatech, King’s 
Lynn, England) at 30°C in 1 ml experiment buffer 
containing 125 mM KCl, 10 mM Tris/MOPS, 0.1 mM 
EGTA/Tris and 1 mM KH2PO4, pH 7.4, as previously 
described [91]. 5 mM Glutamate and 2.5 mM Malate 
were supplied as substrates for complex I, III, IV. After 
recording basal respiration for 2 min, 0.1% DMSO, 25 
µM EGCG, or 25 µM ECG and subsequently 100 µM 
ADP was added. After ADP was wholly consumed, the 
oxygen consumption rate slowed down, 5 mM 
succinate, and ADP were added to study complex II, III, 
IV activity. At the end of each measurement 60 nM 
FCCP were supplied to check the viability of 
mitochondria. 
 
Statistical analyses 
 
Data are expressed as means ±SD unless otherwise 
indicated. Statistical analyses for all data except 
lifespan assays and stress resistance assays were 
performed by Student’s t-test after testing for equal 
distribution of the data and equal variances within the 
data set. Statistical calculations were carried out 
using the log-rank test to compare significant 
distributions between the different groups in lifespan 
and stress resistance assays. We performed all 
analyses using Microsoft Office Excel 2016 
(Microsoft, Albuquerque, NM, USA). Differences 
were considered statistically significant at p < 0.05 
and presented as specific p-values (*p ≤ 0.05; **p ≤ 
0.01; ***p ≤ 0.001). 
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