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Winfree oscillators are phase oscillator models of neurons, characterized by their phase

response curve and pulsatile interaction function. We use the Ott/Antonsen ansatz to

study large heterogeneous networks of Winfree oscillators, deriving low-dimensional

differential equations which describe the evolution of the expected state of networks of

oscillators. We consider the effects of correlations between an oscillator’s in-degree and

out-degree, and between the in- and out-degrees of an “upstream” and a “downstream”

oscillator (degree assortativity). We also consider correlated heterogeneity, where some

property of an oscillator is correlated with a structural property such as degree. We finally

consider networks with parameter assortativity, coupling oscillators according to their

intrinsic frequencies. The results show how different types of network structure influence

its overall dynamics.

Keywords:Winfree oscillators, coupled oscillators, neuronal networks, degree, assortativity, copula, Ott/Antonsen

1. INTRODUCTION

The behavior of networks of coupled oscillators is a topic of ongoing interest (Strogatz, 2000;
Pikovsky et al., 2001; Arenas et al., 2008). While an individual oscillator may have very
simple behavior, it is the emergent behavior such as synchronization that has gained much
attention (Winfree, 2001; Strogatz, 2003). Networks of coupled oscillators provide insights into
physiological systems such as neuronal or cardiac systems, where synchrony or lack thereof can
have profound implications (Fenton et al., 2002; Milton and Jung, 2013).

One of the first models for interacting oscillators was the Winfree model (Winfree, 1967;
Ariaratnam and Strogatz, 2001; Pazó and Montbrió, 2014; Ha et al., 2015; Gallego et al., 2017; Pazó
et al., 2019; Pazó andGallego, 2020). EachWinfree oscillator is described by a single angular variable
and when uncoupled is assumed to undergo periodic oscillations. Each oscillator is assumed to
have a phase response curve, a function of its own phase, which can be measured from individual
neurons, for example Schultheiss et al. (2011) and Netoff et al. (2005). This describes how an
oscillator’s phase changes as the result of input from other oscillators. The output from an oscillator
is assumed to be in the form of a non-negative pulsatile function of its own phase, and the inputs
to an oscillator are assumed to be additive.

A number of authors have studied networks of Winfree oscillators, but as far as we are aware,
only in the all-to-all coupled case. Although straightforward to assemble, such networks do not
reproduce complex network structures observed in real-world systems such as assortativities
between individual neurons (de Santos-Sierra et al., 2014; Teller et al., 2014). We are interested in
networks with far more varied structure, not just randomly connected. These networks are directed,
i.e., edges connect one oscillator to another, without necessarily having a reciprocal connection,
as occurs in networks of neurons. There are many ways to create structured networks and here
we consider the following: correlating the in- and out-degrees of an oscillator (i.e., the number
of inputs and the number of outputs of an oscillator, section 3), inducing degree assortativity
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(i.e., connecting two oscillators based on their in- and out-
degrees, section 4), correlating some local property of an
oscillator with either its in- or out-degree (section 5), and
inducing parameter assortativity (i.e., connecting two oscillators
based on the similarities of an intrinsic property of the two
oscillators, such as their free-running frequency, section 6).

Our main tool is the derivation and then numerical analysis of
moderately large sets of coupled ordinary differential equations
(ODEs). The derivation utilizes the Ott/Antonsen ansatz (Ott
and Antonsen, 2008, 2009), an exact technique for dimension
reduction in large networks of sinusoidally coupled phase
oscillators, of which Winfree oscillators are an example. Some
of the computational techniques used here have been presented
before (Bläsche et al., 2020; Laing and Bläsche, 2020) but for
networks of theta neurons (Ermentrout and Kopell, 1986) rather
than Winfree oscillators. In section 2, we present the general
model and its reduction using the Ott/Antonsen ansatz. The
results are presented in sections 3–6 and we conclude in section 7.

2. MODEL

We consider the network version of the model as presented
in Pazó and Montbrió (2014)

dθj

dt
= ωj + U(θj)

ǫ

〈k〉

N
∑

n=1

AjnT(θn) (1)

for j = 1, . . .N where the ωj are chosen from a distribution
g(ω), ǫ is the strength of coupling, 〈k〉 is the mean degree of
the network, and the connectivity of the network is given by the
adjacency matrix A, where Ajn = 1 if oscillator n connects to
oscillator j and zero otherwise. The function U is known as the
phase response curve and we choose it to be

U(θ) = sinβ − sin (θ + β) (2)

so that U(0) = 0. If β < π/2 then this function describes a type-
II oscillator whereas β = π/2 describes a type-I oscillator (Tsubo
et al., 2007).We consider only type-II oscillators in this work. The
pulsatile function T is given by

T(θ) = aq(1+ cos θ)q (3)

where q is a positive integer and aq = 2q(q!)2/(2q)! so that
∫ 2π
0 T(θ)dθ = 2π . The in-degree of oscillator j is

kin,j =
N

∑

n=1

Ajn (4)

and the out-degree of oscillator n is

kout,n =
N

∑

j=1

Ajn (5)

We consider large networks with all oscillators having large in-
and out-degrees. Following Chandra et al. (2017) and Laing and

Bläsche (2020), we assume that the network can be characterized
by two functions: the degree distribution P(k), where k =
(kin, kout), and kin and kout are the in- and out-degrees of an
oscillator, respectively, and an assortativity function a(k′ → k)
giving the probability that an oscillator with degree k′ connects
to one with degree k, given that such oscillators exist. Note that
we follow (Chandra et al., 2017; Laing and Bläsche, 2020) and
normalize P(k) such that

∑

k P(k) = N.
In the limit N → ∞ the network is described by the

probability density function f (θ ,ω|k, t) where f (θ ,ω|k, t)dθ dω
is the probability that an oscillator with degree k has phase in
[θ , θ + dθ] and value of ω in [ω,ω + dω] at time t. This function
satisfies the continuity equation

∂f

∂t
+ ∂

∂θ
(vf ) = 0 (6)

where

v(θ ,ω, k, t) = ω + ǫU(θ)R(k, t) (7)

where

R(k, t) = 1

〈k〉
∑

k′
P(k′)a(k′ → k)G(k′, t) (8)

and

G(k′, t) =
∫ ∞

−∞

∫ 2π

0
f (θ ′,ω′|k′, t)T(θ ′)dθ ′ dω′ (9)

The nature of this system [specifically, havingU(θ) being a single
sinusoidal function of θ] means that it is amenable to the use
of the Ott/Antonsen ansatz (Ott and Antonsen, 2008, 2009). We
assume that

g(ω) = 1/π

(ω − ω0)2 + 12
(10)

where 1 is the half-width-at-half-maximum and ω0 the median
of the distribution of intrinsic frequencies. Using standard
techniques (Chandra et al., 2017; Laing, 2017) which rely on the
Ott/Antonsen theory, one can show that the long-time dynamics
of the network is described by

∂b(k, t)

∂t
= ǫe−iβR(k, t)

2
+

[

iω0 − 1 + iǫ sinβR(k, t)
]

b(k, t)

− ǫeiβR(k, t)

2
[b(k, t)]2 (11)

where

G(k, t) = aq



C0 +
q

∑

j=1

Cj

{

[b(k, t)]j + [b̄(k, t)]j
}



 (12)

where overline indicates complex conjugate and

Cj =
q

∑

k=0

k
∑

m=0

q!δk−2m,j

2k(q− k)!m!(k−m)!
(13)
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The quantity

b(k, t) =
∫ ∞

−∞

∫ 2π

0
f (θ ,ω|k, t)eiθdθ dω (14)

is the complex-valued order parameter for oscillators with
degree k.

Equation (11) is the general equation describing the dynamics
of the network and we use it as a base for analysing a number
networks with different types of structure. In section 3, we
consider correlations between an individual oscillator’s in-degree
and its out-degree, as described by the degree distribution P(k).
In section 4, we consider correlations between the degrees of
connected oscillators, effectively modifying the function a(k′ →
k). In section 5, we investigate the results of one of the parameters
intrinsic to an oscillator (ω0,1, or β) being correlated with
a network property of that oscillator (its in- or out-degree).
Section 6 considers the case when all oscillators have the same
in- and out-degrees, and the assortativity function a(k′ →
k) is replaced by a function describing the probability of
connecting oscillators based on the values of one of their intrinsic
parameters—in this case, ω0. We conclude in section 7.

3. WITHIN OSCILLATOR CORRELATIONS

We first consider the effects of correlating an oscillator’s in-
and out-degree. This general question has been considered by a
number of authors studying different types of oscillators (LaMar
and Smith, 2010; Vasquez et al., 2013; Martens et al., 2017;
Nykamp et al., 2017; Vegué and Roxin, 2019) and experimental
evidence for within-neuron degree correlations is given in Vegué
et al. (2017). Our derivation follows Laing and Bläsche (2020).

Assuming neutral assortativity we have (Restrepo and Ott,
2014)

a(k′ → k) = k′outkin
N〈k〉 (15)

where we have assumed that the largest in- and out-degrees are
significantly smaller than N, so that a(k′ → k) ≤ 1. We will
write P(kin, kout , ρ̂) instead of P(k)/N, where ρ̂ is a parameter
controlling the correlation between kin and kout , explained in
detail below. Substituting (15) into (8) we have

R(kin, kout , t) =
N

〈k〉
∑

k′in

∑

k′out

P(k′in, k
′
out , ρ̂)a(k

′ → k)G(k′in, k
′
out , t)

= kin

〈k〉2
∑

k′in

∑

k′out

P(k′in, k
′
out , ρ̂)k

′
outG(k

′
in, k

′
out , t)

(16)

This is clearly independent of kout , thus v must also be
independent of kout , the state of an oscillator with degree
(kin, kout) must be independent of kout , and thus G must be
independent of k′out . So we can write

R(kin, t) =
kin

〈k〉2
∑

k′in

Q(k′in, ρ̂)G(k
′
in, t) (17)

where

Q(k′in, ρ̂) ≡
∑

k′out

P(k′in, k
′
out , ρ̂)k

′
out (18)

Thus, the model equations of interest are

∂b(kin)

∂t
= ǫe−iβR(kin)

2
+

[

iω0 − 1 + iǫ sinβR(kin)
]

b(kin)

− ǫeiβR(kin)

2
[b(kin)]

2 (19)

where G is given by (12) but with the degree dependence being
on only kin. Note that the model equations are independent of N,
the total number of oscillators.

3.1. Generating Correlated Degrees
The correlations between an oscillator’s in- and out-degree are
controlled by the function P(kin, kout , ρ̂) and we now describe
how to generate these correlations. For simplicity we assume that
the distributions of the in- and out-degrees are the same, namely
uniform distributions betweenm andM, i.e.,

p(k) =
{

1
M−m m ≤ k ≤ M

0 otherwise
(20)

We introduce correlations between the in- and out-degree of an
oscillator while retaining these marginal distributions, using a
Gaussian copula (Nelsen, 2007). The correlated bivariate normal
distribution with zero mean is

f (x, y, ρ̂) = 1

2π
√

1− ρ̂2
e−(x2−2ρ̂xy+y2)/[2(1−ρ̂2)] (21)

where ρ̂ ∈ (−1, 1) is the correlation between x and y. The
variables x and y have no physical meaning and we use the copula
just as a way of deriving an analytic expression for P(kin, kout , ρ̂)
for which the correlations between kin and kout out can be varied
systematically. The cumulative distribution function for x is

C(x) = [1+ erf(x/
√
2)]/2 (22)

and the cumulative distribution function for degree k is

Ck(k) =
∫ k

m

1

M −m
ds = k−m

M −m
(23)

The joint degree distribution for kin and kout is

P(kin, kout , ρ̂) = {C−1[Ck(kin)]}′{C−1[Ck(kout)]}′f {C−1[Ck(kin)],

C−1[Ck(kout)], ρ̂} (24)

where the superscript “−1” indicates the inverse of the
corresponding function. Now

C−1[Ck(kin)] =
√
2 erf−1

(

2(k−m)

M −m
− 1

)

(25)
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and

{C−1[Ck(kin)]}′ =
√

π

2
exp

[

{

erf−1

(

2(k−m)

M −m
− 1

)}2
]

2

M −m

=
√

π

2

2

M −m
exp

[

(C−1[Ck(kin)])
2

2

]

(26)

So

P(kin, kout , ρ̂) =
1

(M −m)2
√

1− ρ̂2
exp

{

ρ̂C−1[Ck(kin)]C
−1[Ck(kout)

1− ρ̂2

}

× exp





−ρ̂2
(

{C−1[Ck(kin)]}2 +
{

C−1[Ck(kout)]
}2

)

2(1− ρ̂2)



 (27)

= p(kin)p(kout)
√

1− ρ̂2
exp

{

ρ̂C−1[Ck(kin)]C
−1[Ck(kout)]

1− ρ̂2

}

× exp





−ρ̂2
(

{C−1[Ck(kin)]}2 +
{

C−1[Ck(kout)]
}2

)

2(1− ρ̂2)



 (28)

Note the special case P(kin, kout , 0) = p(kin)p(kout), as expected.
Several plots of this function are shown in Figure 1.

We also need to relate the parameter ρ̂ to ρ, the Pearson
correlation coefficient between the in- and out-degrees of a
neuron. We have

ρ = 6̃P(kin, kout , ρ̂)(kin − 〈k〉)(kout − 〈k〉)
√

6̃P(kin, kout , ρ̂)(kin − 〈k〉)2
√

6̃P(kin, kout , ρ̂)(kout − 〈k〉)2
(29)

where 6̃ indicates a sum over all kin and kout . This relationship is
numerically determined and shown in Figure 2A, and it is nearly
the identity. Note that the sums in (29) are over m + 1 ≤ k ≤
M − 1, since P(kin, kout , ρ̂) is undefined for k = m,M.

We can also calculate the function Q(kin, ρ̂) (Equation 18)
where P(kin, kout , ρ̂) is given in (28). This function is shown in

Figure 2B, where we see that increasing ρ̂ gives more weight to
high in-degree nodes and less to low in-degree nodes and vice
versa. This can be understood by realizing that Q(kin, ρ̂) is the
“weight” given to outputs from oscillators with in-degree kin. If,
for example, ρ̂ > 0, then oscillators with high in-degree will be
likely to have high out–degree, and thus their output should be
weighted more.

3.2. Results
We set q = 4 (so aq = 8/35 and C0 = 35/8,C1 = 7/2,C2 =
7/4,C3 = 1/2,C4 = 1/16), ω0 = 1, and consider four
different values of β : 0, 0.5, 0.7, and 1 (all corresponding to type-
II oscillators). There are two types of behavior typically seen
in such a network: synchronous and asynchronous (Pazó and
Montbrió, 2014), although the fraction of oscillators actually
oscillating can vary in the asynchronous states. Increasing ǫ (the
strength of coupling) tends to destroy synchronous behavior
through a saddle-node-on-invariant-circle (SNIC) bifurcation, as
many of the oscillators “lock” at an approximate fixed point.
Increasing 1 (the spread of intrinsic frequencies) tends to
destroy synchronous behavior through a Hopf bifurcation, as
the oscillators become too dissimilar to synchronize (Pazó and
Montbrió, 2014). Examples of typical behavior in a default
network are shown in Figure 3. The global order parameter for
a network of N phase oscillators is a measure of their synchrony,
and is defined as (Strogatz, 2000)

Z = 1

N

N
∑

j=1

eiθj . (30)

We see that its magnitude has large, nearly periodic oscillations
in the synchronous state, but is approximately constant in
the asynchronous state—note the different vertical scales in
Figures 3A,C,E. Note as well the high |Z| value reflects
a large fraction of quiescent oscillators in Figures 3C,D—a
“trivial synchrony.”

FIGURE 1 | Joint degree distribution P(kin, kout, ρ̂) for (A) ρ̂ = 0.5 and (B) ρ̂ = −0.5. The log of P is shown, with red corresponding to higher values and blue to lower.

Parameters: m = 100,M = 400.
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FIGURE 2 | (A) Correlation coefficient between the in- and out-degrees of an oscillator, ρ, as a function of the parameter ρ̂ used in the Gaussian copula. (B) The

function Q(kin, ρ̂) (Equation 18) for different values of ρ̂. Parameters: m = 100,M = 400.

FIGURE 3 | Dynamics of the system (1) with uncorrelated degrees. (A,B) Correspond to (ǫ,1) = (0.2, 0.05) (synchronous state), (C,D) to (ǫ,1) = (0.8, 0.05), and (E,F)

to (ǫ,1) = (0.2, 0.5) (asynchronous states). The left panels show the magnitude of the global order parameter, and the right show sin θj . Other parameters:

ω0 = 1,β = 0,m = 100,M = 400,N = 2000.

The network whose behavior is shown in Figure 3 was
created using the configuration model (Newman, 2003). Such a
network typically has both self-connections (i.e., an oscillator is

connected to itself) andmultiple connections from one particular
oscillator to another. We remove these in a random way as
shown in Figure 4. For a self-connection we randomly choose
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another connection and reconnect as in the top panel. For a
double connection we randomly choose another connection and
reconnect as in the bottom panel.

We now investigate the effects of varying ρ̂ and thus
ρ on the dynamics of Equation (19). As mentioned, it is

FIGURE 4 | (Top) We remove a self-connection to oscillator a (left) by rewiring

the randomly chosen connection from oscillator b to c, giving the configuration

at the right. (Bottom) we remove the double connection from oscillator a to b

by rewiring the randomly chosen connection from oscillator c to d, giving the

configuration at the right.

known that increasing 1 (making the intrinsic frequencies more
diverse) destroys the synchronous state in a supercritical Hopf
bifurcation (Pazó and Montbrió, 2014). In Figure 5A, we show
how the value of 1 at which this bifurcation occurs varies as
a function of ρ, for four different values of β . We vary ρ̂ but
interpolate the data shown in Figure 2A in order to plot the
curves in Figure 5A as functions of ρ. We see that increasing
ρ increases the value of 1 at which the bifurcation occurs, at
least for small β , and vice versa, but the effect is small compared
with that of varying β . Put another way, for a fixed value of
1, increasing ρ can cause macroscopic oscillations within the
network (at least for β close to zero).

We now fix 1 = 0.05 and consider the effects of varying
both ρ and ǫ (the strength of coupling between oscillators). It
is known that for an all-to-all coupled network increasing ǫ

destroys the synchronous state in a SNIC bifurcation (Pazó and
Montbrió, 2014). For our network this is also what happens
for β = 0, as shown in Figure 5B (blue circles joined by
line). However, for β = 0.5, 0.7, and 1, there is instead a
supercritical Hopf bifurcation as ǫ increases, in contrast with
the situation for all-to-all coupled network (for these values
of ω0,β and 1), illustrating a nontrivial effect of network
structure: even the type of bifurcation occurring is changed.
These curves of Hopf bifurcations are also shown in Figure 5B

and we see that increasing ρ decreases the value of ǫ at which
the synchronous solution is destroyed and vice versa. Note that
between β = 0 and β = 0.5, guided by the results for the
fully-connected network (Pazó and Montbrió, 2014), we expect
there to be several curves of Hopf, homoclinic, and saddle-node
bifurcations in Figure 5B organized around a Takens-Bogdanov
and a saddle-node separatrix-loop point (Gallego et al., 2017), but
we have not investigated them here. The results in Figure 5 have
been compared with those from simulation of the full network
(Equation 1) and found to agree very well (results not shown).

FIGURE 5 | (A) Hopf bifurcation curves of the fixed point of (19). A stable periodic orbit exists below the curve. Other parameters:

ǫ = 0.2,ω0 = 1,m = 100,M = 400. (B) SNIC bifurcation curve (β = 0, blue circles joined by line) and Hopf bifurcation curves (β = 0.5, 0.7 and 1) for (19). For each

value of β a stable periodic orbit exists below the curve. Other parameters: 1 = 0.05,ω0 = 1,m = 100,M = 400.
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4. BETWEEN NEURON DEGREE
CORRELATIONS

We now turn to the question of correlations between connected
oscillators based on their degrees, often referred to as degree
assortativity (Foster et al., 2010; Bläsche et al., 2020). Assortativity
has often been studied in undirected networks, where a node
simply has a degree, rather than in- and out-degrees (Restrepo
and Ott, 2014). Here we consider directed networks, which a
small number of previous authors have considered (De Franciscis
et al., 2011; Avalos-Gaytan et al., 2012; Schmeltzer et al., 2015;
Kähne et al., 2017), although they have often imposed other
structure on the network such as equal in- and out-degrees for
each model neuron.

Because we consider directed networks there are four possible
types of degree assortativity, between either the in- or out-degree
of the “upstream” (sending) oscillator and either the in- or out-
degree of the “downstream” (receiving) oscillator (see Figure 6).

Roughly speaking, degree assortativity can be thought of
in this way: given an upstream oscillator with specific in-
and out-degrees, and a downstream oscillator with specific
in- and out-degrees, one can calculate the probability of a
connection from the upstream to the downstream oscillator.

FIGURE 6 | Assortativity in undirected and directed networks. An undirected

network (left) is assortative if high degree nodes are more likely to be

connected to high degree nodes, and low to low, than by chance (top left).

Such a network is disassortative if the opposite occurs (bottom left). (Here, the

degree of a node is given by k.) In directed networks (right) there are four

possible kinds of assortativity. The probability of a connection (red) depends

on the number of red shaded links of the sending (left) and receiving (right)

node. (Here, either the in-degree, kin, or out-degree, kout, of a node is the

relevant quantity).

If this probability—averaged over the network—is other than that
expected by chance, and is further dependent on the degrees of
the oscillators, the network shows degree assortativity. One can
use this idea to create networks with assortativity, by creating
connections where they would typically not occur.

A measure of assortativity for a network with a given
connectivity matrix A is by way of calculating the four Pearson
correlation coefficients r(α, γ ) with α, γ ∈ [in, out] given by

r(α, γ ) =
∑Ne

e=1(
ukα

e −
〈

ukα
〉

)(dk
γ
e −

〈

dkγ
〉

)
√

∑Ne
e=1(

ukα
e −

〈

ukα
〉

)2
√

∑Ne
e=1(

dk
γ
e −

〈

dkγ
〉

)2
(31)

where

〈

ukα
〉

= 1

Ne

Ne
∑

e=1

ukα
e and

〈

dkγ
〉

= 1

Ne

Ne
∑

e=1

dk
γ
e , (32)

Ne being the number of edges and the leading superscript u
or d refers to the “upstream” or “downstream” oscillator of the
respective edge (Bläsche et al., 2020). For example the upstream
node’s in-degree of the second edge would be ukin2 . Note that there
are four mean values to compute.

To induce assortativity within a network we start by randomly
choosing in-degrees and out-degrees from the distribution given
in Equation (20). If the total number of out-degrees does
not equal that of the in-degrees (i.e., the network cannot be
created; Anstee, 1982) we choose again until it does. We then use
the configuration model (Newman, 2003) with these prescribed
degrees to create the network, and utilize the same procedure as
described earlier for removal of self- and multiple-connections
(see Figure 4).

To induce assortativity of the form (α, γ ) we randomly
choose two edges, one connecting oscillator j to oscillator i and
another connecting oscillator l to oscillator h. We calculate their
contribution to the numerator of (31)

c‖ =
(

kα
j −

〈

ukα
〉

) (

k
γ
i −

〈

dkγ
〉)

+
(

kα
l −

〈

ukα
〉)

(

k
γ

h
−

〈

dkγ
〉)

(33)
and the contribution if we replaced these two edges with one
connecting oscillator j to oscillator h and another connecting
oscillator l to oscillator i:

c\/ =
(

kα
l −

〈

ukα
〉)

(

k
γ
i −

〈

dkγ
〉)

+
(

kα
j −

〈

ukα
〉

) (

k
γ

h
−

〈

dkγ
〉)

(34)
If c\/ > c‖ wemake the swap, otherwise we do not.We then repeat
this process many times, storing A, and calculating the value of
r(α, γ ) at regular intervals.

We now discuss how to implement the system Equation (11).
Choosing m = 100,M = 400, kin, and kout take on values
in {100, 101, 102, . . . 400} and thus there are 301 × 301 possible
values of k. Considering that we use a network of size N = 2, 000
it is clear that there may be many values of k for which there is
not even one oscillator in the network. Thus, we coarse-grain
by degree: we divide the interval [100, 400] into 15 equal-size

bins with centers k̂in,1, k̂in,2, . . . , k̂in,15 and describe the state of an
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oscillator by the value of b associated with the 2D bin it is in (there
are 15 × 15 of these 2D bins). We can think of Equation (11) as
being amatrix-valued ODE, with the (i, j)th element of thematrix

being b(k̂out,i, k̂in,j, t). We can easily convert this to a vector-

valued ODE by stacking the columns of b(k̂out , k̂in, t), from left

to right, into a vector, b̂(t), where the sth entry is b̂s(t) =
b(k̂out,i, k̂in,j, t) and s = i+ 15(j− 1). Note that i, j ∈ {1, 2, . . . 15}
and s ∈ {1, 2, . . . 225}.

Dropping the hat on b we have

dbs(t)

dt
= ǫe−iβRs(t)

2
+

[

iω0 − 1 + iǫ sinβRs(t)
]

bs(t)

− ǫeiβRs(t)

2
[bs(t)]

2 (35)

for s ∈ {1, 2, . . . 225} where we define

Gs(t) = an



C0 +
n

∑

j=1

Cj

{

[bs(t)]
j + [b̄s(t)]

j
}



 (36)

We need to calculate Rs(t) from Gs(t) using the equivalent of (8).
We can write the analog of (8) as

Rs(t) =
1

〈k〉

225
∑

s′=1

E(s, s′)Gs′ (t) (37)

where E(s, s′) encodes the connectivity from the 2D bin with
index s′ to that with index s. Given the connectivity matrix A it is
straightforward to calculate E(s, s′) as explained in Bläsche et al.
(2020). E can be thought of as a 225 × 225 matrix, with (i, j)th
entry E(i, j), so we can write Equation (37) as

R(t) = 1

〈k〉EG(t) (38)

where R and G are vector-valued variables and Equation (35) is
just the sth component of a vector-valued ODE.

Since we have recorded A at discrete values of the correlation
coefficient r, we can also calculate E at these values. To form a
parameterized family, E(r), we fit a quadratic to each entry of E
as a function of r, i.e., we write Eij(r) = Bijr

2 + Cijr + Dij for
i, j ∈ [1, 225], using linear least-squares. We can then efficiently
evaluate an approximation of E(r) as

E(r) = Br2 + Cr + D (39)

where the (i, j)th entry of B is Bij etc. In summary, we have a
parameterized set of ODEs, where r is one of the parameters.
Note that we only vary one of the four r(α, γ ) at a time.

4.1. Results
The results are shown in Figure 7, where we vary 1 and the
four r(α, γ ) for four different values of β , and Figure 8, where
we vary ǫ and the four r(α, γ ) for the same four values of

FIGURE 7 | (A–D) Hopf bifurcation curves as both 1 and one of the types of assortativity are varied. A stable periodic orbit exists below the curve. Other parameters:

ǫ = 0.2,ω0 = 1,m = 100,M = 400.

Frontiers in Systems Neuroscience | www.frontiersin.org 8 February 2021 | Volume 15 | Article 631377

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Laing et al. Dynamics of Winfree Oscillators

FIGURE 8 | (A–D) SNIC bifurcation curve (β = 0, blue circles joined by line) and Hopf bifurcation curves (β = 0.5, 0.7 and 1) as both ǫ and one of the types of

assortativity are varied. For each value of β a stable periodic orbit exists below the curve. Other parameters: 1 = 0.05,ω0 = 1,m = 100,M = 400. In the top-left

panel, for β = 0.5 the curve terminates as r is decreased.

β . As was seen in Bläsche et al. (2020), assortativities of the
type r(out,out) and r(out,in) have no discernable effect on the
bifurcations, whereas the other two types do. We can understand
this by realizing that the dynamics of an oscillator depend only on
its inputs. Since an oscillator’s dynamics are independent of its
downstream oscillators, neither the r(out,out) nor the r(out,in)
assortativities influence the overall network dynamics as shown
in all the traces of Figures 7C,D. Note, this dynamic interplay is
quite different for a network with strong preferential attachment
between high in-degree and high out-degree oscillators as when
r(in,out) is positive (Figure 7B). The influence of the upstream
oscillator (with high in-degree, receiving multiple inputs) is
amplified or “passed on” to more oscillators via its downstream
companion with high out-degree. This pair with high input
and high output is thus far more influential than, say, a pair
of oscillators preferentially attached according to the upstream
node’s out-degree. In that scenario, the upstream node of an
attached pair may only integrate a small number of inputs (low
in-degree), whose behavior is strikingly distinct from an oscillator
with many inputs (high in-degree).

Analogously, a positive r(in,in) assortativity demonstrates
preferential attachment between high in-degree upstream and
downstream pairs of oscillators. In this case, they are relatively
potent integrators and concentrators of upstream impulses.
We see in Figure 7A, the influence of high r(in,in) where

the parameter space in which stable periodic orbits exist
shrinks, increasing sensitivity to the destructive influence of 1

on synchrony.

5. CORRELATED HETEROGENEITY

We have so far assumed that the parameters ω0 and 1 (the
mean and width, respectively, of the distribution of intrinsic
frequencies, see Equation 10) and β (the parameter in the
phase response curve, see Equation 2) are the same for each
oscillator, but now consider the case of them being correlated
with a structural property of an oscillator such as its in-
degree or out-degree. Correlating an oscillator’s frequency with
its degree is known to cause “explosive” synchronization in
undirected networks of coupled phase oscillators, for example Liu
et al. (2013), Gómez-Gardeñes et al. (2011), and Boccaletti
et al. (2016), and we are interested in whether similar effects
occur in networks of Winfree oscillators. For simplicity we
will use linear relationships between a parameter and its
relevant degree.

5.1. In-Degree
We first consider the case of correlation with in-degree.
Assuming neutral assortativity and independence between an
oscillator’s in- and out-degree, following the reasoning in
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section 3 the dynamics of b depend only on in-degree and are
governed by

∂b(kin)

∂t
= ǫe−iβR(kin)

2
+

[

iω0 − 1 + iǫ sinβR(kin)
]

b(kin)

− ǫeiβR(kin)

2
[b(kin)]

2 (40)

for kin = m,m+ 1, . . .M where

R(kin, t) =
kin

〈k〉2
∑

k′in

∑

k′out

p(k′in)p(k
′
out)k

′
outG(k

′
in, t)

= kin

〈k〉
∑

k′in

p(k′in)G(k
′
in, t) (41)

where G is given by (12) but with the degree dependence being
on only kin.

We define a scaled in-degree

k̂in = 2

(

kin −m

M −m

)

− 1 (42)

which varies linearly from −1 to 1 as kin goes from m to M,
respectively. We first consider the case where ω0 is a function of

kin. We write ω0(kin) = 1 + σ k̂in where σ controls the strength
of dependence between kin and ω0. (Recall that we previously
set ω0 = 1.) Setting β = 0, ǫ = 0.2, and 1 = 0.05 we find
that when σ = 0 the network is attracted to a stable periodic
orbit. However, increasing or decreasing σ causes the oscillations
to cease through a Hopf bifurcation as shown in Figure 9A. To
visualize the oscillations we define the complex order parameter
for (40) as

Z(t) = 1

M −m+ 1

M
∑

kin=m

b(kin, t). (43)

This is an appropriate definition since the distribution of in-
degrees is uniform; if it were not we would have to weight
the contributions from different kin values. Figure 9A shows
the maximum and minimum over one period of Im(Z) for
oscillatory solutions, and just Im(Z) for fixed points. Simulations
of a finite network are shown in the lower panels of Figure 9
(transients not shown) which confirm the results in Figure 9A.
The small amplitude oscillations seen in Figures 9A,C are a result
of finite size fluctuations about the fixed point of Equation (40),
the linearization about which has complex eigenvalues. The
amplitude of these oscillations decreases as the number of
oscillators used increases (not shown).

One might think that having ω0 depend on in-degree
broadens the distribution of intrinsic frequencies in the network,
which is equivalent in some sense to increasing 1. However,
it is not completely equivalent for several reasons. Firstly, the
distribution of all intrinsic frequencies is no longer Lorentzian
(although for each oscillator we choose the frequency from a
Lorentzian), and depends on both the form of dependence of
ω0 on kin (linear in this case) and the distribution of the kin

FIGURE 9 | Intrinsic frequency dependence ω0(kin) = 1+ σ k̂in. (A) Solid line:

stable fixed point of Equation (40); dashed line: unstable fixed point. Circles:

maximum and minimum over one period of Im(Z). Im(Z) calculated using (30)

for (B) σ = −0.1, (C) σ = 0, and (D) σ = 0.2. Other parameters:

1 = 0.05,β = 0, ǫ = 0.2,m = 100,M = 400,N = 2, 000.

(uniform in this case). Secondly, the intrinsic frequency of each
oscillator now depends on a structural property: its in-degree.
But for comparison, the oscillations seen in Figure 9 for σ = 0
are destroyed in a Hopf bifurcation as 1 is increased through
∼ 0.085 (not shown).

Next consider β being a function of kin. In order to not have

negative β we set β = σ (k̂in + 1). We choose ω0 = 1, ǫ =
0.8,1 = 0.05. For these parameters the network is attracted to a
stable fixed point. However, increasing σ first induces oscillations
through a SNIC bifurcation and then destroys them through a
Hopf bifurcation, as shown in Figure 10A. Simulations of a finite
network are shown in the lower panels of Figure 10 and these are
consistent with the results in Figure 10A.

As a third possibility we let 1 depend on kin. 1 (the width of
the distribution of intrinsic frequencies) cannot be negative so we

set1 = 0.09+σ k̂in and consider only−0.09 ≤ σ ≤ 0.09. We set
other parameters ω0 = 1,β = 1 and ǫ = 0.6. A Hopf bifurcation
occurs as σ is increased as shown in Figure 11A. Simulations
of a finite network are shown in the lower panels of Figure 11.
Significant oscillations are seen for σ = 0, and the amplitude
of oscillations for σ = 0.09 is less than expected. However, we
repeated this type of simulation with N = 5, 000 and found that
the amplitude of oscillations with σ = 0.09 better matched the
results in Figure 11A (i.e., were bigger than seen for N = 2, 000)
and that the amplitude of oscillations for σ = 0 were slightly
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FIGURE 10 | Phase dependency β(kin) = σ (k̂in + 1). (A) Solid line: stable fixed

point of Equation (40); dashed line: unstable fixed point. Circles: maximum and

minimum over one period of Re(Z). Re(Z) calculated using (30) for (B) σ = 0,

(C) σ = 0.4, and (D) σ = 0.8. Other parameters:

1 = 0.05,ω0 = 1, ǫ = 0.8,m = 100,M = 400,N = 2, 000.

smaller than seen for N = 2, 000 (results not shown), suggesting
that this apparent disagreement is a finite-size effect.

5.2. Out-Degree
Now consider the possibility that one of ω0,1, and β are
correlated with an oscillator’s out-degree. From Equation (11), it
is clear that even for neutral assortativity, b will depend on both
kin and kout . Thus, the relevant equations are

∂b

∂t
= ǫe−iβR

2
+ [iω0 − 1 + iǫ sinβR] b− ǫeiβR

2
b2 (44)

where b is a function of both kin and kout , but R is a function of
kin only:

R(kin, t) =
kin

〈k〉2
∑

k′in

∑

k′out

p(k′in)p(k
′
out)k

′
outG(k

′
in, k

′
out , t) (45)

where G is given by Equation (12).

5.2.1. Computational Approach

If J = M −m + 1 is the number of distinct in-degrees (and out-
degrees) then b can be thought of as a J× J matrix with J2 entries.
This is too many to deal with computationally, so we discretize in
degree space. In the same way that one can approximate a definite

FIGURE 11 | Heterogeneity dependency 1 = 0.09+ σ k̂in. (A) Solid line:

stable fixed point of (40); dashed line: unstable fixed point. Circles: maximum

and minimum over one period of Im(Z). Im(Z) calculated using (30) for (B)

σ = 0 and (C) σ = 0.09. Other parameters:

β = 1,ω0 = 1, ǫ = 0.6,m = 100,M = 400,N = 2, 000.

integral using Gaussian quadrature, it is possible to approximate
a double sum like that in (45) using a double sum over far fewer
points (Engblom, 2006). The theory is explained in Laing and
Bläsche (2020), but put briefly we define an inner product on
either degree space

(f , g) =
M

∑

k=m

f (k)g(k) (46)

and assume that there is a corresponding set of orthogonal
polynomials {qn(k)}0≤n associated with this product. We choose
a positive integer s and let {ki}i=1,...s be the roots of qs, found using
the Golub-Welsch algorithm, and {wi} be the weights associated
with these roots. The approximation of the double sum in (45)
is then

∑

k′in

∑

k′out

p(k′in)p(k
′
out)k

′
outG(k

′
in, k

′
out , t) ≈

s
∑

i=1

s
∑

j=1

wiwjkjG(ki, kj, t)

(47)
Note that the ki are not integer-valued. We thus solve (44) on
the non-uniform 2D grid of s2 “virtual” degree. An example for
s = 10 is shown in Figure 12.
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The convergence with s is observed to be geometric (not
shown) and we use s = 20 to calculate the results below.

5.2.2. Results

We write

k̂out = 2

(

kout −m

M −m

)

− 1. (48)

Setting ω0(kout) = 1+ σ k̂out and varying σ we obtain the results
in Figure 13. TwoHopf bifurcations are seen, as in Figure 9A but

FIGURE 12 | Non-uniform 2D grid of degrees as explained in section 5.2.1

with m = 100,M = 400, s = 10. The color shows the weight, wiwj , associated

with each point.

FIGURE 13 | Intrinsic frequency dependence ω0(kout ) = 1+ σ k̂out. Solid line:

stable fixed point of (44); dashed line: unstable fixed point. Circles: maximum

and minimum over one period of Im(Z). Other parameters:

1 = 0.05,β = 0, ǫ = 0.2,m = 100,M = 400.

at different values of σ from in that figure. Writing β(kout) =
σ (k̂out + 1) and varying σ we obtain the results in Figure 14.
The bifurcations are the same as in Figure 10A, but again, at
different values of σ . Using the parameters shown in Figure 11A,

setting 1 = 0.09 + σ k̂out and varying σ ∈ [−0.09, 0.09] (as 1

cannot be negative) the fixed point was always stable (not shown).
Simulations of a discrete network of N = 2, 000 oscillators
confirmed all of the results in this section (not shown).

6. PARAMETER ASSORTATIVITY

We now consider assortativity by a parameter other than degree,
in this case ω0 value. We first describe how to create a network
with such assortativity, then derive the relevant continuum
equations. We follow Skardal et al. (2015) in our derivation.

To create a particular network we first create a network
where the in- and out-degrees of all oscillators are the same,
in order that degree not affect the dynamics. To do this we
use the configuration model (Newman, 2003), then remove all
self-connections and multi-edges as before. With N oscillators
we randomly choose N target values of ω0 from a distribution
p(ω0), which is non-zero only if ω0 ∈ [ω0,ω0], i.e., ω0 is the
minimum value of ω0 and ω0 is the maximum, and assign these
to oscillators. We can calculate the assortativity of the network
using similar ideas as those in section 4. We calculate the Pearson
correlation coefficient

r =
∑Ne

e=1(ω
′
0,e −

〈

ω′
0

〉

)(ω0,e − 〈ω0〉)
√

∑Ne
e=1(ω

′
0,e −

〈

ω′
0

〉

)2
√

∑Ne
e=1(ω0,e − 〈ω0〉)2

(49)

where ω′
0,e is the value of the target ω0 associated with the

oscillator at the start of edge e and ω0,e is the value of the target

FIGURE 14 | Phase shift dependence β(kout ) = σ (k̂out + 1). Solid line: stable

fixed point of (44); dashed line: unstable fixed point. Circles: maximum and

minimum over one period of Re(Z). Other parameters:

1 = 0.05,ω0 = 1, ǫ = 0.8,m = 100,M = 400.
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ω0 associated with the oscillator at the end of edge e, andNe is the
number of edges. The means are

〈

ω′
0

〉

= 1

Ne

Ne
∑

e=1

ω′
0,e 〈ω0〉 =

1

Ne

Ne
∑

e=1

ω0,e (50)

Initially the network will have r ≈ 0. We induce assortativity
in a similar way to that described in section 4. We randomly
chose two edges, one connecting oscillator j to oscillator i and
another connecting oscillator l to oscillator h. We calculate
their contribution to the numerator of Equation (49) and the
contribution if we replaced these two edges with one connecting
oscillator j to oscillator h and another connecting oscillator l to
oscillator i. If performing this swap increases r wemake the swap,
otherwise we do not. We then repeat this process many times,
storing A and calculating the value of r at regular intervals. (To
decrease r from its initial value of 0 we just consider whether
making the swap decreases r). As a last step, in order to use
the Ott/Antonsen ansatz, we then randomly assign to oscillator
i a value of ωi chosen from a Lorentzian with mean equal to
the target ω0 for that oscillator and with half-width-at-half-
maximum 1. This will result in the creation of a network in
which all oscillators have the same in- and out-degree, but those
with high ω0 are more likely to connect to those also having high
ω0 and vice versa.

To derive the continuum equations we see that the state of an
oscillator can only depend on itsω0 value.We discretize the range
of ω0 values, [ω0,ω0], intom equal-sized bins, and thus we have

dbs(t)

dt
= ǫe−iβRs(t)

2
+

[

iωs − 1 + iǫ sinβRs(t)
]

bs(t)

− ǫeiβRs(t)

2
[bs(t)]

2 (51)

for s = 1, 2, . . .m, where ωs is the value of ω0 in the center of the
sth bin. The analog of Equation (8) is

Rs(t) =
1

〈k〉

m
∑

u=1

EsuGu(t) (52)

where 〈k〉 is the degree of each oscillator,

Gs(t) = aq



C0 +
q

∑

j=1

Cj

{

[bs(t)]
j + [b̄s(t)]

j
}



 (53)

and the matrix E encodes the connectivity of the network, i.e., Esu
is proportional to the number of oscillators in the uth bin which
connect to oscillators in the sth bin, which can be determined
from the connectivity matrix A. As in section 4, we record A at
discrete values of the correlation coefficient r, so can construct
E(r) at those values. We fit a quadratic through each entry of E as
a function of r and thus write

E(r) = Br2 + Cr + D (54)

where B,C, and D arem×m constant matrices.

As an example we choose β = 0,1 = 0.01, and p(ω0)
to be the uniform distribution on [0, 2]. (p(ω0) must have
bounded support so we can discretize its domain into a finite
number of bins.) We compare the results of simulating a full
network from Equation (1) with those from the reduced model
in Equation (51). We use a network of N = 2, 000 with
each oscillator having degree 〈k〉 = 100. We have stored the
connectivity matrix A at 101 values of r, and vary both ǫ and r.
At each point in this parameter space we solve Equation (1) for
100 time units, discard the first 50 as transients, then calculate the
order parameter using Equation (30). The difference between the
maximum of |Z| over the final 50 time units and the minimum of
|Z| over this time is shown in Figure 15.

When this difference is close to zero, most of the oscillators
are “locked” at zero frequency, but for ǫ = 0.8 there is a
transition at r ≈ 0 where some the oscillators start unlocking,
with those having largest ω0 unlocking first. Note that this is not
a “classical” bifurcation, as the system is not at fixed point before
this transition. However, solving the reduced Equations (51) we
find that there is a stable fixed point to the left of the red curve
in Figure 15 which is destroyed in a Hopf bifurcation, leading
to periodic and then quasiperiodic behavior as r is increased.
Thus the reducedmodel provides an explanation for the observed
behavior of the full model (1).

The results in Figure 15 are an example of the types of
results we can obtain using the framework presented here. We
could vary parameters other than ǫ, or introduce assortativity
by another intrinsic parameter, β . In this case we would have to
use a different measure of correlation between the β values for
connected oscillators, as β is an angular variable (Fisher and Lee,
1983).

FIGURE 15 | Difference between the maximum of |Z| over the last 50 time

units out of 100 and the minimum, having already discarded the first 50 as

transient. p(ω0) is uniform on [0, 2]. The red curve shows the Hopf bifurcation

of the steady state of (51) which is stable to the left of this curve. Other

parameters: β = 0,1 = 0.01, 〈k〉 = 100,N = 2, 000. We use m = 20 bins to

calculate the blue curve.
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7. CONCLUSION

We studied large directed networks of Winfree oscillators under
the assumption that the expected dynamics of an oscillator
in such a network is determined by its degree: either its in-
degree, out-degree, or both (apart from the homogenous degree
networks in section 6). Using the Ott/Antonsen ansatz we find
that the dynamics are given by Equation (11). Correlations
between the in- and out-degree of an oscillator were introduced
using a Gaussian copula in section 3, where we investigated the
influence of these correlations on the position of bifurcations
destroying stable periodic orbits. In section 4, we investigated
four types of degree assortativity, as in Bläsche et al. (2020), and
found similar results, viz. two types of assortativity have no effect
on the network dynamics, while the other two do. Correlations
between an oscillator’s intrinsic parameter and either its in- or
out-degree were examined in section 5. Parameter assortativity
was considered in section 6. The framework presented here is
quite general, and we believe it to be a powerful method for
investigating the general issue of the influence of a network’s
structure on its dynamics.

The main tool used was numerical continuation and
bifurcation analysis of a large number of coupled ODEs (Laing,
2014), which enabled the determination of bifurcation points as
parameters were varied—including correlations between various
network properties. Following such bifurcations shows the
influence of network properties in their dynamics.

The influence of these correlations and assortativities on
network synchrony is complex, nuanced, and multi-faceted.
Introducing degree correlations within oscillators subtly shapes
sensitivity of the network to oscillator parameters such as
variability of intrinsic frequencies, 1, and coupling strength,
ǫ. Assortativities between the degrees of connected oscillators
can have similar effects for in-degree correlations—r(in,·)—or
none at all—r(out,·). More dramatically, for the parameters
considered, inducing correlations between oscillator degree (in or
out) and intrinsic frequency, ω, destroys oscillatory synchrony.
Similarly, if the degree and phase offset, β , are correlated,
this may cause or destroy synchronized oscillations. The theme
continues with assortativities between intrinsic frequencies,
where if they are excessively assortative, oscillators in the network
unlock from the population—requiring a higher coupling level
to stay locked. Conversely, correlating an oscillator’s degree with
the width of the distribution from which its intrinsic frequency is
chosen, 1, has little effect.

Network structure such as preferential attachment between
similar (or dissimilar) oscillators and the influence we have
observed here in idealized systems may reflect structural
influences in physiological networks of neurons. Intrinsic

connectivity preferences observed of neurons grown in culture—
e.g., similar numbers of synaptic or dendritic processes
connected to each other in groups—results in strong assortativity
patterns (de Santos-Sierra et al., 2014; Teller et al., 2014) further
inferred in the human cerebral cortex (Hagmann et al., 2008).
Our observations of network structure influencing the overall
synchrony of a network may be a structural means of calibrating
the dynamics of physiological neurons.

Regarding section 5, correlating degree with intrinsic
frequency is known to cause explosive synchronization,
characterized by bistability between asynchronous and partially
synchronized states, in undirected networks of Kuramoto phase
oscillators (Gómez-Gardeñes et al., 2011; Liu et al., 2013). We
did not observe such behavior but we only considered uniform
degree distributions (not power law; Gómez-Gardeñes et al.,
2011; Liu et al., 2013) and have directed connections, not
undirected. Also, there are many ways to correlate an intrinsic
parameter with a degree (Skardal et al., 2013); our form of
modification keeps the parameter for nodes with mean degree
the same and increases/decreases the parameter for those with
degrees above/below mean (or vice versa) in a linear way.

We certainly do not yet have a full understanding of the
possible dynamics of the network (1). Possible extensions of
the work here include simultaneously having more than one
type of structure present in the network (for example, both
within-oscillator degree correlations and degree assortativity) or
correlating an oscillator’s intrinsic parameter with some other
network property such as the oscillator’s centrality (Newman,
2018) or local clustering coefficient (Watts and Strogatz, 1998).
More detailed knowledge about the connectivity in networks
of neurons of interest would provide motivation to study these
extensions, and help verify some of our results.
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