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Abstract: Saposins are small proteins implicated in trafficking and loading of lipids onto Cluster of
Differentiation 1 (CD1) receptor proteins that in turn present lipid antigens to T cells and a variety
of T-cell receptors, thus playing a crucial role in innate and adaptive immune responses in humans.
Despite their low sequence identity, the four types of human saposins share a similar folding pattern
consisting of four helices linked by three conserved disulfide bridges. However, their lipid-binding
abilities as well as their activities in extracting, transporting and loading onto CD1 molecules
a variety of sphingo- and phospholipids in biological membranes display two striking characteristics:
a strong pH-dependence and a structural change between a compact, closed conformation and
an open conformation. In this work, we present a comparative computational study of structural,
electrostatic, and dynamic features of human saposins based upon their available experimental
structures. By means of structural alignments, surface analyses, calculation of pH-dependent
protonation states, Poisson-Boltzmann electrostatic potentials, and molecular dynamics simulations
at three pH values representative of biological media where saposins fulfill their function, our results
shed light into their intrinsic features. The similarities and differences in this class of proteins depend
on tiny variations of local structural details that allow saposins to be key players in triggering
responses in the human immune system.

Keywords: saposins; lipid-antigens; protein-ligand interactions; protein-membrane interactions;
electrostatic potentials; molecular dynamics

1. Introduction

Antigen presentation molecules are key players in innate and adaptive immune responses.
Whereas the major histocompatibility complex class I and II proteins present peptide antigens to
T cells, Cluster of Differentiation 1 (CD1) molecules can bind a great diversity of lipidic ligands and
are thus responsible for presenting lipid antigens to T cells and a variety of T-cell receptors [1–3].
Exogenous lipids are transported to different endocytic compartments according to their length after
incorporation into the membrane. CD1 molecules traffic through those compartments sampling
antigens in the endocytic pathway. However, the nonpolar nature of lipids implies that their extraction
from membranes and mobilization across the aqueous endocytic environment will have unfavorable
energetics, which poses the necessity to require the assistance of molecular mediators. Saposins
are the best candidates for this role [4]. Saposins (for “sphingolipid activator proteins”, or SAPs)
are small (8–11 kDa), acidic, non-enzymatic, heat-stable, protease-resistant, lipid-binding proteins
known to assist in CD1 lipid loading in endosomal compartments [4,5]. Four saposins named A, B, C,
and D are generated through proteolytic cleavage from a single precursor protein, prosaposin, that is
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post-translationally processed to the four mature saposins [6]. Prosaposin deficiencies in mice result
in defects in CD1-mediated antigen presentation to natural killer T- (NKT) cells [5] and studies on
human patients with prosaposin mutations indicate that this protein may also exert neuroprotective
actions [7].

While it is well established that saposins facilitate the transfer of lipid antigens from membranes
into CD1 antigen-presenting proteins, the complete mechanisms are not yet understood. All saposins
assist in this process but they appear to have different abilities to load particular lipids into
different CD1 isoforms and each of the four saposins has a distinct role in promoting hydrolysis
of sphingolipids [8]. Although relevant details on their processing of lipids are still lacking, direct
interactions between saposins and lipids are known to occur. In this regard, two fundamentally
distinct lipid loading mechanisms have been proposed depending on whether short or long chain
lipid antigens are loaded. In one mechanism (shown by saposin C), the saposin embeds into the
membrane disrupting the lipid lattice of membrane bilayers and orients CD1 via protein-protein
interactions for lipid loading at the membrane surface. In a second mechanism (shown by saposins
A and B), the saposin extracts lipids from the membrane through a tweezer-like process by inserting
hydrophobic residues exposed at surface loops around polar headgroups of phospho- and glycolipids,
and then form saposin-lipid soluble intermediates that load CD1 molecules, away from the membrane
surface [8,9].

Genetic anomalies in saposins lead to pathological accumulation of specific sphingolipids.
Saposin A deficiency causes galactosylceramide lipidosis, saposin B defects lead to leukodystrophy
resulting in sulfatide accumulation, saposin C anomalies produce glucosyl ceramide lipidosis,
and saposin D genetic inactivation causes ceramide accumulation [10]. In vivo and in vitro assays
show that all saposins facilitate CD1 lipid loading although with different abilities to load particular
lipid antigens into different CD1 isoforms [4,5,8]. Saposin A in the presence of a zwitterionic detergent
(lauryldimehtylamine-N-oxide) forms lipoprotein arrangements in which two chains of saposin A
in an open conformation trap 40 detergent molecules in the form of bilayer-like discs although
these discs show limited solubility for sphingolipids, phospholipids, and cholesterol [11]. Saposin B
extracts lipid antigens from membranes and in the form of soluble complexes transports the lipids
to recipient CD1 [12]. These complexes are protein dimers in which the monomers adopt an open,
V-shaped conformation that create a large hydrophobic compartment for lipid binding [13]. Saposin C
enables glucosylceramidase access upon modifying membranes containing glucosylceramide by
a detergent-like action at the membrane surface and promotes association of the enzyme with
membranes containing phospholipid [9,14–16]. Saposin D is required to activate acid ceramidase for
breakdown of ceramide into fatty acid and sphingosine in lysosomes [17].

In addition, saposins have been reported to unload lipids bound to CD1d [5], a result that
led to the proposal of a “tug-of-war” model for antigen loading and exchange. According to this
model, the saposin would load or extract lipids from CD based on the affinity of both proteins for
the same lipid [5]. Although no structural data supporting this hypothesis are available yet, it is
accepted that a physical interaction between saposins and CD1 molecules does exist. It was found by
co-immunoprecipitation that saposins C and D interact directly with CD1b and that saposin A and
CD1d with the lipid harbored in its binding site form a complex [5,18].

The processing and loading of lipid antigens onto CD1 molecules require localization to
endosomal and lysosomal subcellular compartments in which the environment is acidic. In fact, the pH
decreases along the endocytic pathway from values around 6.5 at early endosome to pH ~ 6.5–6.0 at
medial endosome to pH around 5.5–4.8 at late endosome and lysosome where lipid processing and
loading onto CD1 take place [19]. Therefore, a first key point is that the activity of saposins occurs
in acidic media. A second essential feature of these proteins concerns their structure. Saposins show
a conserved four-helical fold very similar in size and shape to non-specific lipid transfer proteins
(nsLTPs) but with only three disulfide bonds instead of the four ones typical of nsLTPs [20–23]. In this
regard, we have recently presented experimental evidence that supports the participation of the major
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allergen from peach, Pru p 3, an nsLTP harboring a lipidic ligand that has a phytosphingosine tail,
in the trafficking and loading of this lipid onto CD1d [24]. This CD1d loading would activate a cascade
of events associated to the immune response in the sensitization phase of food allergy and the possible
role of Pru p 3 in the trafficking of its lipid ligand and loading onto CD1d was proposed on the basis of
structure and size similarities between Pru p 3 and saposins [24].

The evidence on features and activities of saposins summarized above has accumulated from
separate studies over the last years. Saposins are an important class of proteins in processes triggering
essential immune responses but they are still not understood in detail. With the aim to try to understand
them better, we report here a comprehensive in silico study of the four saposins on the sole basis of their
experimental structures. Our goal is to shed light into essential features that can be computationally
obtained from the structure and that may provide information on their different behavior upon changes
in the acidity of the medium. To reach this goal we analyze two main types of molecular features at
different pH values: (i) electrostatic properties of the four saposins in their known closed and open
forms, and (ii) dynamical mobility and flexibility of the open forms known for saposins A, B, and C.
To obtain (i), we computed Poisson-Boltzmann electrostatic potentials and to study (ii), molecular
dynamics 100-ns simulations in aqueous solvent were performed. Both studies were carried out at
pH 7, 5, and 4.5. While the neutral value is representative of physiological pH for reference, the
two acidic values are representative of late endosome and lysosome where saposins process lipids.
Furthermore, as demonstrated below, it is just at the narrow pH interval between 4.5 and 5 when all
the significant changes occur in the four saposins.

2. Results

As of January 15th, 2018, fifteen experimental structures were available in the Protein Data Bank
(PDB) for human saposins (Table 1).

Table 1. Experimental structures of human saposins available in the PDB at 15 January 2018.

Type PDB Id Title Struct. Conf. 1 State HET 2 Occ 3 Year Ref.

Saposin A
2DOB Human SapA Xray Closed Monom Ca2+ No 2006 [25]
4UEX Human SapA at lysosomal pH Xray Closed Monom - Yes 2015 [26]
4DDJ SapA in complex with LDAO Xray Open Dimer LDAO No 2012 [11]

Saposin B 1N69 Human SapB with PEH Xray Open Dimer PEH No 2003 [13]
4V2O Human SapB in complex with CLQ Xray Open Dimer CLQ Yes 2016 [27]

Saposin C

1M12 Human SapC NMR Closed Dimer - No 2003 [28]
1SN6 Human SapC in SDS micelles NMR Open Monom - No 2005 [29]
2GTG Human SapC Xray Closed Monom - No 2006 [25]
2QYP Orthorhombic crystal of SapC dimer Xray Open Dimer - No 2008 [15]
2Z9A Human SapC dimer Xray Open Dimer - No 2008 [15]

Saposin D

2RB3 Human SapD Xray Closed Dimer - Yes 2008 [15]
2R0R K9E variant of human SapD Xray Closed Dimer SO4

2− Yes 2008 [15]
2R1Q Iodinated SapD in space group C2221 Xray Closed Dimer IYR No 2008 [15]
3BQP Orthorhombic human SapD Xray Closed Monom Mg2+ Yes 2008 [17]
3BQQ Triclinic human SapD Xray Closed Monom - Yes 2008 [17]

1 Conformation, 2 Heterogroups present in the structure: LDAO = lauryldimethyl-N-oxide, PEH = di-stearoyl-
3-SN-phosphatidyl ethanolamine, CLQ = chloroquine, IYR = 3-iodotyrosine, 3 Atoms with fractional occupancy in
the electron density.

Saposin A has three crystal structures: two for the closed conformation at resolutions 2.00 Å
(2DOB) and 1.80 Å (4UEX) and one for the open conformation at 1.90 Å resolution (4DDJ) that
corresponds to an aggregate with zwitterionic detergent LDAO with which this saposin forms
lipoprotein discs [11]. The two crystal structures available for saposin B at resolution 2.20 Å (1N69) and
2.13 Å (4V2O) are open conformations. The first one is a structure in which the phospholipid PEH was
modeled from the X-ray electron density [13] while the second one was obtained in a pharmacological
study on the function and toxicity of the antimalarial drug chloroquine in which binding to saposin B
was demonstrated [27]. Saposin C has both crystal (PDB id. and resolution in Å: 2GTG 2.40, 2QYP 2.45,
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and 2Z9A 2.50) and NMR (1M12 and 1SN6, both with 20 models) structures that cover both closed and
open conformations. All five of the crystal structures of saposin D correspond to closed conformations;
their PDB id. and resolution (parentheses, in Å) are the following: 2RB3 (2.10), 2R0R (2.50), 2R1Q (2.50),
3BQP (1.30), and 3BQQ (2.00). The presence of iodinated tyrosine in 2R1Q is due to heavy atom
derivatization used to determine all the related structures (2RB3, 2R0R, and 2R1Q) by molecular
replacement [15]. In order to get a comprehensive picture of structure-based features and given that
the closed form of saposin B and the open form of saposin D are not available, we generated homology
models for these two structures as explained in Methods.

2.1. Closed and Open Forms of Human Saposins: Structural and Surface Features

DALI Z-scores (Figure 1) for multiple structural alignments reveal that closed forms show a closer
structural similarity than open forms. For a set of N structures, this method computes the N × N matrix
of pairwise similarities which are quantified by Z-scores. DALI optimizes this score by using several
heuristic procedures complementing structural information with sequence comparisons, resorting
in both cases to updated databases [30,31]. For this reason, (i,i) elements in N × N matrices may
have different values as it is the case with 3 × 3 pairwise similarity matrices for closed and open
structures in Figure 1. In this regard, the overall higher values for closed forms (Figure 1a) denote
greater similarities than those of open forms (Figure 1b). As for structural relationships within saposin
types, the similarity between closed conformations decreases in the order (Z-scores in parentheses)
A–C (12.8) > C–D (10.5) > A–D (8.8). In contrast, structural similarities between open conformations
are nearly identical, with Z-scores in a narrow range 6.4–6.8 (Figure 1b). This indicates that the closed
form of saposins allows for a slightly greater structural variability than open forms that have a rather
similar arrangement.

Figure 1. Structural alignment of human saposins obtained with DALI. (a) Closed conformations of
saposin A (chain A in 4UEX, blue), saposin C (2GTG, orange), and saposin D (chain A in 2RB3, green).
(b) Open conformations of saposin A (4DDJ, blue), saposin B (chain A in 1N69, yellow), and saposin C
(conformation 1 in 1SN6, orange). DALI Z-score matrices of pairwise structural similarities are also
shown. Red arrows indicate three conserved interhelical disulfide bridges.

Saposins share less than 40% sequence similarity, although there is a clear difference between
saposin B and the remaining saposins. While saposins A, C, and D have pairwise sequence identities
ranging from 34.2% to 39.7%, saposin B has lower sequence similarity relative to the other three
saposins with pairwise identities ranging from 16.0% to 23.1% (Table 2). Since both saposins B and D
show their greatest similarity with saposin A, we selected the closed and open forms of this member
as templates to obtain homology-modeled structures of the closed form of saposin B and open form
of saposin D that are not present in the PDB (Table 1). In both cases, the modeled geometries are
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closely similar to their templates (Figure S1) although, as expected from their corresponding sequence
identities, the saposin B model shows a slightly greater difference (backbone RMSD = 0.716 Å) than
the saposin D model (backbone RMSD = 0.293 Å).

Table 2. Percent identity matrix for multiple sequence alignment of human saposins 1.

Type SapA SapB SapC SapD

SapA 100.0 23.08 39.74 36.71
SapB 23.08 100.0 16.00 22.37
SapC 39.74 16.00 100.0 34.18
SapD 36.71 22.37 34.18 100.0

1 Computed with Clustal Omega [32,33].

Despite their overall low sequence similarities, the four saposins in their closed monomeric form
share a similar fold consisting of four α helices arranged in two layers α1/α2 and α3/α4 linked by
three interhelical disulfide bridges formed by six conserved cysteines (Figure 1). Two of these disulfide
bonds connect N- and C-terminal regions: one -SS- bond links helices α1 andα4 and the other bond
links helix α1 and the C-terminal coil segment. The third disulfide bridge connects helices α2 and
α3. Linkages between α1 and α2 and between α3 and α4 are short loops that provide hinge-like
flexibility (Figure 1). It is worth noting that the three -SS- bridges remain unchanged upon the close
®open conformational change. In fact, the available structures of open forms (saposin A [11], saposin
B [13,27], and saposin C [15,29]) show that the closed fold opens in a jackknife style. A comparison
between closed and open forms of saposin A (Figure 2) reveals that the structural rearrangement
involves residues 20–23 and 64–68 that form the two hinge regions together with small segments of
neighbor helices α2 and α3 (Figure 2). The major structural change arises from variations in backbone
dihedral angle Ψ (N-Cα-C-N) of residues (open-closed differences > 100◦ in parentheses): 20 (+122◦),
22 (−161◦), 23 (−209◦), 39 (+194◦), 64 (+110◦), and 66 (−139◦) whereas dihedral angle ϕ (C-Cα-N-C)
shows a variation larger than 100◦ only in residue 21 (−134◦). All these amino acids are located in
hinge regions (Figure 2) with the single exception of residue 39, a proline in which the large variation
of Ψ corresponds to its different backbone geometry, cis in the closed form and trans in the open form
(Figure S2).

Figure 2. Structural comparison of closed (2DOB, blue) and open (4DDJ, cyan) conformations of human
saposin A. (a) Plot of (open-closed) difference of backbone dihedral angles ϕ and Ψ. (b) Superposition
of closed and open conformations. Segments showing large differences in plot (a), 20-23 and 64–68
together with Pro39, are colored in light green (open) and deep green (closed).

Although one might expect that α-helical folds involved in transport and processing of lipids
should have cavities (of the type nsLTPs have) able to harbor them [20], closed conformations of
human saposins exhibit no clear candidates for this. Open conformations are known to aggregate
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exposing their hydrophobic side to lipids protecting them from the aqueous environment by forming
lipoprotein-like particles (see below). This way, these open structures use no internal cavities in the
monomers to harbor ligands. However, the possible abilities of closed conformations to transport
lipids have been not addressed before. An exploration of surfaces with DogSite [34,35] in the closed
forms of saposins searching for pockets potentially able to harbor ligands reveals that the experimental
structures of these proteins lack an internal cavity large enough to accommodate molecules such
as most of the lipids loaded onto CD1 receptors (Figure 3). Only saposin C has an inner small
compartment that connects to the outer larger domain of a pocket (P1 in Figure 3b) whereas in all the
remaining cases, surface sites candidate to ligand-binding sites are invariably located at the external
surface (Figure 3). Moreover, as the nature of the residues in these pockets reveals (see Table S1) and is
further supported by the electrostatic features of molecular surfaces (see below), these sites are enriched
in polar and charged residues. This way, although the topography and size of local surface sites lead to
identify candidate sites for ligand binding [34], they do not seem particularly suited for accommodating
lipids. A druggability score to estimate the probability that an identified pocket could harbor ligands,
evaluated by DogSite in terms of site descriptors that also treat hydrophobicity [35], predicts relatively
low binding trends for all these pockets. Values of this score defined in a (0–1) scale are lower than 0.50
(Table S1) and only in saposin A they reach values greater than 0.40 (pockets P0 and P1 in Figure 3a).
Tryptophan 37, which is unusually protruding and plays an important role in the activity of saposin A
(see below) is close to pocket P0 but its side chain is oriented outwards (Figure 3a). A supplementary
exploration of all experimental closed forms of saposins in Table 1 with a different method to detect
cavities such as that implemented in the Swiss-PdbViewer software [36] was also unable to find any
inner cavity (results not shown). It seems apparent that these closed forms do not provide favorable
hydrophobic inner environments for harboring lipidic ligands.

Figure 3. Surface pockets detected by DogSite in the closed conformations of human saposins.
(a) Saposin A (chain A in 4UEX). (b) Modeled structure of saposin B (c) Saposin C (2GTG). (d) Saposin
D (chain A in 2RB3). Mesh isosurfaces represent the pockets and their closer residues are depicted as
sticks in the same color. Protruding W37 in saposin A (residue with an important role in the activity
of this saposin: see below) is also drawn. Pocket numbering indicates their arrangement in order of
decreasing volume (see Table S1).

Interestingly, the modeled closed conformation of saposin B exhibits a large internal cavity which
extends all the way through the structure (Figure 3b). Its volume, number of residues, and high
druggability 0.85 (Table S1) indicate that this cavity should be able to harbor large ligands. However,
since experimental structures of saposins are obtained from biological samples and this is the only
missing closed form, one might speculate that saposin B never adopts a closed conformation in its
actual environments in cells. This should indeed be consistent with our dynamical study of the open
conformation of saposin B that, as shown in 2.3 below, reveals a particular stability at all pH values
which in turn agree with the supposed mechanism of its function [13,27]. In fact, the evidence on
saposin B indicates that a dimer formed by two clasping monomers extracts lipids from membranes
accommodating them in the hydrophobic pocket formed by the clasping chains [13].

Another structural feature is the existence of alternative conformations of several side chains
identified by fractional values of occupancy in the electron density in some crystal structures (Table S2).
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Although most of these residues show equivalent conformations (occupancy factors 0.50), some amino
acids in closed saposin A at lysosomal pH [26] have occupancies favoring one conformation with
values between 0.51 and 0.66 (Table S2). With a unique exception (Met66 in chain A), all these residues
are in outside hinge regions and all except two are polar or charged amino acids (Figure S3). The two
nonpolar exceptions are Ile50 that in chain B shows two very similar conformations oriented inwards,
and Trp37 which is dramatically exposed to solvent (Figure 3a), locates at the loop that joins helices
α2 and α3, and shows two distinct orientations (Figure S3). As discussed below, this residue is
believed to play a prominent role in the activity of saposin A. In fact, experimental studies of the
interaction between this saposin and phosphatidylserine liposomes using tryptophan fluorescence
spectroscopy and quenching measurements showed that Trp37 can associate with lipids and insert
into membranes [37]. Recent tryptophan fluorescence spectroscopy monitoring amphiphile-induced
spectral shifts also revealed that Trp37 is associated to lipids, regardless of their composition [11]. Trp37
together with Tyr30 (also solvent-exposed and located in the α2 helix) have mobile side chains and
both are thought to facilitate association of closed saposin A with membranes prior to lipid binding
and lipoprotein assembly formation [26]. Tyr30 is conserved in saposin A orthologues and Trp37 is not
fully conserved but it is substituted by other hydrophobic amino acids such as Phe or Leu, supporting
a possible functional role through membrane insertion of their bulky hydrophobic side chains. It must
be stressed, though, that Ty30 and Trp37 are not conserved among different saposins, which suggests
for them a role in lipid interactions that differs between saposins [26].

2.2. Closed and Open Forms of Human Saposins: Electrostatic Features

All human saposins are acidic proteins, with total electric charges at physiological pH ranging
from −4 in dimeric closed forms of saposin D to −9 in the monomeric closed form of saposin C
(Table 3). These charges arise from the balance between a greater number of acidic residues (15 in
saposin A, 11 in saposin B, 16 in saposin C, and 12–13 in saposin D) than basic residues (7 in saposin A,
5 in saposin B, and 8 in saposins C and D) (Table 3).

Table 3. Acidic and basic amino acids and total charge qT of human saposins at different pH values.

Type PDB Id Conf.2 State
Number of

qT
3 qT

1 at

E D R K H pH = 7.0 pH = 5.0 pH = 4.5

SapA
2DOB Closed Monom 8 7 1 6 0 −8 −8 −8 −3
4UEX Closed Monom 8 7 1 6 0 −8 −8 −8 −2
4DDJ Open Dimer1 4 8 7 1 6 0 −8 −8 −6 −1

SapB
1N69 Open Dimer2 4 5 6 2 3 2 −6 −9 (−6, −5) −6 (−4, −4) +1 (−1, 0)
4V2O Open Dimer2 5 6 2 3 2 −6 −10 (−6, −4) −8 (−4, −4) −2 (−1, −1)
Model Closed Monom 5 6 2 3 2 −6 −6 −4 −1

SapC

1M12 Closed Monom 11 5 1 7 1 −8 −8 −4 +2
1SN6 Open Monom 11 5 1 7 1 −8 −8 −6 +3
2GTG Closed Monom 11 5 0 7 1 −9 −9 −8 −1
2QYP Open Dimer2 11 5 0 7 1 −9 −17 (−9, −8) −6 (−6, −6) +5 (+4, +2)
2Z9A Open Dimer2 11 5 0 7 1 −9 −18 (−9, −9) −8 (−7, −6) +1 (0, 0)

SapD

2RB3 Closed Dimer2 8 4 1 7 0 −4 −8 (−4, −4) −6 (−3, −3) 0 (0, −2)
2R0R 5 Closed Dimer2 9 4 1 6 0 −6 −12 (−6, −6) −8 (−5, −5) −2 (−2, −2)
2R1Q Closed Dimer2 8 4 1 7 0 −4 −8 (−4, −4) −2 (−3, −3) +3 (0, 0)
3BQP Closed Monom 8 5 1 7 0 −5 −5 −4 0
3BQQ Closed Monom 8 5 1 7 0 −5 −5 −3 −1
Model Open Monom 8 4 1 7 0 −4 −4 −2 +3

1 Computed with propka 3.1 [38,39]. For dimers, the first value is that computed for the whole dimer and values in
parentheses are those computed separately for the two chains. 2 Conformation type. 3 Total charge at pH 7 resulting
from the balance between acidic and basic residues (assuming uncharged histidines). 4 Dimer1 and dimer2 mean
dimeric states with 1 and 2 chains, respectively, in the crystal structure. 5 Variant K9E.

However, acidic pH values in the narrow interval 5–4.5, representative of environments where
lipid processing and loading onto CD1 occur [19], force changes in the protonation state of ionizable
side chains which in turn leads to significant variations of electric charge that differ largely between
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saposins. In the absence of sufficient experimental data to address all the pH-dependent changes in
sufficient detail for all the structures, we resorted to theoretical estimates of pKa’s in order to present
a comprehensive comparative analysis of the four saposins, including the two structures modeled
in this work. The empirical method used, Propka 3.1 [38,39], has shown a reasonable reliability in
a variety of proteins at both internal and surface structural regions [38]. For the particular case of
saposins and taking the scarce experimental data available for comparison as reference, our results
in Table 3 agree with measured total charges of saposin A (2DOB) at pH 7 (−8.2) and pH 4.8 (~−3)
and saposin C (2GTG) at pH 7 (−9.1) [25]. In agreement with that observed in the NMR structure of
closed saposin C (1M12 [28]), our computed pKa values (data not shown) also agree in predicting
anomalously high values for its exposed glutamates. As an overall result, whereas saposin A maintains
its negative charge at low pH, the remaining saposins show zero or even positive charge at pH 4.5
(Table 3). All these variations reflect into the electrostatic nature of molecular surfaces that also changes
dramatically at pH between 5 and 4.5 as revealed by Poisson-Boltzmann (PB) electrostatic potentials
(EPs) mapped onto surfaces (Figures 4 and 5).

Figure 4. Poisson-Boltzmann electrostatic potential mapped onto molecular surfaces of saposins A and C
at pH 7, 5, and 4.5. (a) Closed form of saposin A (chain A in 4UEX). (b) Open form of saposin A (4DDJ).
Surfaces of Y30 and W37 residues with solvent-exposed protruding side chains are indicated only
in the first row. (c) Closed form of saposin C (conformation 1 in 1M12). (d) Open form of saposin C
(conformation 1 in 1SN6). Right views in each panel are obtained from left views upon 180o rotation
around a vertical axis. Segments involved in the closed→ open transformation (Figure 2) are labeled
only in left images of first rows.
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Figure 5. Poisson-Boltzmann electrostatic potential mapped onto molecular surfaces of saposins B and D
at pH 7, 5, and 4.5. (a) Modeled closed form of saposin B. (b) Open form of saposin B (chain A in
X-ray structure 1N69). Surfaces of Y50, Y54, and E69 residues involved in drug- and lipid-binding
are indicated only in the first row. (c) Closed form of saposin D (chain A in X-ray structure 2RB3).
(d) Modeled form of saposin D. Surfaces of K10 and R17 residues involved in association with anionic
headgroups of lipids in membranes are indicated only in the first row. Right views in each panel are
obtained from left views upon 180◦ rotation around a vertical axis. Segments involved in the closed→
open transformation (Figure 2) are labeled only in left images of first rows.

Electrostatic changes are all the more significant when closed and open forms of the same saposin
can be compared as it happens in experimental structures for saposins A and C (Figure 4) and for
both experimental and modeled structures for saposins B and D (Figure 5). The closed form of
saposins A and C shows a strong EP in both sides of the surface although one side is predominantly
negative (right column in Figure 4a,c) and the other side has large patches of positive PB-EP (left
column in Figure 4a,c). In both cases, however, an increasingly acidic medium provokes a decrease in
intensity and extension of surface areas with negative potential in the negative side and an increase
in intensity and extension of surface areas with positive potential in the positive side (Figure 4a,c).
On the contrary, the open conformation shows a dramatic difference between one side with large
areas of intense both negative and positive PB-EP (left column in Figure 4b,d) and the other side with
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a PB- EP predominantly neutral in saposin A (right column in Figure 4b) and predominantly positive
in saposin C (right column in Figure 4d). Again, lower pH provokes a decrease in the extension of
surface areas with negative EP and an increase in intensity and extension of areas with positive EP
(Figure 4b,d) yet with a significant difference with regard to saposin A in which the electrostatically
neutral side changes very little at lower pH (right column in Figure 4b). These electrostatic features
are consistent with the two distinct mechanisms proposed for lipid loading by saposins. As said in
the Introduction, saposin A should form protein-lipid soluble aggregates with lipids extracted from
membranes whereas saposin C should embed into the membrane disrupting the bilayer. In the first
case, saposin A would employ its nonpolar, electrostatically neutral side to form aggregates with
lipids arranged within an inner hydrophobic enclosure and, as mentioned above, the solvent-exposed
protruding hydrophobic side chains of Tyr30 and Trp37 in this nonpolar side (Figure 4b) could also be
inserted around headgroups of phospholipids into membranes [8,9,26]. In the second case, saposin C
would use its large surface patches with positive EP as putative contact sites with membranes.

Figure 5 displays PB-EPs mapped onto molecular surfaces of saposins B and D for which only
open [13,27] and closed [15,17] forms, respectively, exist in their experimental structures. For a comprehensive
analysis, modeled structures of the closed form of saposin B and open form of saposin D are also
included. Saposin B presents two sides with electrostatic differences smaller than other saposins.
As pH decreases, one side increases significantly the intensity and extension of patches with positive
PB-EP (right column in Figure 5a and left column in Figure 5b) whereas the other side, which has
a large patch with neutral PB-EP that covers most of the surface, displays nearly insignificant changes
(left column in Figure 5a and right column in Figure 5b). The first crystal structure reported for saposin
B (1N69) contains in the asymmetric unit three independent chains in a V-shape open form that gives
rise to two distinct homodimers [13]. This structure helped explain how such a small protein could
solubilize large lipids. In the dimeric arrangement, two concave inner surfaces of the “V” with large
electrostatically neutral patches (right column in Figure 5b) clasp together enclosing a hydrophobic
cavity in which two tyrosines (Tyr50 and Tyr54) have very protruding side chains, an identical feature
to that observed for Trp37 in saposin A above mentioned. When the 1N69 structure was reported in
2003, it was noted that this cavity had a large solvent-exposed region at which polar headgroups of
lipids might locate [13]. In fact, the PB-EP in Figure 5b supports this view. The arrangement of two
concave surfaces must leave a large part showing a negative PB-EP due to the presence of a largely
exposed Glu69 (rightmost sides in the right column in Figure 5b). The other crystal structure of
saposin B (4V2O) reported in 2016 is a complex of the dimeric state with the drug chloroquine [27]
although the drug-binding site is now exposed to the surface and corresponds to the region with
negative PB-EP around Glu69, the most relevant residue in binding to chloroquine [27]. Whereas no
information is available for pH-dependent changes of the solubilizing action of saposin B on large
lipids [13], chloroquine binding to this saposin was found to be very similar at pH 7.4 (KD = 31.8 µM)
and pH 5.5 (KD = 40.8 µM) [27]. This result agrees with our above comment regarding the smaller
electrostatic differences noticed in saposin B with respect to other saposins. As for the closed form of
saposin B, the available evidence [13,27] suggests that it is highly unlikely that it could function as
a monomer. Therefore, whereas the electrostatic features of the model closed structure are compatible
with the remaining PB-EP results, they are scarcely significant.

Saposin D, for which only closed forms exist in their crystal structures [15,17], presents now clear
electrostatic differences between one side with dominantly positive PB-EP (left column in Figure 5c) and
another side with dominantly negative PB-EP (right column in Figure 5c). These marked differences
are also found in the modeled structure of its open form (Figure 5d). Whereas increasingly acidic
pH provokes a clear decrease in intensity and extension of negative areas in the negative side and
appearance of surface regions with positive potential at pH 4.5 (right column in Figure 5c and left
column in Figure 5d), the effects on the positive side (left column in Figure 5c and right column in
Figure 5d) are barely noticeable. According to the model of lipid activation proposed for saposin D,
water-soluble monomers and possibly dimers of this saposin would bind to negatively charged
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membrane surfaces [15]. Two residues, Lys10 and Arg17, would particularly be involved in the
initial association of saposin D with anionic membrane regions by forming ionic pairs with sulfate or
phosphate headgroups [15]. The information provided by our PB-EP results (Figure 5c,d) supports
these proposals. In fact, the surfaces of Lys10 and Arg17 are predominant in a large elongated patch
with positive PB-EP which should arrange linearly along the membrane length (see Figure 4 in [15]
for a proof of consistency between this proposal and Figure 5c). While this saposin D-membrane
interaction should hold at the three pH values studied here, our results suggest a favored association
to membrane anionic regions at increasingly acidic pH, reinforced by the enlarged surface areas
with positive PB-EP at pH 4.5. The fact that saposin D in two different crystal forms at distinct pH
(orthorhombic obtained at pH 8.5 and triclinic at pH 4.8) is monomeric in solution suggests that
this saposin may have a weaker propensity for dimerization and a lesser pH-dependence than other
saposins [17]. If the saposin D-membrane interaction were to involve only monomers and Lys10 and
Arg17 are the main responsible for the association, our PB-EP results on the modeled open structure
(Figure 5d) indicate that the outer side of the open conformation facing the aqueous environment
when the saposin is located at the membrane would be mostly non-polar except at the lowest pH 4.5
(right column in Figure 5d). From a purely electrostatic point of view, this result seems to preclude the
open form of saposin D in its proposed role [15,17].

2.3. Open Forms of Human Saposins: Dynamic Features

Results of 100-ns MD simulations for open forms of saposins A, B, and C are presented in
Figures 6–8, respectively. The experimental structures chosen to address dynamic features of the open
conformations were the following: 4DDJ, the unique open structure of saposin A; 1N69, the only
structure of saposin B obtained in complex with a membrane lipid (the other available structure
corresponds to a saposin-drug complex); and 1SN6, the unique monomeric open structure of saposin
C. The following data are presented: (a) variation along simulation time of root mean square deviation
(RMSD) of backbone atoms with respect to the initial structure, (b) root mean square fluctuations
(RMSF) of α carbons of all residues with respect to time-averaged positions, (c) variation along
simulation time of the distance between α carbons of residues located at opposite ends of the backbone,
and (d) structural superposition of initial and final structures in the simulation computed with FATCAT
rigid [40], CE [41], and TM-Align [42] structural alignment methods. Significance scores for these
initial/final structural comparisons are gathered in Table 4. To assess these scores, let us recall that
(i) FATCAT rigid P-values lower than 0.001 are considered to indicate structural relationship between
the structures being compared, with lower values indicating higher similarity [40], (ii) CE Z-scores
between 3.0 and 4.0 suggest some structural similarity, with values increasingly greater than 4.0
revealing stronger structural resemblance [41], and (iii) TM-Align TM-scores in the scale (0.0–1.0)
indicate higher similarity as values get closer to 1.0 [42].

The RMSD plot for open saposin A (Figure 6a) reveals a steady mobility after about 40 ns
regardless of the pH although the backbone is less mobile at acidic pH than at neutral pH, with no
significant differences between pH 5 and 4.5. The RMSF plot (Figure 6b) shows that only ~1–20 and
~70–80 terminal segments fluctuate to a much larger extent than the remaining residues at neutral
pH whereas acidic environments stabilize the whole sequence. Segments 20–23 and 64–68 found to
be responsible for the closed → open transformation in this saposin (Figure 2) not only have low
fluctuations but they also change little with pH. Interestingly, a larger fluctuation is found at the three
pH values for the central segment around position 40. This segment corresponds to the loop joining
α2 and α3 helices and contains Pro39, residue chosen to measure the distance between opposite ends.
RMSF plot indicates that increasingly acidic environments stabilize fluctuations in the whole protein
with a marked effect at the lowest pH 4.5 (Figure 6b). As for the larger mobility associated to both N-
and C-term ends, the Pro39-Glu80 distance (Figure 6c) also stabilizes at a value ~35 Å after about 40
ns, just like that found for RMSDs. The comparison between initial and final structures (Figure 6d)
reveals that the chain bends keeping unaltered the helices held by disulfide links and that the final
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distance between opposite ends decreases noticeably from ~50 Å at the three pHs. This suggests that
the dynamic behavior of this open form in the absence of lipids leads saposin A to partially close, thus
decreasing its degree of opening. Structural comparisons of initial and final geometries in saposin A at
the three pHs reveal differences greater than those found in the other saposins, as shown in Table 4
and discussed next.

Figure 6. Results of 100-ns MD simulations on the open form of saposin A (4DDJ) at pH 7, 5, and 4.5.
(a) RMSD of backbone atoms. (b) RMSF of all residues. (c) Distance between alpha carbons of P39 and
E80 residues. (d) Structural superposition of initial (blue) and final (cyan) structures in the simulations
computed with TM-Align [42]. Dashed lines indicate distances between Cα atoms of P39 and E80
represented as spheres.

In fact, MD data for saposin B provide a rather distinct picture with scarce differences at the three
pH values. RMSD (Figure 7a), RMSF (Figure 7b), and distance (Figure 7c) plots show remarkably
similar patterns irrespective of pH. Backbone mobility indicated by average RMSD values below 4 Å
is lower than in saposin A, no RMSF greater than 3 Å is noticed in the whole protein with the single
exception of the N-terminal residue, and the distance between Pro41 and Asp78 at opposite ends
of the structure deviate little from an initial value around 45 Å. As indicated by both the structural
superposition (Figure 7d) and scores in the three structural alignment methods (Table 4), saposin
B seems to have a steady dynamic behavior which is practically unaffected by pH variations. This
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is in agreement with the supposed function of this saposin B in extirpating lipids from membranes
adopting a dimeric state formed by two clasping monomers in open conformation at acidic pH [13,27].

Figure 7. Results of 100-ns MD simulations on the open form of saposin B (chain A in 1N69) at pH 7, 5,
and 4.5. (a) RMSD of backbone atoms. (b) RMSF of all residues. (c) Distance between alpha carbons of
P41 and D78 residues. (d) Structural superposition of initial (yellow) and final (grey) structures in the
simulations computed with TM-Align [42]. Dashed lines indicate distances between Cα atoms of P41
and D78 represented as spheres.

Finally, saposin C exhibits great differences not only in its distinct behavior at neutral and acidic
pH but also with respect to both saposins A and B. The RMSD plot (Figure 8a) is a nearly flat line
at pH 7 indicative of small backbone mobility, with a large value about 7 Å which is reached almost
immediately after starting the simulations. No significant differences between the open form at pH
5 and 4.5 are noticed and the mobility is not only lower than in saposins A and B but it decreases
slightly with simulation time and at 80 ns, the RMSD is ~4 Å. As for residue fluctuations, the RMSF
plot (Figure 8b) suggests a behavior similar to saposin A although RMSF values are now greater at pH
4.5 than at pH 7 whereas just the opposite was observed in saposin A (Figure 6b). At the two acidic pH
values, the C-terminal segment (positions ≥ 70) fluctuates to a much greater extent than the remaining
chain which, according to the structural superposition (Figure 8d) might be due to the flexibility of the
C-term coil segment. The distance plot (Figure 8c) is consistent with that view. The distance between
Pro40 and Arg84 at opposite ends increases from an initial value ~40 Å and then oscillates around that
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value with deviations above 10 Å at both pH 5 and 4.5. However, at pH 7 this distance falls rapidly and
at ~10 ns it stabilizes at a nearly unchanged value ~10 Å that corresponds to the geometry displayed
in the top view of Figure 8d: the open chain has closed tightly and the initially separated Pro40 and
Arg84 residues are then in close proximity. The information provided by structural superposition
scores (Table 4) reinforces this view: at pH 7 the similarity between initial and final geometries is
low (FATCAT P-value is the greatest and CE Z-score is the smallest being the unique value of this
parameter below 4.0 in the table) whereas at both pH 5 and 4.5 the scores reveal that the similarity
increases significantly. Summarizing, the dynamic behavior of saposin C indicates that, in the absence
of lipids, this protein seems to need an acidic environment to keep its open form. Our MD results are
thus consistent with available data suggesting that saposin C embeds into membrane at endosomal
acidic pH disrupting the bilayer lattice and orienting CD1 receptors towards accessible lipids while it
remains in aggregation states formed by the open conformation [5,6,8].

Figure 8. Results of 100-ns MD simulations on the open form of saposin C (chain 1 in 1SN6) at pH 7, 5,
and 4.5. (a) RMSD of backbone atoms. (b) RMSF of all residues. (c) Distance between alpha carbons of
P40 and R84 residues. (d) Structural superposition of initial (orange) and final (pink) structures in the
simulations computed with TM-Align [42]. Dashed lines indicate distances between Cα atoms of P40
and R84 represented as spheres.
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Table 4. Significance scores of structural superpositions of initial and final structures in 100-ns MD
simulations of open forms of human saposins computed three structural alignment methods.

pH
FATCAT Rigid CE TM-Align

p-Value RMSD1 Z-Score RMSD 1 TM-Score RMSD 1

Saposin A

7 4.02 × 10−5 6.48 4.25 5.75 0.407 3.41
5 2.08 × 10−9 3.71 4.74 3.99 0.579 3.26

4.5 1.01 × 10−8 4.00 4.58 4.22 0.563 2.62

Saposin B

7 6.93 × 10−12 2.89 5.04 2.79 0.683 2.77
5 5.34 × 10−11 3.13 4.89 3.01 0.643 2.82

4.5 2.38 × 10−9 3.77 4.58 3.51 0.544 3.08

Saposin C

7 3.22 × 10−5 5.87 3.89 2.81 0.463 3.39
5 1.40 × 10−8 3.09 4.89 2.66 0.686 2.83

4.5 2.44 × 10−8 3.21 4.89 3.44 0.582 3.29
1 Values in Å.

3. Discussion

Saposins share with other small proteins involved in lipid transport such as nonspecific lipid
transfer proteins (nsLTPs), a fold consisting of four α-helices linked by disulfide bonds. By using
helical layering, this architecture allows them to form modular compartments enriched in non-polar
side chains for lipid-binding [20]. Together with this hydrophobic environment, these proteins must
also be able to interact with polar headgroups present in a large variety of lipids. For this, lipid-binding
proteins usually have a number of polar and/or charged residues in the proximity of their hydrophobic
sites. However, in spite of this structural similarity to nsLTPs, our study indicates that saposins
apparently make no use of internal cavities to harbor and transport lipids, a result consistent with the
available evidence on their lipid-binding features.

Scattered information on the lipid-binding abilities of saposins gives clues about their specific
properties that may be grouped in two categories: pH-dependence of interactions with lipids
and existence of closed/open alternative forms of their helical structure. As early as in 1995,
experimental evidence provided by phase partitioning in Triton X-114 demonstrated that saposins A,
C, and D acquired hydrophobic properties upon acidification, while saposin B was apparently
unaltered [43]. Over the last 15 years, it has been repeatedly proposed that lipid-binding in saposins is
pH-dependent [11,15,17,25–29,44], a property which calls for pH-controlled reversible neutralization
of residues with ionizable side chains. Saposins work in lysosomes, where the medium is maintained
at pH values in the range 4–5.5 [43,44] but pH alone does not suffice to explain the closed→ open
conformational change [11,25,26].

Saposin A remains closed at lysosomal pH 4.8 [26] and only in the presence of lipids or detergents,
it undergoes the structural change to its open conformation forming lipo-protein particles with a variety
of lipids [11,25,26]. Similar behavior on pH- and detergent-induced oligomerization is observed for
saposin C, probably the best studied saposin [25]. In the absence of lipids, saposin C adopts the
closed, compact form that buries hydrophobic residues, whereas in the presence of SDS micelles,
it adopts an open V-shaped conformation [29]. pH titration measurements on saposin C revealed that
about 50% of its glutamates were neutralized at pH ~5 although no conformational change occurred
when the pH was lowered from pH 7 to 5 [29]. However, neutralization of acidic residues in this
saposin was thought to facilitate interaction with membranes as the negatively charged surfaces
might cause electrostatic repulsion from negatively charged groups of the membrane [28,29]. In this
regard, it has also been proposed that several lysines in saposin C might contribute to interaction
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with membranes [29]. As for oligomer states, saposin C has been reported to be dimeric [15,44] or
trimeric [25] in solution at low pH. The suggestion that dimers shield the hydrophobic surface sides
of open monomers agrees with that observed in the crystal structure of open saposin A in complex
with detergent lauryldimethylamine-N-oxide (LDAO) that reveals two open chains encapsulating
40 internally bound LDAO molecules [11].

Saposin B has been reported as the dominant saposin in facilitating lipid binding to CD1d
molecules [12]. Although all saposins promote lipid binding to CD1d, it seems that saposin B is the
most efficient and its optimal pH is 6, higher than that of lysosomes, which suggests that saposin B
should facilitate lipid binding to CD1d throughout the endocytic pathway [12]. While the affinity
for phospholipid membranes of saposins A, C, and D depends on low pH, that of saposin B does
not [12,43]. Furthermore, in contrast with initial reports suggesting that saposin B had weak affinity
for phospholipids [12], more recent work indicates that it binds, transports and transfers a large variety
of membrane sphingolipids and phospholipids as well [45]. In any event, it seems that saposin B
functions as a lipid extractor and solubilizer that interacts only transiently with membranes. In fact,
this saposin extracts target lipids from membranes and forms soluble protein-lipid complexes in its
dimeric state formed by the open conformation [13]. While saposins A and C require the presence of
lipid/detergents for dimerization, saposin B is dimeric in the presence or absence of detergents at both
neutral and low pH [25]. This dimer is formed with two V-shaped open clasping monomers and binds
lipids in a large hydrophobic compartment with an opening in which lipid polar headgroups remain
exposed to solvent [13]. It has also been proposed that this internal cavity can contain more than one
lipid molecule [45].

Saposin D is a ceramide activator protein required to activate the hydrolysis of ceramide to a fatty
acid and sphingosine by acid ceramidase [46,47]. Saposin D, contrarily to that observed in other
saposins, shows in its crystal structures a compact closed monomeric form at basic, neutral, and acidic
pH [15,17]. Nevertheless, this does not exclude the possibility that weak interactions occurring in vivo
could form a saposin D dimer [17]. Lipid binding and sphingolipid activation function of saposin D
requires acidic pH and the presence of anionic phospholipids [17,47,48].

Our compared study of saposins sheds new light upon the pH-dependence of key features of these
proteins. Thus, data reported here on electrostatic potentials mapped onto molecular surfaces reveal
the precise location of regions especially sensitive to changes in protonation states of ionizable residues
in the narrow pH interval between 4.5 and 5. With the single exception of saposin B, saposins exhibit
significant electrostatic changes at increasingly acidic environments. This is particularly noticeable in
the finding that large surface regions with strongly negative potential vanish and concomitantly large
surface regions with strongly positive potential appear at pH 4.5. This result is observed in both closed
and open forms with the exception now of the open conformation of saposin A that shows a nearly
neutral (non-polar) side which is the hydrophobic surface that aggregates to lipids/detergents when
forming lipo-protein particles and that is found here to remain largely unaltered upon acidification.
Our analysis also provides the precise location as well as the pH-dependent changes of particular
residues that have been proposed to play prominent roles in saposin interactions (e.g., Tyr30 and Trp37
in saposin A, Tyr50 and Tyr54 in saposin B, or Lys10 and Arg17 in saposin D). Furthermore, since it
has been argued that lysine-rich surface patches could be possible contact sites with membranes in all
saposins, our results allow for a detailed location of such regions with strongly positive electrostatic
potential. As mentioned above with regard to saposin C, it is assumed that these positively charged
clusters would interact with negatively charged lipid headgroups in saposin-membrane interactions.

Our study on protein surfaces indicates that closed forms of saposins lack internal cavities that
could accommodate lipid molecules. In fact, no inner cavities are detected in experimental structures
of closed forms of saposins whereas putative lipid-binding sites are predicted to locate on their outer
surface. Moreover, an internal cavity able to harbor ligands is only predicted just for the modeled
structure of the closed conformation of saposin B which, as repeatedly indicated above, plays its
lipid-extractor role through a dimeric aggregation of its open conformation. The absence of an internal
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cavity to carry ligands in the helical monomeric fold is at odds with nsLTPs, proteins very similar
in structure and size also involved in lipid binding that transport their cargo at an inner tunnel-like
cavity lined with hydrophobic amino acids whereas they have polar/charged amino acids at the tunnel
entry that interact with headgroups of lipids [20,22]. Recent results demonstrating the presence of
the natural ligand carried by Pru p 3 (an nsLTP which is the major allergen from peach fruit) loaded
into antigen-presenting CD1d in the sensitization phase of food allergy, suggests the participation of
nsLTPs in lipid loading and trafficking in the presentation of antigens to T cells [24]. Given the great
structural similarity between Pru p 3 and the closed forms of saposins, one could think of a role played
by nsLTPs that are able to trigger immune responses (such as allergens) in lipid processes in which
saposins are known to be involved.

Finally, the current report presents novel results on the pH-dependent dynamic behavior of
available open forms of saposins. The results of our molecular dynamics simulations at pH 7, 5, and 4.5
reveal distinct dynamic features in the three saposins for which experimental open structures are
available. In saposin A, the backbone mobility as well as the overall fluctuations of all its residues
are noticeably greater at neutral pH and decrease at low pH but no tendency to close is observed at
any pH. In saposin B, no significant differences are found neither in backbone mobility nor in residue
fluctuations nor in the tendency to close at the three pH values considered in our study. In sharp
contrast, saposin C exhibits much smaller backbone mobility at low pH than at neutral pH at which
the structure deviates largely from the initial geometry. Residue fluctuations are now greater at pH
5 and 4.5 than at pH 7 and this saposin exhibits a strong tendency to close at neutral pH whereas it
remains open at acidic pH. This result suggests that this saposin is the most sensitive to acidification
and/or to the presence of lipids in order to preserve its open conformation.

4. Materials and Methods

4.1. Structural Analyses

Structure for both closed and open forms are available for saposins A and C whereas saposin B
has only open and saposin D only closed structures in the PDB (Table 1). The following PDB entries
were used for structural comparison analyses: 4UEX in saposin A, 2GTG in saposin C, and 2RB3 in
saposin D for the closed forms, and 4DDJ in saposin A, 1N69 in saposin B, and 1SN6 in saposin C for
the open forms. Multiple structural alignments were obtained using the http://ekhidna2.biocenter.
helsinki.fi/dali/ server [30] that implements DALI [31]. In this method, structural relationships among
N proteins are evaluated in terms of the N × N matrix of pairwise similarities (DALI Z-scores) [30,31].

To analyze the closed→ open structural change, we selected the structures 2DOB (closed) and
4DDJ (open) of saposin A and compared their backbone dihedral angles ϕ and Ψ. To avoid possible
structural bias due to pH effects and given that two crystal structures are available for the closed
conformation of this saposin, we selected 2DOB instead of 4UEX because the former was determined
at pH 6.0 [25], similar to that of the open conformation 4DDJ obtained at pH 6.5 [11], whereas the
latter corresponds to lysosomal pH 4.8 [26]. Multiple sequence alignments for the four saposins
were obtained with the Clustal Omega server at the EMBL-EBI (Hinxton, Cambridge, UK: https:
//www.ebi.ac.uk/Tools/msa/clustalo/ [32,33]).

Surface pockets were detected in the closed conformations of saposins A, C, and D with
the DogSite algorithm implemented in the web server http://proteinsplus.zbh.uni-hamburg.de/
#dogsite [34,35]. This method applies a Difference of Gaussian filter to detect potential binding
pockets in the molecular surface based exclusively upon the structure of the protein. Size, shape, area,
and volume are calculated for each identified pocket together with a druggability score computed with
a linear combination of pocket descriptors such as volume, hydrophobicity, and enclosure [35]. This
score, defined in the range 0–1, can be taken as an estimate of the expected tendency of each pocket to
harbor ligands, with higher scores indicating greater tendency. All molecular graphics were prepared
and rendered with PyMOL 2.0.3 [49].

http://ekhidna2.biocenter.helsinki.fi/dali/
http://ekhidna2.biocenter.helsinki.fi/dali/
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
http://proteinsplus.zbh.uni-hamburg.de/#dogsite
http://proteinsplus.zbh.uni-hamburg.de/#dogsite
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4.2. Structural Homology Modeling

Structures for closed and open conformations of saposins B and D (both missing from the
experimental structures available in the PDB for human saposins) were constructed by homology
modeling using the SwissModel server https://swissmodel.expasy.org/ [50,51]. The User Template
Mode was selected, taking saposin A for reference in both models by providing the following input
templates: chain A of 4UEX (X-ray structure of the closed form of saposin A) for the closed model of
saposin B and 4DDJ (X-ray structure of the open form of saposin A) for the open model of saposin D.

4.3. Calculations of pKa and Protonation States

pKa values of ionizable side chains were computed with Propka 3.1 [38,39]. This is an updated
version of the Propka empirical predictor that implements a new algorithm for modeling non-covalently
coupled residues which can influence the titration of each other because of their close proximity [39].
Protonation states were obtained at pH 7, 5, and 4.5. Besides neutral pH taken as reference, the two
acidic values represent the cellular environment where lipid processing and loading onto CD1
molecules occur at lysosomes and late endosome [19]. As presented in Results, electrostatic features
of saposins show significant changes in this small pH range. Protonation states of all residues with
ionizable side chains were assigned at each pH with Propka 3.1 implemented in the Pdb2pqr server
http://nbcr-222.ucsd.edu/pdb2pqr_2.0.0/ [52,53] which adds hydrogens as needed by each particular
protonation state and optimizes local conformations to fix possible steric clashes. The main output of
Pdb2pqr/Propka 3.1 is a PQR file: a modified PDB file in which occupancy and B-factor entries are
replaced with atomic charges and radii, respectively [52]. For reasons of compatibility with the force
field used in molecular dynamics simulations, Pdb2pqr/Propka 3.1 calculations were done selecting
CHARMM [54] atomic charges. This way, a set of PQR files with proper protonation states of ionizable
side chains at pH 7, 5, and 4.5 was obtained for each saposin.

4.4. Poisson-Boltzmann Electrostatic Potentials

Using those PQR files as input, Poisson-Boltzmann (PB) electrostatic potentials (EPs) were
computed solving the PB equation with the Adaptive Poisson Boltzmann Solver (APBS) 1.4.1
program [55,56]. The nonlinear PB equation was solved in sequential focusing multigrid calculations in
3D grids of 973 = 912,673 points (step size ~0.5 Å) at 310 K and 0.150 M ionic concentration. Dielectric
constants 4 for proteins and 78.54 for water were used. The numerical output of PB electrostatic
potentials was saved in OpenDX scalar data format, mapped onto molecular surfaces and rendered
with PyMOL2.0.3 [49]. PB potentials are given in units of kT per unit charge, k being Boltzmann’s
constant and T, absolute temperature.

4.5. Molecular Dynamics Calculations

Open conformations of saposins A (4DDJ), B (chain A in 1N69), and C (conformation 1 in 1SN6)
were subjected to 100-ns molecular dynamics (MD) simulations with protonation states corresponding
to pH 7, 5, and 4.5 obtained above. These calculations used the CHARMM 3.6 force field for
proteins [54,57] and were performed with the high performance computing Linux-Power-MPI version
of NAMD 2.12 [58] in the Magerit supercomputer of the Technical University of Madrid. Proteins were
immersed in 3D periodic solvation boxes with 15 Å spacing and water molecules added according
to the TIP3P model [59]. Na+ and Cl− ions were added to counter total charges of proteins while
providing 0.150 M salt concentration. The particle-mesh Ewald summation method [60] was used for
long-range electrostatics and a 10 Å cutoff was set for short-range non-bonded interactions. For every
saposin structure (1) the initial geometry was optimized at 2000 conjugate-gradient minimization steps,
(2) water was equilibrated at 298 K and 1 atm for 100 ps at 2 fs time steps, and (3) 100-ns simulations
at 2 fs time steps (50 million steps per calculation) were run in NPT ensemble at 298 K and 1 atm.
Langevin dynamics for T control and Nosé-Hoover Langevin piston method for P control were used.

https://swissmodel.expasy.org/
http://nbcr-222.ucsd.edu/pdb2pqr_2.0.0/
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NAMD output was stored every 20,000 steps rendering trajectories composed of 2500 frames which
were processed and analyzed with VMD 1.9.2 [61] and Carma [62,63].

In order to evaluate the significance of structural change along MD simulations, initial and final
geometries in every MD trajectory were structurally compared using three methods that follow
completely different approaches to align structurally two proteins: (a) the rigid version of the
Flexible structural AlignmenT by Chaining Aligned fragment pairs allowing Twists (rigid FATCAT)
algorithm [40], (b) the Combinatorial Extension (CE) algorithm [41], and the TM score-based Align
(TM-Align) algorithm [42]. FATCAT and CE comparisons were obtained with the Protein Structure
Comparison Tool v 4.2.0 downloaded from the PDB for use with local custom structure alignment [64]
whereas TM-Align comparisons were obtained with the server https://zhanglab.ccmb.med.umich.
edu/TM-align. According to the prescriptions given in the references for these methods, statistical
significance in the structural relationship is considered as follows: (a) FATCAT p-value < 0.001,
with lower values indicating higher similarity, (b) CE Z-score > 4.0, with larger values indicating
stronger structural resemblance and Z-scores between 3.0 and 4.0 suggesting some structural similarity,
and (c) TM-score closer to 1.0 for better similarities in the scale (0.0–1.0), with values between 0.40 and
0.50 suggesting some structural relationship.

Supplementary Materials: The following are available online at www.mdpi.com/1420-3049/23/2/422/s1, Table
S1: Surface pockets detected by DogSite in closed conformations of saposins, Table S2: Residues with fractional
values of occupancy in the electron density in crystal structures of saposins. Figure S1: Structural alignment of
homology-modeled structures of closed saposin B and open saposin D with their corresponding templates. Figure
S2: Geometry of proline 39 in saposin A. Figure S3: Residues with fractional values of occupancy in the electron
density of the crystal structure of saposin A.
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