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The paper presents the vector-host disease with a variability in population. We assume, the disease is fatal and for some cases the
infected individuals become susceptible. We first show the local and global stability of the disease-free equilibrium, for the case
when 𝑅

0
< 1. We also show that for 𝑅

0
< 1, the disease free-equilibrium of the model is both locally as well as globally stable. For

𝑅
0
> 1, there exists a unique positive endemic equilibrium. For 𝑅

0
> 1, the disease persistence occurs. The endemic equilibrium

is locally as well as globally asymptotically stable for 𝑅
0
> 1. Numerical results are presented for the justifications of theoratical

results.

1. Introduction

Mathematical modeling for disease transmission in host pop-
ulation is of great practical value in predicting and controlling
disease spread (West Nile virus in North America in the
1990s, Avian influenza worldwide in the 2000s, SARS in
Asia in 2003, etc.). The battle between infectious diseases
and humans was heavily lopsided for much of the history.
Since the pioneering work of Edward Jenner (a doctor, who
worked in Gloucestershire, UK, noticed that individuals who
had contracted cowpox rarely caught smallpox) on smallpox
[1], the process of protecting individuals from infection by
vaccination has become a routine, with substantial historical
success in reducing both morbidity and mortality (see [2,
3] and references cited therein). Typically, after the initial
infection, the host remains in a latent stage for a period
of time before becoming infectious. For some diseases, the
latent period is neither short nor negligible compared with
the infectious period (scarlet fever: 1-2 days versus 14–21 days
[4]; measles: 4–12 days versus 17–31 days [5]), leptospirosis,
2–12 days.

In this paper, we consider an epidemic model of vector-
host population. The disease spread due to vector, for exam-
ple, leptospirosis, dengue, malaria, west Nile virus, and so

forth, is considered. We assume that the individuals after
some time become susceptible again. Therefore, the term 𝜆

ℎ

is added in themodel.Themodel consists of the interaction of
human and vector. The human population is divided in three
subclasses, that is, susceptible human 𝑆

ℎ
(𝑡), infected human

𝐼
ℎ
(𝑡), and recovered human 𝑅

ℎ
(𝑡). The total population size

of human is shown by𝑁
1
and𝑁

1
= 𝑆
ℎ
(𝑡) + 𝐼

ℎ
(𝑡) + 𝑅

ℎ
(𝑡). The

vector population is divided in two subclasses, susceptible
vector 𝑆V(𝑡) and 𝐼V(𝑡). The total size of the vector population
is denoted by 𝑁

2
, with 𝑁

2
= 𝑆V(𝑡) + 𝐼V(𝑡). The disease

spread from vector, like leptospirosis, effects humans as well
as cattle [9]. The human are infected by means of drinking
water contaminated by dead rats or by infectious cattle while
drinking water. This infection can also spread through the
urine of infected human. Those who work in the fields, like
marshy places, rice planters, going in dirty water, those who
swimming in water are mostly infected. Weil’s first time
describes leptospirosis as a unique disease process in 1886,
while 30 years before Inada and his colleagues identified
the causal organism. The symptoms of leptospirosis are high
fever, headache, chills,muscle aches, conjunctivitis (red eyes),
diarrhea, vomiting, and kidney or liver problems (which
may also include jaundice), anemia, and, sometimes, rash.
Symptoms may last from a few days and up to several weeks.
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Deaths from this disease may occur but they are rare. For
some cases, the infections can be mild and without obvious
symptoms [10–14].

Many works have been done on vector-host models, as
in [15–17]. Reference [15] presented a mathematical model
of vector host in which the population dynamics of an SIR
vector transmitted disease with two pathogen strains. They
discussed the stability of the vector-host model and also
presented the numerical simulation of theirmodel. Reference
[16], they presented the vector-host model of dengue disease;
they analyzed the dengue model and presented their stability
and numerical results for vector host dengue model. Refer-
ence [17], they presented amathematicalmodel in the formof
demographic stochasticity and heterogeneity in transmission
of infection dynamics of host-vector disease systems. Math-
ematical and theoretical discussion is presented in the paper.
For more discussion, we refer the readers to the previously
mentioned articles. In our models, we have presented the
vector-host model with their stability analysis. We obtain, if
𝑅
0

≤ 1, it recover the community. However, for 𝑅
0

> 1

the disease remains in the community. We present the global
stability of the model and also we present in a good way the
numerical simulation of the proposed model, choosing the
different values for the parameters.

Many models have been proposed to represent the
dynamics of both human and vector population [18–20].
Pongsuumpun et al. [21] developed mathematical models to
study the behavior of leptospirosis disease. They represent
the rate of change for both rats and human population.
The human population are further divided into two main
groups juveniles and adults. Triampo et al. [7] considered
a deterministic model for the transmission of leptospirosis
disease [7]. In their work, they considered a number of
leptospirosis infections inThailand and shown the numerical
simulations. Zaman [6] considered the real data presented
in [7] to study the dynamical behavior and role of optimal
control theory.The dynamical interaction including local and
global stability of leptospirosis infected vector and human
population which can be found in Zaman et al. [22]. In
their work they also presented the bifurcation analysis and
presented the numerical simulations for different values of
infection rate.

The structure of the paper is organized as follows.
Section 2 is devoted to the formulation of the mathematic
model and reducing it to the normalized model. In Section 3,
we present the infection-free equilibrium, the basic reproduc-
tion and the local and global stability of infection equilibrium.
In Section 4, we present the disease persistence and existence
of the endemic equilibrium. In Section 5, we show the local
as well as the global stability of the endemic equilibrium for
the reproduction number 𝑅

0
> 1. The numerical results,

conclusion and references are presented in Section 6.

2. Mathematical Model

In this section, a vector-host epidemic model with direct
transmission is presented. The host population at time 𝑡 is
divided into susceptible 𝑆

ℎ
(𝑡), 𝐼
ℎ
(𝑡) infected, and recovered

𝑅
ℎ
(𝑡) individuals. The vector population at time 𝑡 is divided

into susceptible 𝑆V(𝑡) and infected vector population 𝐼V(𝑡).
The total population of humans is denoted by 𝑁

1
, and the

total population of the vector is denoted by𝑁
2
.Thus,𝑁

1
(𝑡) =

𝑆
ℎ
(𝑡)+𝐼
ℎ
(𝑡)+𝑅

ℎ
(𝑡) and𝑁

2
(𝑡) = 𝑆V(𝑡)+𝐼V(𝑡).Themathematical

representation of the model which consists of the system of
nonlinear differential equations with five state variables is
given by

𝑑𝑆
ℎ

𝑑𝑡
= Λ
ℎ
𝑁
1
− 𝜇
ℎ
𝑆
ℎ
−

𝛽
2
𝑆
ℎ
𝐼V

𝑁
2

−
𝛽
1
𝑆
ℎ
𝐼
ℎ

𝑁
1

+ 𝜆
ℎ
𝑅
ℎ
,

𝑑𝐼
ℎ

𝑑𝑡
=

𝛽
2
𝑆
ℎ
𝐼V

𝑁
2

+
𝛽
1
𝑆
ℎ
𝐼
ℎ

𝑁
1

− 𝜇
ℎ
𝐼
ℎ
− 𝛿
ℎ
𝐼
ℎ
− 𝛾
ℎ
𝐼
ℎ
,

𝑑𝑅
ℎ

𝑑𝑡
= 𝛾
ℎ
𝐼
ℎ
− 𝜇
ℎ
𝑅
ℎ
− 𝜆
ℎ
𝑅
ℎ
,

𝑑𝑆V

𝑑𝑡
= Λ V𝑁2 − 𝛾V𝑆V −

𝛽
3
𝑆V𝐼ℎ

𝑁
1

,

𝑑𝐼V

𝑑𝑡
=

𝛽
3
𝑆V𝐼ℎ

𝑁
1

− 𝛾V𝐼V.

(1)

Here, Λ
ℎ
is the recruitment rate of human population; sus-

ceptible human can be infected by two ways of transmission,
that is, directly, or through infected individuals; 𝛽

1
, 𝛽
2
are the

mediate transmission coefficients. 𝜇
ℎ
is the natural mortality

rate for humans; 𝛾
ℎ
is the recovery rate for humans from the

infections. We assumed that the disease may be fatal to some
infectious hosts, so disease-related death rate from infected
class occurs at human populations at 𝛿

ℎ
.The immune human

once again susceptible at constant rate 𝜆
ℎ
, for some disease

like dengue, the chances for susceptibility are less compared
to dengue, West Nile virus, malaria, and so forth. Λ V is the
recruitment rate for vector population. The death rate of
vector 𝛾V, 𝛽3 is the disease carrying the vector to the host per
unit time:

𝑑𝑁
1

𝑑𝑡
= Λ
ℎ
𝑁
1
− 𝜇
ℎ
𝑁
1
− 𝛿
ℎ
𝐼
ℎ
. (2)

2.1. Normalized Model. For the normalization of the model,
we let 𝑆

ℎ
= 𝑆
ℎ
/𝑁
1
, 𝐼
ℎ
= 𝐼
ℎ
/𝑁
1
, 𝑅̂
ℎ
= 𝑅
ℎ
/𝑁
1
, 𝑆V = 𝑆V/𝑁2, and

𝐼V = 𝐼V/𝑁2. It is easy to verify that 𝑆ℎ, 𝐼ℎ, 𝑅̂ℎ, 𝑆V, and 𝐼V satisfy
the following system of differential equations:

𝑑𝑆
ℎ

𝑑𝑡
= Λ
ℎ
(1 − 𝑆

ℎ
) + 𝛿
ℎ
𝑆
ℎ
𝐼
ℎ
− 𝛽
2
𝑆
ℎ
𝐼V − 𝛽

1
𝑆
ℎ
𝐼
ℎ

+ 𝜆
ℎ
(1 − 𝑆

ℎ
− 𝐼
ℎ
) ,

𝑑𝐼
ℎ

𝑑𝑡
= 𝛽
2
𝑆
ℎ
𝐼V + 𝛽

1
𝑆
ℎ
𝐼
ℎ
− (Λ
ℎ
+ 𝛿
ℎ
+ 𝛾
ℎ
) 𝐼
ℎ
+ 𝛿
ℎ
𝐼
2

ℎ
,

𝑑𝑅̂
ℎ

𝑑𝑡
= 𝛾
ℎ
𝐼
ℎ
− (Λ
ℎ
+ 𝜆
ℎ
) 𝑅̂
ℎ
+ 𝛿
ℎ
𝑅̂
ℎ
𝐼
ℎ
,

𝑑𝑆V

𝑑𝑡
= Λ V (1 − 𝑆V) − 𝛽

3
𝑆V𝐼ℎ,

𝑑𝐼V

𝑑𝑡
= 𝛽
3
𝑆V𝐼ℎ − 𝛾V𝐼V.

(3)
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With restriction, 𝑆
ℎ
+ 𝐼
ℎ
+ 𝑅̂
ℎ
= 𝑁
1
= 1, 𝑆V + 𝐼V = 𝑁

2
= 1 and

𝐼V = 1 − 𝑆V. In the first equation of the normalized model, we
substituted 𝑅̂

ℎ
= 1 − 𝑆

ℎ
− 𝐼
ℎ
. So in the normalized system the

𝑅̂
ℎ
does not appear.We reduced to the normalizedmodel (3),

and we will study the reduced model:
𝑑𝑆
ℎ

𝑑𝑡
= Λ
ℎ
(1 − 𝑆

ℎ
) − 𝛽
2
𝑆
ℎ
𝐼V + 𝛿

ℎ
𝑆
ℎ
𝐼
ℎ
− 𝛽
1
𝑆
ℎ
𝐼
ℎ

+ 𝜆
ℎ
(1 − 𝑆

ℎ
− 𝐼
ℎ
) ,

𝑑𝐼
ℎ

𝑑𝑡
= 𝛽
2
𝑆
ℎ
𝐼V + 𝛽

1
𝑆
ℎ
𝐼
ℎ
− (Λ
ℎ
+ 𝛿
ℎ
+ 𝛾
ℎ
) 𝐼
ℎ
+ 𝛿
ℎ
𝐼
2

ℎ

𝑑𝐼V

𝑑𝑡
= 𝛽
3
(1 − 𝐼V) 𝐼ℎ − 𝛾V𝐼V.

(4)

We determine 𝑆V and 𝑅̂
ℎ
from 𝑆V = 1−𝐼V and 𝑅̂

ℎ
= 1−𝑆

ℎ
−𝐼
ℎ
,

respectively. For reduced system (4), the feasible region is

Ω := {(𝑆
ℎ
, 𝐼
ℎ
, 𝐼V) ∈ R3

+
| 0 ≤ 𝑆

ℎ
+ 𝐼
ℎ
+ 𝐼V ≤ 1} . (5)

With the nonnegative initial conditions values of Ω, the
system is positively invariant, and the proof is easy.

3. Infection-Free Equilibrium and Basic
Reproduction Number

The basic reproduction for the reduced system (4) is given by

𝑅
0
=

𝛽
1

(Λ
ℎ
+ 𝛿
ℎ
+ 𝛾
ℎ
)
+

𝛽
2
𝛽
3

𝛾V (Λ ℎ + 𝛿
ℎ
+ 𝛾
ℎ
)
. (6)

The disease eradicated from the population by two ways, first
with the varying size in population and 𝐼

ℎ
→ 0, and the

second one is 𝐼
ℎ

→ 0, for detail see [23, 24]. We are thus
inspired to seek the conditions for infection-free and endemic
equilibrium. The infection-free equilibrium point for model
(4) is 𝐸

𝑜
= (𝑆
ℎ

= 𝑆
0

ℎ
, 0, 0) and for endemic equilibrium

𝐸
∗

= (𝑆
∗

ℎ
, 𝐼
∗

ℎ
, 𝑆
∗

V ). The infection-free equilibrium is obtained
by setting the left side of the reduced model (4), we obtain
𝑆
0

ℎ
= 1. Obviously the infection-free equilibrium 𝐸

𝑜
= (𝑆
ℎ
=

𝑆
0

ℎ
= 1, 0, 0) belongs to Ω of reduced model (4), which exists

for all positive parameters. Next, we prove the infection-free
local asymptotical stability of model (4) at the arbitrary point
𝐸
1
= (𝑆
ℎ
, 𝐼
ℎ
, 𝐼V).

Theorem 1. The infection-free equilibrium of reduced model
(4) is stable locally asymptotically stable for 𝑅

0
< 1 when 𝛾V +

𝐶
1
> 𝛽
1
and unstable for 𝑅

0
≥ 1.

Proof. The Jacobean matrix of the reduced model about the
equilibrium point 𝐸

0
is given by

𝐽 (𝐸
0
)

= (

−𝛽
2
𝐼V − 𝛽

1
𝐼
ℎ
− Λ
ℎ
+ 𝛿𝐼
ℎ

(𝛿
ℎ
− 𝛽
1
) 𝑆
ℎ
− 𝜆
ℎ

−𝛽
2
𝑆
ℎ

𝛽
2
𝐼V + 𝛽

1
𝐼
ℎ

𝛽
1
𝑆
ℎ
− 𝐶
1
+ 2𝛿
ℎ
𝐼
ℎ

𝛽
2
𝑆
ℎ

0 𝛽
3
(1 − 𝐼V) −𝛽

3
𝐼
ℎ
− 𝛾V

),

(7)

where 𝐶
1
= Λ
ℎ
+ 𝛾
ℎ
+ 𝛿
ℎ
.

The characteristics equation of the Jacobian matrix 𝐽(𝐸
0
)

is obtained by

(−Λ
ℎ
− 𝜆) (((𝛽

1
− 𝐶
1
) − 𝜆) (𝛾V − 𝜆) − 𝛽

2
𝛽
3
) = 0. (8)

The eigenvalue −𝜆
ℎ
has a negative real part, and the rest of

the two eigenvalues is calculated by Routh-Harwitz-Criteria.
We write

𝜆
2
+ 𝜆 (𝛾V + 𝐶

1
− 𝛽
1
) + 𝛾V𝐶1 (1 − 𝑅

0
) = 0, (9)

when 𝑅
0

< 1, then Routh-Hurtwiz Criteria are satisfied
if 𝛾V + 𝐶

1
> 𝛽
1
. The infection-free equilibrium is locally

asymptotically stable.

Next, we show the global asymptotical stability of
infection-free equilibrium, by defining the Lyapunove func-
tion.

Theorem 2. If the threshold quantity𝑅
0
≤ 1, the infection-free

equilibrium of the reduced model (4) is globally asymptotically
stable and is an unstable infection-free equilibrium for system
(4), when 𝑅

0
> 1.

Proof. To show the global stability of infection-free equilib-
rium of reducedmodel (4), we define the Lyapunove function
in the following:

𝑃 (𝑡) = 𝛾V𝐼ℎ + 𝛽
2
𝐼V. (10)

Taking the time derivative of (10), along the solution of
system (4), we obtain

𝑃
󸀠
(𝑡) = 𝛾V [𝛽2𝑆ℎ𝐼V + 𝛽

1
𝑆
ℎ
𝐼
ℎ
− (Λ
ℎ
+ 𝛿
ℎ
+ 𝛾
ℎ
) 𝐼
ℎ
+ 𝛿
ℎ
𝐼
2

ℎ
]

+ 𝛽
2
[𝛽
3
(1 − 𝐼V) 𝐼ℎ − 𝛾V𝐼V] .

(11)

Using 𝑆
ℎ
= 1 − 𝐼

ℎ
and simplifying, we get

𝑃
󸀠
(𝑡) = − 𝛾V𝛽2𝐼V𝐼ℎ − 𝛾V (𝛽1 − 𝛿

ℎ
) 𝐼
2

ℎ
− 𝛽
2
𝛽
3
𝐼
ℎ
𝐼V

− 𝛾V (Λ ℎ + 𝛾
ℎ
+ 𝛿
ℎ
) (1 − 𝑅

0
) 𝐼
ℎ
.

(12)

When 𝑅
0

≤ 1, the infection free-equilibrium is globally
asymptotically stable, and 𝑃

󸀠
(𝑡) is negative. 𝑃󸀠(𝑡) becomes

zero when 𝐼
ℎ
is zero and vice versa. By the Lasalle invariant

principle [25], which implies that the infection-free equilib-
riumat the point𝐸

0
is globally asymptotically stable inΩ.

4. Disease Persistence

In this section, we study the uniform persistence of the
reduced system (4). The disease persistence occurs for the
case when the threshold parameter 𝑅

0
> 1, by applying the

acyclicity Theorem [26].

Definition 3. The reduced model (4) is called uniformly
persistence if there exists a constant 𝑐 ∈ (0, 1) such that any
solution (𝑆

ℎ
, 𝐼
ℎ
, 𝐼V) with (𝑆

ℎ
(0), 𝐼
ℎ
(0), 𝐼V(0)) ∈ Ω satisfies

min {lim inf
𝑡→∞

𝑆
ℎ
(𝑡) , lim inf
𝑡→∞

𝐼
ℎ
(𝑡) , lim inf
𝑡→∞

𝐼V (𝑡)} ≥ 𝑐. (13)
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Let 𝑋 be a locally compact metric space with metric 𝑑, and
let 𝐶 be a closed nonempty subset of 𝑋 with boundary 𝜕Ω

and interior of Ω𝑜. Obviously, 𝜕Ω is the closed subset of Ω.
Suppose that 𝜙

𝑡
(𝑥) be a dynamical system defined on Ω. A

subset 𝐵 in 𝑋 is said to be invariant if 𝜙(𝐵, 𝑡) = 𝐵. Define
𝑇
𝜕
:= {𝑥 ∈ 𝜕Ω : 𝜙

𝑡
(𝑥) ∈ 𝜕Ω, for all 𝑡 ≥ 0}.

Lemma 4. Assume that

(𝐻
1
) 𝜙(𝑡) has a global attractor;

(𝐻
2
) there exists an 𝑁 = 𝑁

1
, . . . , 𝑁

𝑘
of pair-wise disjoint,

compact, and isolated invariant set on 𝜕Ω such that;

(𝑎
1
) 𝑉
𝑥∈𝜕Ω

⊂ 𝑉
𝑘

𝑗=1
𝑁
𝑗
;

(𝑎
2
) no subset of 𝑁 forming a cycle on 𝜕Ω;

(𝑎
3
) each of 𝑁

𝑗
is also isolated in 𝜕Ω;

(𝑎
4
) 𝑊
𝑠
(𝑁
𝑗
) ∩ Ω
𝑜
= 𝜙 for every 1 ≤ 𝑗 ≤ 𝑘, where 𝑊

𝑠
(𝑁
𝑗
)

is the stable manifold of 𝑁
𝑗
. Then 𝜙(𝑡) is uniformly

persistent with respect to Ω
𝑜 [26].

By the application of Lemma 4 to ourmodel, suppose that

Ω := {(𝑆
ℎ
, 𝐼
ℎ
, 𝐼V) ∈ R3

+
| 0 ≤ 𝑆

ℎ
+ 𝐼
ℎ
+ 𝐼V ≤ 1} , (14)

from (5),

Ω
𝑜
:= {𝑆
ℎ
, 𝐼
ℎ
, 𝐼V ∈ 𝐸, 𝐼

ℎ
, 𝐼V > 0} , 𝜕Ω =

Ω

Ω𝑜
. (15)

Clearly,𝑁
𝜕
= 𝜕Ω.

Hypotheisis (𝑎
1
) and (𝑎

2
) hold, for (4), reducing to 𝑆

󸀠

ℎ
=

(Λ
ℎ
+𝜆
ℎ
)−(Λ

ℎ
+𝜆
ℎ
)𝑆
ℎ
, when 𝑡

∞
, then 𝑆

󸀠

ℎ
(𝑡) = 1. When 𝑅

𝑜
>

1, the infection-free equilibrium is unstable. Also, 𝑊𝑠(𝑁) =

𝜕Ω. (𝑎
3
) and (𝑎

4
) are satisfied. Due to the boundedness the

reduced system (4) always admits a global attractor, so 𝐻
1
is

satisfied.We now state the above discussion in the form of the
following result.

Theorem 5. For 𝑅
0
> 1, the reduced system (4), is uniformly

persistent.

4.1. Existence of the Endemic Equilibrium. We have proved
in Section 4 the local asymptotical stability of infection-free
equilibrium when 𝑅

0
< 1. In such case, when the infection-

free equilibrium is locally asymptotically stable for is 𝑅
0
< 1,

the disease dies out and no endemic equilibrium exists. From
epidemiological point of view, it is important to show the
existence of endemic equilibrium when 𝑅

0
> 1.

Let 𝐸∗ = (𝑆
∗

ℎ
, 𝐼
∗

ℎ
, 𝐼
∗

V ) belong to Ω which is an endemic
equilibrium. From reduced system (4), its coordinates should
satisfy

Λ
ℎ
(1 − 𝑆

∗

ℎ
) − 𝛽
2
𝑆
∗

ℎ
𝐼
∗

V + 𝛿
ℎ
𝑆
ℎ
𝐼
∗

ℎ
− 𝛽
1
𝑆
∗

ℎ
𝐼
∗

ℎ

+ 𝜆
ℎ
(1 − 𝑆

∗

ℎ
− 𝐼
∗

ℎ
) = 0,

𝛽
2
𝑆
∗

ℎ
𝐼
∗

V + 𝛽
1
𝑆
∗

ℎ
𝐼
∗

ℎ
− (Λ
ℎ
+ 𝛿
ℎ
+ 𝛾
ℎ
) 𝐼
∗

ℎ
+ 𝛿
ℎ
𝐼
∗2

ℎ
= 0,

𝛽
3
(1 − 𝐼

∗

V ) 𝐼
∗

ℎ
− 𝛾V𝐼
∗

V = 0,

(16)

with 𝑆
∗

ℎ
> 0, 𝐼∗

ℎ
> 0, and 𝐼

∗

V > 0. By adding the system (16),
and solve for 𝐼∗

ℎ
, we obtain

((Λ
ℎ
+ 𝜆
ℎ
) − 𝛿
ℎ
𝐼
∗

ℎ
) (1 − 𝑆

∗

ℎ
− 𝐼
∗

ℎ
)

= − (𝛾V + 𝛾
ℎ
) + (𝛽

3
𝐼
∗

ℎ
− 𝛾V) (1 − 𝐼

∗

V ) .

(17)

This gives the range for 𝐼∗
ℎ
in the following:

0 < 𝐼
∗

ℎ
< ({1,min

(Λ
ℎ
+ 𝜆
ℎ
)

𝛿
ℎ

} , {1,min{
𝛽
3

𝛾V

}}) . (18)

From (18), note that the disease-related death 𝛿, less than the
(Λ
ℎ
+ 𝜆
ℎ
), the birth rate Λ, the rate at which the human

become susceptible 𝜆
ℎ
, the sum of (Λ

ℎ
+𝜆
ℎ
), and the contact

rate coefficient 𝛽
3
, and the less value of 𝛾V (natural death rate

of vector) will lie in the interval (0, 1). Now, further eliminate
𝑆
∗

ℎ
and 𝐼
∗

V from (10), then 𝐼
∗

ℎ
satisfies

((Λ
ℎ
+ 𝜆
ℎ
) − 𝛾
ℎ
𝐼
∗

ℎ
) − [(𝜆

ℎ
+ 𝛿
ℎ
+ 𝛾
ℎ
) − 𝛿
ℎ
𝐼
∗

ℎ
] 𝐼
∗

ℎ

= (Λ
ℎ
+ 𝜆
ℎ
− 𝛿
ℎ
𝐼
∗

ℎ
){

(Λ
ℎ
+ 𝛿
ℎ
+ 𝛾
ℎ
) − 𝛿
ℎ
𝐼
∗

ℎ

𝛽
2
𝛽
3
+ 𝛽
1
(𝛾V + 𝛽

3
𝐼
∗

ℎ
)

(𝛾V + 𝛽
3
𝐼
∗

ℎ
)} .

(19)

Further simplification gives

𝑓 (𝐼
∗

ℎ
) = 𝐼
∗3

ℎ
+ 𝐵
1
𝐼
∗2

ℎ
+ 𝐵
2
𝐼
∗

ℎ
+ 𝐵
3
, (20)

where

𝐵
1
= 𝛽
1
𝛾V𝛿ℎ + 𝛽

3
𝛿
ℎ
(𝛽
2
+ Λ
ℎ
+ 𝛾
ℎ
)

+
𝛽
3
[𝛽
1
(2𝛾
ℎ
+ 𝜆
ℎ
+ 𝛿
ℎ
) − (Λ

ℎ
+ 𝜆
ℎ
) (Λ
ℎ
+ 𝛾
ℎ
)]

𝛽
1
𝛽
3
𝛿
ℎ

,

𝐵
2
= 𝛽
1
𝛾V (2𝛾ℎ + 𝜆 − ℎ + 𝛿

ℎ
) + 𝛽
1
𝛽
3
(Λ
ℎ
+ 𝜆
ℎ
)

+
(Λ
ℎ
+ 𝜆
ℎ
− 𝛿
ℎ
) [𝛿
ℎ
𝛾V + 𝛾V (Λ ℎ + 𝛿

ℎ
+ 𝛾
ℎ
)]

𝛽
1
𝛽
3
𝛿
ℎ

,

𝐵
3
=

(Λ
ℎ
+ 𝛾
ℎ
+ 𝛿
ℎ
) (Λ
ℎ
+ 𝜆
ℎ
) 𝛾V (𝑅0 − 1)

𝛽
1
𝛽
3
𝛿
ℎ

,

(21)

and the equilibria of the reduced system (4) is given by

𝑆
∗

ℎ
=

((Λ
ℎ
+ 𝜆
ℎ
) − 𝜆
ℎ
𝐼
∗

ℎ
) (𝛽
3
𝐼
∗

ℎ
+ 𝛾V)

(𝛽
2
𝛽
3
𝐼
∗

ℎ
+ [(Λ

ℎ
+ 𝜆
ℎ
) + 𝐼
∗

ℎ
(𝛽
1
− 𝛿
ℎ
)] (𝛽
3
𝐼
ℎ
+ 𝛾V))

,

𝐼
∗

V =
𝛽
3
𝐼
ℎ

𝛽
3
𝐼
ℎ
+ 𝛾V

.

(22)
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The positive endemic equilibrium depends upon (Λ
ℎ
+𝜆
ℎ
) >

𝜆
ℎ
𝐼
∗

ℎ
and 𝛽

1
≥ 𝛿
ℎ
when 𝑅

0
> 1 we get a positive endemic

equilibrium point. We now state the above in the following
result.

Theorem 6. When 𝑅
0

> 1, a unique positive endemic
equilibrium exists for reduced system (4), In other case the
existence of disease-free equilibrium.

5. Global Stability of Endemic Equilibrium

Theorem 7. For 𝑅
0

> 1, the reduced model (4), about the
endemic equilibrium point𝐸∗, is globally asymptotically stable,
and unstable for 𝑅

0
> 1.

Proof. To prove that the reduced model (4) is globally
asymptotically stable, we obtain the Jacobian matrix 𝐽

∗ about
𝐸
∗ which is given by

𝐽
∗
(𝐸
∗
) = (

−Λ
ℎ
− 𝛽
2
𝐼V + 𝛿

ℎ
𝐼
ℎ
− 𝛽
1
𝐼
ℎ
− 𝜆
ℎ

𝛿
ℎ
𝑆
ℎ
− 𝛽
1
𝑆
ℎ
− 𝜆
ℎ

−𝛽
2
𝑆
ℎ

𝛽
2
𝐼V + 𝛽

1
𝐼
ℎ

𝛽
1
𝑆
ℎ
− (Λ
ℎ
+ 𝛿
ℎ
+ 𝛾
ℎ
) + 2𝛿

ℎ
𝐼
ℎ

𝛽
2
𝑆
ℎ

0 𝛽
3
(1 − 𝐼V) −𝛽

3
𝐼
ℎ
− 𝛾V

). (23)

The second additive compound matrix for 𝐽∗(𝐸∗) is given in
the following. Also see, the Appendix for the second additive
compound matrix.

𝐽
[2]

(𝐸
∗
)

= (

𝐴
11

𝛽
2
𝑆
ℎ

𝛽
2
𝑆
ℎ

𝛽
3
(1 − 𝐼V) 𝐴

22
−𝛽
1
𝑆
ℎ
+ 𝛿
ℎ
𝑆
ℎ
− 𝜆
ℎ

0 𝛽
2
𝐼V + 𝛽

1
𝐼
ℎ

𝐴
33

),

(24)

where

𝐴
11

= − Λ
ℎ
− 𝛽
2
𝐼V + 𝛿

ℎ
𝐼
ℎ
− 𝛽
1
𝐼
ℎ
− 𝜆
ℎ
+ 𝛽
1
𝑆
ℎ

− (Λ
ℎ
+ 𝛿
ℎ
+ 𝛾
ℎ
) + 2𝛿

ℎ
𝐼
ℎ
,

𝐴
22

= −Λ
ℎ
− 𝛽
2
𝐼V + 𝛿

ℎ
𝐼
ℎ
− 𝛽
1
𝐼
ℎ
− 𝜆
ℎ
− 𝛽
3
𝐼
ℎ
− 𝛾V,

𝐴
33

= 𝛽
1
𝑆
ℎ
− (Λ
ℎ
+ 𝛿
ℎ
+ 𝛾
ℎ
) + 2𝛿

ℎ
𝐼
ℎ
− 𝛽
3
𝐼
ℎ
− 𝛾V,

𝑃 = 𝑃 (𝑆
ℎ
, 𝐼
ℎ
, 𝐼V) = diag(1,

𝐼V

𝐼
ℎ

,
𝐼V

𝐼
ℎ

) ,

(25)

where

𝑃
−1

= diag(1,
𝐼
ℎ

𝐼V

,
𝐼
ℎ

𝐼V

) ,

𝑃
𝑓
= diag(0,

𝐼V𝐼
󸀠

ℎ
− 𝐼
󸀠

V𝐼ℎ

𝐼
2

ℎ

,
𝐼V𝐼
󸀠

ℎ
− 𝐼
󸀠

V𝐼ℎ

𝐼
2

ℎ

) .

(26)

And 𝑃
𝑓
𝑃
−1 is

𝑃
𝑓
𝑃
−1

= diag(0,
𝐼
󸀠

ℎ

𝐼
ℎ

−
𝐼
󸀠

V

𝐼V

,
𝐼
󸀠

ℎ

𝐼
ℎ

−
𝐼
󸀠

V

𝐼V

) . (27)

And 𝑃
𝑓
𝐽
[2]

𝑃
−1 is

𝑃
𝑓
𝐽
[2]

𝑃
−1

= 𝐽
[2]

= (

𝐴
11

𝛽
2
𝑆
ℎ

𝛽
2
𝑆
ℎ

𝛽
3
(1 − 𝐼V) 𝐴

22
−𝛽
1
𝑆
ℎ
+ 𝛿
ℎ
𝑆
ℎ
− 𝜆
ℎ

0 𝛽
2
𝐼V + 𝛽

1
𝐼
ℎ

𝐴
33

).

(28)

So we write

𝐵 = 𝑃
𝑓
𝑃
−1

+ 𝑃
𝑓
𝐽
[2]

𝑃
−1

= (
𝐵
11

𝐵
12

𝐵
21

𝐵
22

) , (29)

where

𝐵
11

= −Λ
ℎ
− 𝛽
2
𝐼V + 𝛿

ℎ
𝐼
ℎ
− 𝛽
1
𝐼
ℎ
− 𝜆
ℎ

+ 𝛽
1
𝑆
ℎ
− (Λ
ℎ
+ 𝛿
ℎ
+ 𝛾
ℎ
) + 2𝛿

ℎ
𝐼
ℎ
,

𝐵
12

= (𝛽
2
𝑆
ℎ
, 𝛽
2
𝑆
ℎ
) , 𝐵

21
= (𝛽
3
(1 − 𝐼V) , 0)

𝑇

,

𝐵
22

= (

𝐴
22

+
𝐼
󸀠

ℎ

𝐼
ℎ

−
𝐼
󸀠

V

𝐼V

−𝛽
1
𝑆
ℎ
+ 𝛿
ℎ
𝑆
ℎ
− 𝜆
ℎ

0
𝐼
󸀠

ℎ

𝐼
ℎ

−
𝐼
󸀠

V

𝐼V

+ 𝐴
33

).

(30)

Suppose that the vector (𝑢̂, V̂, 𝑤) in 𝑅
3 and its norm ‖ ⋅ ‖ will

be defined as

‖(𝑢̂, V̂, 𝑤)‖ = max {|𝑢̂| , |V̂| + |𝑤|} . (31)

Suppose that 𝜇𝐵 represents Lozinski measure with the previ-
ously defined norm. So, as described in [27], we choose

𝜇 (𝐵) ≤ sup (𝑔
1
, 𝑔
2
) , (32)
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where

𝑔
1
= 𝜇
1
(𝐵
11
) +

󵄨󵄨󵄨󵄨󵄨
𝐵
12

󵄨󵄨󵄨󵄨󵄨
, 𝑔

2
=

󵄨󵄨󵄨󵄨󵄨
𝐵
21

󵄨󵄨󵄨󵄨󵄨
+ 𝜇
2
(𝐵
22
) . (33)

|𝐵
21
| and |𝐵

12
| are the matrix norm with respect to vector ℓ,

and 𝜇
1
represents the Lozinski measure with respect to this ℓ

norm, then

𝜇
1
(𝐵
11
) = − Λ

ℎ
− 𝛽
2
𝐼V + 𝛿

ℎ
𝐼
ℎ
− 𝛽
1
𝐼
ℎ
− 𝜆
ℎ

+ 𝛽
1
𝑆
ℎ
− (Λ
ℎ
+ 𝛿
ℎ
+ 𝛾
ℎ
) + 2𝛿

ℎ
𝐼
ℎ
,

󵄨󵄨󵄨󵄨󵄨
𝐵
21

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨
𝛽
3
(1 − 𝐼V)

󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
𝐵
12

󵄨󵄨󵄨󵄨󵄨
= max {𝛽

2
𝑆
ℎ
, 𝛽
2
𝑆
ℎ
} = 𝛽
2
𝑆
ℎ
,

𝜇
1
(𝐵
22
) = max{

𝐼
󸀠

ℎ

𝐼
ℎ

−
𝐼
󸀠

V

𝐼V

+ 𝐴
22
,
𝐼
󸀠

ℎ

𝐼
ℎ

−
𝐼
󸀠

V

𝐼V

+ 𝐴
33
}

∴ 𝑔
1
= 𝜇
1
(𝐵
11
) +

󵄨󵄨󵄨󵄨󵄨
𝐵
12

󵄨󵄨󵄨󵄨󵄨

= − (Λ
ℎ
+ 𝜆
ℎ
) − 𝛽
2
𝐼V − 𝛽

1
𝐼
ℎ
+ 𝛿
ℎ
𝐼
ℎ

+ 𝛿
ℎ
𝐼
ℎ
+ 𝛽
2
𝑆
ℎ
+ 2𝛿
ℎ
𝐼
ℎ
− (Λ
ℎ
+ 𝛾
ℎ
+ 𝛾
ℎ
)

= − (Λ
ℎ
+ 𝜆
ℎ
) − 𝛽
2
𝐼V − 𝛽

1
𝐼
ℎ
+ 𝛽
2
𝑆
ℎ

+ 2𝛿
ℎ
𝐼
ℎ
+

𝐼
󸀠

ℎ

𝐼
ℎ

− 𝛽
2
𝑆
ℎ

𝐼V

𝐼
ℎ

− 𝛽
1
𝑆
ℎ
.

(34)

Use

𝐼
󸀠

ℎ

𝐼
ℎ

− 𝛽
2
𝑆
ℎ

𝐼V

𝐼
ℎ

− 𝛽
1
𝑆
ℎ
= − (Λ

ℎ
+ 𝛾
ℎ
+ 𝛾
ℎ
) + 𝛿
ℎ
𝐼
ℎ
. (35)

From system (4) and equation (2),

𝑔
1
≤

𝐼
󸀠

ℎ

𝐼
ℎ

− (Λ
ℎ
+ 𝜆
ℎ
) − 𝐼
ℎ
(𝛽
1
− 2𝛿
ℎ
) ,

𝑔
2
=

󵄨󵄨󵄨󵄨󵄨
𝐵
21

󵄨󵄨󵄨󵄨󵄨
+ 𝜇
1
(𝐵
22
) ,

= 𝛽
3
(1 − 𝐼V) +

𝐼
󸀠

ℎ

𝐼
ℎ

−
𝐼
󸀠

V

𝐼V

+ 𝐴
22

+ 𝐴
33

= 𝛽
3
(1 − 𝐼V) +

𝐼
󸀠

ℎ

𝐼
ℎ

−
𝐼
󸀠

V

𝐼V

− Λ
ℎ
− 𝛽
2
𝐼V + 𝛿

ℎ
𝐼
ℎ
− 𝛽
1
𝐼
ℎ

− 𝜆
ℎ
− 𝛽
3
𝐼
ℎ
+ 𝛽
1
𝑆
ℎ
− (Λ
ℎ
+ 𝛿
ℎ
+ 𝛾
ℎ
) + 2𝛿

ℎ
𝐼
ℎ

− 𝛽
3
𝐼
ℎ
− 𝛾V.

(36)

Using

𝐼
󸀠

V

𝐼V

= 𝛽
3
𝑆
ℎ

𝐼
ℎ

𝐼V

− 𝛾V. (37)

From the third equation of system (4),

𝑔
2
≤

𝐼
󸀠

ℎ

𝐼
ℎ

− (Λ
ℎ
+ 𝜆
ℎ
) − (𝛽

1
− 2𝛿
ℎ
) 𝐼
ℎ
. (38)

0 1 2 3 4 5 6 7 8 9 10
0

50
100
150
200
250
300
350
400

Human population model

Time (day)

H
um

an
 p

op
ul

at
io

n

Sh
Ih
I�

Figure 1: The plot shows the human population.
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Figure 2: The plot shows the human population.

So,

𝜇
1
𝐵 ≤ sup (𝑔

1
, 𝑔
2
) ≤

𝐼
󸀠

ℎ

𝐼
ℎ

− 𝛽, where 𝛽 = (𝛽
1
− 2𝛿
ℎ
) ,

(39)

then

1

𝑡
∫

𝑡

0

𝜇
1
𝐵𝑑𝑠 ≤

1

𝑡
∫

𝑡

0

(
𝐼
󸀠

ℎ

𝐼
ℎ

− 𝛽)𝑑𝑠 =
1

𝑡
ln

𝐼
󸀠

ℎ
(𝑡)

𝐼
󸀠

ℎ
(0)

− 𝛽 (40)

implies that 𝑞 ≤ −𝛽/2 < 0. Thus, the result [28] implies that
the positive equilibriumpoint of𝐸∗ is globally asymptotically
stable.

6. Numerical Simulations and Conclusion

In this section, we discuss the numerical simulation of the
reduced model (4), by using Runge-Kutta order four scheme.
The model for different parameters and their numerical
results are presented in Figures 1, 2, 3, 4, 5, 6, 7, and 8. The
parameters and their values are presented in Table 1. Figure 1
represents the population dynamics ofmodel (4). Varying the
parameters in Figures 2 to 6, we obtained different results.
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Table 1: Parameter values used in the numerical simulations of the model.

Notation Parameter description Value Reference
Λ
ℎ

Recruitment rate for human 1.6 [6]
𝜆
ℎ

Proportionality constant 0.066 [7]
𝜇
ℎ

Natural death rate of human 4.6 × 10
−5 [6]

𝛾V Natural death rate of vector 1.8 × 10
−3 [6]

𝛿
ℎ

Death rate due to disease at human class 1.0 × 10
−5 [8]

𝛾
ℎ

Recovery rate of the infection 2.7 × 10
−3 [8]

Λ V Birth rate of vector 1.9 × 10
−3 Assumed

𝛽
2

Transmission between 𝑆
ℎ
and 𝐼V 0.0089 Assumed

𝛽
3

Transmission between 𝑆V and 𝐼
ℎ

0.0079 Assumed
𝛽
1

Transmission coefficient between 𝑆
ℎ
and 𝐼
ℎ

0.00013 Assumed
𝛾V Natural death rate of vector 0.0027 [6]
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Figure 3: The plot shows the human population.
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Figure 4: The plot shows the human population.

Increasing 𝛽
3
, the number of infected human increases. The

variability of the population effects the individuals numbers
(infected individuals). For changing the value of 𝛽

1
, we get

different results in Figures 7 and 8. In this work, we have
presented a mathematical model of vector-host disease like
(leptospirosis, West Nile virus, dengue, etc.), which spreads
through the vector, has been presented. The system is stable
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Figure 5: The plot shows the human population.
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Figure 6: The plot shows the human population.

locally as well as globally about the disease-free equilibrium
𝑆
𝑜

ℎ
= 1, 0, 0, when reproduction number 𝑅

0
< 1, and

the unstable equilibrium occurs for 𝑅
0

≥ 1. When the
reproduction number 𝑅

0
> 1, there exists persistence. The

disease permanently exists in the community if 𝑅
0
> 1. Then,

we obtained the global stability of endemic equilibrium. The
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Figure 7: The plot shows the human population.
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Figure 8: The plot shows the human population.

numerical simulations were presented for the illustration of
theoretical results.

Appendix

Consider the following:

𝐽
[2]

=
[
[
[

[

𝑎
11

+ 𝑎
22

𝑎
23

−𝑎
13

𝑎
32

𝑎
11

+ 𝑎
33

𝑎
12

−𝑎
31

𝑎
21

𝑎
22

+ 𝑎
33

]
]
]

]

. (A.1)
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