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Abstract 

Background:  Although, in daily living, almost all stair ambulation is conducted posterior to level walking, or vice 
versa, there are only a few studies related to the transition compared to the studies on steady-state stair walking.

Furthermore, neuromotor control in the instant of the transition is different from that of the steady-state stair walking. 
However, there are only a few studies investigating the transition from level walking to stair ascent in the elderly by 
comparing with young adults, and there is no study on the assistance of the transition movement in the elderly who 
are experiencing neurophysiological changes.

Thus, this pilot study aimed to compare the flat surface-to-stair ascent transition by the elderly to that seen in young 
adults, and to investigate how vibrotactile somatosensory stimulus (VSS), which has a positive effect on muscle per-
formance and gait, affects the transition tasks in elderly people.

Results:  In the first half of the stance phase, the elderly exhibited a higher moment and power of the hip extensor 
and a less moment and power of the knee extensor compared with young adults. In the second half of the stance 
phase, positive plantar-flexor power and support moment was higher in the elderly. In addition, during the single-
limb support phase, dorsiflexion was maintained in the elderly, whereas young adults appeared to have decreased 
dorsiflexion.

When the VSS was applied, the moment and power of the hip extensor, the plantar-flexor moment, and the support 
moment in the entire of the stance phase were increased. In addition, it was found that the degree of the kinetics 
parameters was different depending on the frequencies of the VSS.

Conclusions:  This pilot study has revealed evident biomechanical differences between elderly people and young 
adults during the transition from level walking to stair ascent. Additionally, it has shown that the VSS may accentuate 
the features of the transition movement of the elderly and regulate joint kinetics. The results of the present pilot study 
can provide a base for further research and understanding of movement, which can be utilized in designing assis-
tance aids for the elderly.
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Background
Ascending and descending the stairs is a more compli-
cated movement than level walking, given the effect of 
gravity on the body and the specifications of the stairs. 
Hence, stair ambulation will be a challenging task for 
the elderly who experience neurophysiological changes, 
causing a decrease in muscle strength, reaction speed, 
and cognitive processing ability. For these reasons, 
stair negotiation by the elderly has been investigated by 
numerous studies and well documented [1–12].

In daily living, stair walking is mostly performed 
before or after level walking. However, participants 
in previous studies were asked to initiate walking the 
stairs from a static upright posture in front of the stair-
case. That is, former studies did not consider a realis-
tic stair walking performed in daily living. In addition, 
most studies have focused on steady-state stair ascent 
and descent. Actually, we must face an instant of the 
transition from flat ground walking to stair ascent or 
descent.

It was reported that the transition requires adjustments 
in control of motion before the subjects set into a steady-
state that continues over the following steps [7]. In other 
words, there will be another difference because the tran-
sition from level walking to stair walking, or vice versa, is 
accompanied by task recognition, gait strategy design for 
successful transition, and changes in movement modal-
ity. But, the transition is not fully investigated, while the 
steady-state stair walking has been much examined and 
well understood. Further, there are few studies to assist 
stair walking of the elderly.

There are a few studies investigated the transition 
from level walking to stair walking. Vallabhajosula et al. 
[13, 14] investigated the transition from level walking 
to stair climbing, and they reported the differences in 
joint kinetics (i.e., moment and power) between transi-
tion and steady state stair climb. However, the partici-
pants of their study were only young adults. Singhal et al. 
[15] investigated joint kinetics at the instant of transition 
from walking on flat ground to going down stairs for the 
elderly, but their results were about gender differences. 
Alcock et  al. [16] reported that biomechanical differ-
ences between the 2-step transitioning and continuous 
stair ascent in older women. Carli et  al. [17] compared 
only ground reaction force during the floor-to-stair tran-
sition gait in the elderly.

Although the transition movements are being inves-
tigated, the number of studies is limited compared to 

studies investigating steady-state stair ambulation. More-
over, there are no studies that have revealed the charac-
teristics of the elderly by comparing it to that of young 
adults. To assist stair walking in the elderly who experi-
ence neurophysiological changes, it is important to reveal 
their characteristics in comparison with young adults. 
In addition, as mentioned earlier, the elderly experience 
neurophysiological weakness due to aging, and stair 
walking is a complex task. Therefore, a proof of con-
cept study related to the support of stair walking for the 
elderly is needed. Hence, it is important to apply a means 
that can support and investigate its effect.

In this study, the transition from level walking to 
stair ascent was targeted, and vibrotactile somatosen-
sory stimulus (VSS) was applied as a means of support-
ing during the transition movement. The VSS has been 
found to have various advantages through many stud-
ies. The VSS is the applying mechanical vibration to ini-
tially relaxed skeletal muscle or its tendon [18]. It was 
reported that involuntary enhancement of electromyo-
gram (EMG) and muscle contraction strength is induced 
when mechanical vibration is applied [19]. Based on 
those results, positive influence of the VSS on muscle 
performance, strength, and power [20–23], effects on 
gait control [24, 25], and implications for rehabilitation 
[26] had been investigated. Therefore, the VSS could be 
utilized as a means to assist the transition from level 
walking to stair ascent of the elderly.

Thus, the present pilot study aimed to reveal the char-
acteristics of level walking-to-stair ascent transition in 
the elderly by comparing it to young adults, and to inves-
tigate the effects of the VSS on the transition movement, 
and to discuss the VSS as a means to assist the transition 
movement.

Methods
Participants
To investigate the characteristics of transition move-
ment in the elderly, young adults and older adults over 
65 aged were recruited. A total of fifteen young adults 
(age: 25.5 ± 1.5 years old, height: 173.2 ± 2.6 cm, weight: 
72.4 ± 4.4 kg) and ten elderly (age: 76.0 ± 1.7 years old, 
height: 166.7 ± 3.7 cm, weight: 68.0 ± 5.5 kg) participated 
in the study. Participants in the present study are the 
same as those in Peter et al., our previous study [27]. All 
participants had no musculoskeletal diseases, and were 
free from any neuro-physiological diseases, and could 
perform the level walking and stair climbing without any 

Trial registration:  CRIS, KCT00​05434, Registered 25 September 2020, Retrospectively registered.
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assistance. All participants provided written informed 
consent prior to conducting and participating in this 
study. The present study was approved by the Institu-
tional Review Board of Jeonbuk National University (IRB 
File No. JBNU 2017–03–011-001).

Vibrotactile somatosensory stimulus
To apply the VSS during the transition movement, small 
linear actuators (DMJBRN0934AA, Samsung Electro-
Mechanics Co., Ltd., Korea) were attached to four tar-
geted sites as follows: tibialis tendon, Achilles tendon, 
quadriceps femoris tendon, and biceps femoris tendon as 
shown in Fig. 1.

To regulate the frequency and intensity of the VSS, a 
function generator (AFG-2125, Good Will Instrument 
Co., Ltd., Taiwan) was used. In our previous studies [28, 
29], the vibrotactile perception threshold in the range 
of 100 Hz to 300 Hz, where the skin mechanoreceptor 
is sensitive [30], was measured. As a result, 190 Hz was 
most sensitive, 180 Hz was similar to 190 Hz, and per-
ception threshold rapidly increased at 200 Hz. Based on 
these results, frequencies of 180 Hz, 190 Hz, and 250 Hz 
were used in the present study so that the VSS conditions 
consisted of non-stimulus (NS, i.e., without the VSS), 
180 Hz, 190 Hz, and 250 Hz.

The VSS intensity was 80% of the vibrotactile percep-
tion threshold. It has been reported that the response of 
the central nervous system appears below the perception 
threshold level [31, 32], and that intensity upper percep-
tion threshold can cause discomfort or instability of pos-
tural balance [33, 34].

Materials and instrumentation
To capture the transition movement, a 3-D marker-based 
motion capture system, which is considered the standard 
method of movement analysis [35], was used. Infrared 
light-emitting diodes (Smart marker, Northern Digital 
Inc., Canada) were placed according to the motion mod-
ule marker guide (MusculoGraphics, Inc., USA) as shown 
in Fig. 2.

A total of three position sensors (Optotrak Certus, 
Northern Digital Inc., Canada) and four force plates 
(Bertec Corp., USA) were used to record participants’ 
movement and ground reaction force. Custom-built 
wooden staircase, as shown in Fig. 3, was used.

Procedure
All participants walked 3 m on a flat ground walkway at 
a self-selected speed before stair climbing, and then they 
continued to perform stair climbing without stopping. 
They completed a given task three times for each VSS 
condition. All the VSS conditions were applied randomly 
during the given task.

Data analysis
All kinematics (i.e. joint angle) and kinetics (i.e. joint 
moment and joint power) of the lower extremity joints 
(i.e. hip, knee, and ankle) were calculated using the soft-
ware for Interactive Musculoskeletal Modeling (SIMM, 
MusculoGraphics Inc., USA), and support moment was 
calculated according to Winter [36]. Joint moment, 
support moment, and joint power were normalized to 
the participants’ body weight, and the duration from 

Fig. 1  Example of linear actuators attachment
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the toe-off to the toe-off of the ipsilateral leg was nor-
malized from 0 to 100%.

Profiles of joint angle, moment, and power for each 
participant derived during the three trials for each VSS 
condition were ensemble-averaged. Then, to derive a 
grand ensemble for the VSS conditions, ensemble-aver-
aged profiles were ensemble averaged.

To examine the features of the transition movement 
of the elders, ensemble-averaged profiles are shown in 
Fig. 4. In addition, grand ensemble-averaged profiles are 
presented in Fig.  5 to investigate the effects of the VSS 
on the transition from level walking to stair ascent in the 
elderly. Peak joint angles, means of joint moment, sup-
port moment, and joint power in a specific period are 

Fig. 2  Placement of infrared light-emitting diodes

Fig. 3  Custom-built wooden staircase used in the present study
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presented in Tables 1, 2, 3 and 4 to determine the effects 
of the frequency of the VSS.

Statistical analysis
Peak joint angles, means of joint moment, support 
moment, and joint power were tested for normality using 
the Shapiro-Wilk test. Paired t-test and Wilcoxon signed 
rank test were used to test the effect difference between 
each frequency of the VSS. The statistical significance 
level was set at α < 0.05. Statistical analyses were con-
ducted using SPSS Statistics version 20 (IBM, USA).

Results
Kinematics and kinetics in the young adults and the elderly 
during transitioning from flat ground to stair ascent
Joint profiles of biomechanics in the young vs. elderly 
males during transition from level walking-to-stair ascent 
are illustrated in Fig. 4.

In the early swing phase, the elderly showed greater 
dorsiflexion (AA_1) than that of the young, followed by 
greater hip joint flexion (HA_1). In the terminal swing 
phase, more extension of the ankle joint appeared in the 
elderly males.

Distinct differences in joint biomechanics of the two 
groups were observed during the stance phase (after 
33% of the gait cycle). During the stance phase, the 
elderly showed greater flexion in the hip joint com-
pared to the young adults. For the ankle joint, particu-
larly, constantly decreasing dorsiflexion appeared in 
young adults; however, in the elderly, dorsiflexion was 
first sustained and then increased, followed by a rapid 
decrease. Compared with the young group, larger hip 
extensor moment and larger hip joint positive power, 
smaller knee extensor moment and smaller knee joint 
positive power, and larger peak plantar-flexor posi-
tive power appeared in the elderly. Similar results were 
also obtained for the support moment. Peak support 
moment was small in the first half of the stance phase, 
whereas a large support moment appeared in the sec-
ond half of the stance phase.

Changes in the joint profiles when VSS was applied
When the VSS was applied, joint biomechanics were 
affected, as shown in Fig.  5. For the joint angle, knee 

flexion was decreased and dorsiflexion was increased in 
the swing phase, whereas both knee flexion and dorsi-
flexion were increased in the stance phase. For the joint 
moment, an increase in hip extensor moment at the 
early stance phase then an increase in the plantar-flexor 
moment and a reduction in knee flexor moment were 
observed. For the joint power, both hip extensor positive 
power and plantar-flexor negative power were increased. 
Support moment was increased in all stance phases.

Changes dependent on the frequency of the VSS
Significant changes depending on the frequency of the 
VSS are presented in Tables 1, 2, 3 and 4.

HA_1 without applying the VSS was 67.8 ± 4.1 deg. 
When the VSS was applied, HA_1 at 180 Hz, 190 Hz, 
and 250 Hz was 66.6 ± 3.8 deg., 67.2 ± 3.8 deg., and 
67.4 ± 3.3 deg., respectively, with no differences between 
frequencies (all p > 0.05). Likewise, the second peak hip 
flexion angles (HA_2) for the NS condition, 180 Hz, 
190 Hz, and 250 Hz were 4.9 ± 5.1 deg., 7.3 ± 3.5 deg., 
5.9 ± 4.8 deg., and 6.3 ± 5.1 deg., respectively. There 
were no substantial differences between frequencies (all 
p > 0.05).

The first peak angle of the knee joint (KA_1) decreased 
when the VSS was applied except in the case of 250 Hz. 
KA_1 during the NS was 94.6 ± 4.3 deg., and in the case 
of 180 Hz, and 190 Hz stimulation was 91.0 ± 7.1 deg. 
(95% CI: 0.89–6.34, p = 0.015), and 92.0 ± 8.5 deg. (95% 
CI: 0.88–5.34, p = 0.044), respectively. The last flexion 
angle of the knee joint (KA_3) was 18.1 ± 5.4 deg. with-
out the VSS. KA_3 increased significantly, when the VSS 
was applied. KA_3 was 21.3 ± 4.6 deg. at the 180 Hz (95% 
CI: − 5.33- -1.06, p = 0.008), 20.6 ± 5.6 deg. at the 190 Hz 
(95% CI: − 4.28- -0.71, p = 0.012), and 20.4 ± 5.7 deg. at 
the 250 Hz (95% CI: − 4.19- -0.32, p = 0.027).

AA_1 was 15.3 ± 3.4 deg. for the 180 Hz condition, 
15.4 ± 3.7 deg. for the 190 Hz, and 15.2 ± 3.6 deg. for the 
250 Hz, which was significantly greater than that of the 
NS condition (12.6 ± 3.5 deg., all p < 0.05). However, there 
was no significant difference between frequencies (all 
p > 0.05). The last ankle dorsiflexion peak (AA_4) of the 
NS was 24.1 ± 3.2 deg.. When the VSS was applied, AA_4 
increased except at the 250 Hz stimulation. In the case 
of 180 Hz, and 190 Hz, AA_4 was 26.4 ± 2.4 (p = 0.017), 
and 25.6 ± 2.4 (p = 0.045), respectively. In particular, 
there was a significant difference between the 180 Hz 

Fig. 4  Profiles of lower-limb joints in both groups during transition from level walking to stair ascent. A Hip joint angle; B Knee joint angle; C Ankle 
joint angle; D Hip joint moment; E Knee joint moment; F Ankle joint moment; G Hip joint power; H Knee joint power; I Ankle joint power; J Support 
moment; For the joint angle, (+) indicates joint flexion and (−) indicates joint extension; For the joint moment, (+) indicates joint flexor moment 
and (−) indicates joint extensor moment; For the support moment, (+) indicates sum of extensor moments of the lower-limb joints; HA: Hip joint 
angle; KA: Knee joint angle; AA: Ankle joint angle; HM: Hip joint moment; KM: Knee joint Moment; AM: Ankle joint moment; HP: Hip joint power; KP: 
Knee joint power; AP: Ankle joint power; SM: Support moment

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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and the 250 Hz conditions (180 Hz: 26.4 ± 2.4 vs. 250 Hz: 
25.0 ± 2.4, p = 0.003).

Concerning the joint moment, the HFM_1 increased 
in all the VSS conditions. The HFM_1 without the 
VSS was 0.093 ± 0.048 Nm/kg. In the case of 180 Hz, 
190 Hz, and 250 Hz stimulus, it was 0.114 ± 0.045 Nm/
kg, 0.109 ± 0.045 Nm/kg, and 0.111 ± 0.043 Nm/kg (all 
p < 0.001), respectively. In addition, significant differences 
were observed between 180 Hz stimulus and both 190 Hz 
(Z-value: − 3.855, p < 0.001) and 250 Hz (Z-value: − 2.676, 
p = 0.007) stimuli.

Similarly, the HFM_2 increased when the VSS 
was applied. The HFM_2 during the NS condition 
was 0.134 ± 0.069 Nm/kg, and in the case of 180 Hz, 
190 Hz, and 250 Hz stimulus was 0.167 ± 0.064 Nm/kg, 
0.174 ± 0.063 Nm/kg, and 0.153 ± 0.078, respectively (all 
p < 0.05). Additionally, significant differences were found 
between 250 Hz stimulus and both 180 Hz (Z-value: 
− 2.201, p = 0.016) and 190 Hz (Z-value: − 2.201, 
p = 0.004) stimuli.

The mean moment of the hip extensor (HEM) was 
− 0.513 ± 0.299 Nm/kg in the case of NS. When the 
VSS was applied, HEM increased significantly in com-
parison to the NS. HEM was − 0.544 ± 0.317 Nm/kg at 
180 Hz (Z-value − 6.331, p < 0.001), − 0.560 ± 0.322 Nm/
kg at 190 Hz (Z-value: − 5.632, p < 0.001), 
and − 0.549 ± 0.318 Nm/kg at 250 Hz (Z-value: − 5.897, 
p < 0.001) stimulus. Significant differences between fre-
quencies did not appear (all p > 0.05).

KEM decreased significantly during VSS application 
compared to the NS except in the case of 250 Hz. KEM 
without applying the VSS was − 0.406 ± 0.218 Nm/kg. 
KEM at 180 Hz, and 190 Hz was − 0.384 ± 0.243 Nm/
kg (Z-value: − 4.462, p < 0.001), and − 0.397 ± 0.230 Nm/
kg (Z-value: − 2.659, p = 0.008), respectively. There 
was a significant difference between all stimulus con-
ditions. KEM changed from − 0.384 ± 0.243 Nm/kg at 
180 Hz to − 0.397 ± 0.230 Nm/kg at 190 Hz (Z-value: 
− 4.544, p < 0.001) and to − 0.404 ± 0.225 at 250 Hz 
(Z-value: − 4.991, p < 0.001). The change between 190 Hz 
and 250 Hz was significant as well (Z-value: − 3.861, 
p < 0.001).

For KFM_2, when the VSS applied the value 
decreased significantly. KFM_2 in the case of NS was 
0.111 ± 0.048 Nm/kg; 0.080 ± 0.029 at 180 Hz (95% CI: 

0.02–0.05, p = 0.001); 0.083 ± 0.028 at 190 Hz (95% CI 
0.02–0.05, p = 0.02) and 0.055 ± 0.023 at 250 Hz (95% CI: 
0.04–0.08, p < 0.001).

Similar to KEM, there were significant difference 
between all VSS conditions. Between 180 Hz and 
190 Hz KFM_2 changed from 0.080 ± 0.029 Nm/kg to 
0.083 ± 0.028 Nm/kg (95% CI: − 0.004- -0.001, p = 0.003); 
between 180 Hz and 250 Hz from 0.080 ± 0.029 Nm/
kg to 0.055 ± 0.023 (95% CI: 0.02–0.03, p < 0.001) and 
between 190 Hz and 250 Hz from 0.083 ± 0.028 Nm/kg to 
0.055 ± 0.023 (95% CI: 0.02–0.03, p < 0.001).

When the VSS applied, AEM increased significantly. 
Compared to the NS (− 0.465 ± 0.361 Nm/kg), AEM at 
180 Hz, 190 Hz, and 250 Hz was − 0.568 ± 0.359 Nm/
kg (Z-value: − 4.598, p < 0.001), − 0.597 ± 0.361 Nm/kg 
(Z-value: − 5.261, p < 0.001), and − 0.553 ± 0.351 (Z-value: 
− 4.454, p < 0.001), respectively. In addition, there was a sig-
nificant difference between all frequencies. Between 180 Hz 
and 190 Hz AEM changed from − 0.568 ± 0.359 Nm/kg 
to − 0.597 ± 0.361 Nm/kg (Z-value: − 3.689, p = 0.015); 
between 180 Hz and 250 Hz from − 0.568 ± 0.359 Nm/kg 
to − 0.553 ± 0.351 Nm/kg (Z-value: − 3.486, p < 0.001) and 
between 190 Hz and 250 Hz from − 0.597 ± 0.361 Nm/kg to 
− 0.553 ± 0.351 Nm/kg (Z-value: − 4.302, p < 0.001).

SM without the VSS was 0.446 ± 0.189 Nm/kg. When 
the VSS of 180 Hz, 190 Hz, and 250 Hz was applied, SM 
increased to 0.481 ± 0.195 Nm/kg (Z-value: − 5.785, 
p < 0.001), 0.484 ± 0.202 (Z-value: − 5.847, p < 0.001), and 
0.473 ± 0.195 (Z-value: − 5.354, p < 0.001), respectively. 
In addition, there was a significant difference between 
all frequencies (180 Hz vs. 190 Hz, Z-value: − 2.643, 
p = 0.008; 180 Hz vs. 250 Hz, Z-value: − 4.916, p < 0.001; 
190 Hz vs. 250 Hz, Z-value: − 5.696, p < 0.001).

HPP_1 increased when applying the VSS of 190 Hz 
and 250 Hz. HPP_1 for the NS was 0.787 ± 0.532 W/kg. 
HPP_1 at the 190 Hz and 250 Hz was 0.851 ± 0.595 W/
kg (Z-value: − 5.782, p < 0.001) and 0.837 ± 0.604 W/
kg (Z-value: − 4.846, p < 0.001), respectively, which was 
statistically different from the 180 Hz stimulus. In case 
of the 180 Hz vs. 190 Hz, HPP_1 was 0.786 ± 0.584 vs. 
0.851 ± 0.595 (Z-value: − 4.710, p < 0.001) and in case 
of the 180 Hz vs. 250 Hz was 0.786 ± 0.584 W/kg vs. 
0.837 ± 0.604 W/kg (Z-value: − 6.463, p < 0.001).

KNP had a statistically significant tendency to decrease. 
KNP was − 0.170 ± 0.119 W/kg in the case of NS, while 

(See figure on next page.)
Fig. 5  Profiles of the elderly during transition from level walking to stair ascent upon VSS application. A Hip joint angle; B Knee joint angle; C Ankle 
joint angle; D Hip joint moment; E Knee joint moment; F Ankle joint moment; G Hip joint power; H Knee joint power; I Ankle joint power; J Support 
moment; For the joint angle, (+) indicates joint flexion and (−) indicates joint extension; For the joint moment, (+) indicates joint flexor moment 
and (−) indicates joint extensor moment; For the support moment, (+) indicates sum of extensor moments of the lower-limb joints; Arrows 
represent change by the VSS; HFM: Hip flexor moment; HEM: Hip extensor moment; KFM: Knee flexor moment; KEM: Knee extensor moment; AEM: 
Ankle extensor moment; HPP: Hip positive power; KNP: Knee negative power; KPP: Knee positive power; ANP: Ankle negative power; APP: Ankle 
positive power; SM: Support moment
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Fig. 5  (See legend on previous page.)
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at 180 Hz it was − 0.141 ± 0.091 W/kg (Z-value: − 2.688, 
p = 0.007) and − 0.141 ± 0.092 W/kg at 190 Hz (Z-value: 
− 2.427, p = 0.015). There was no significant difference 
between the 250 Hz stimulus and the NS conditions, 
whereas the 250 Hz condition showed a significant dif-
ference from both the 180 Hz and 190 Hz. In the case 
of 250 Hz vs. 180 Hz the value was − 0.154 ± 0.102 W/
kg vs. -0.141 ± 0.091 W/kg (Z-value: − 3.584, p < 0.001), 
and in the case of 250 Hz vs. 190 Hz the value was 

− 0.154 ± 0.102 W/kg vs. -0.141 ± 0.092 W/kg (Z-value: 
− 2.28, p = 0.006).

ANP increased in all of stimulus conditions. ANP 
during the NS was − 0.135 ± 0.090 W/kg, and in 
the case of 180 Hz, 190 Hz, and 250 Hz stimulation 
was − 0.214 ± 0.138 (95% CI: 0.05–0.13, p < 0.001), 
− 0.222 ± 0.1137 (95% CI: 0.06–0.11, p < 0.001), 
and − 0.197 ± 0.126 (95% CI: 0.04–0.08, p < 0.001), 
respectively. In addition, there was a significant 

Table 1  Peak joint angle parameters depending on the frequency of the VSS in the elderly

Mean ± Standard deviation, Unit: Degree, CI Confidence interval, t-value paired t-test
*  indicates significant difference between Non-Stimulus and Stimulus (p < 0.05)
a  indicates significant difference from 180 Hz stimulus (p < 0.05)
b  indicates significant difference from 190 Hz stimulus (p < 0.05)
c  indicates significant difference from 250 Hz stimulus (p < 0.05)

Elderly
Non-Stimulus

Elderly
180 Hz Stimulus

Elderly
190 Hz Stimulus

Elderly
250 Hz Stimulus

HipJointAngle HA_1 67.8 ± 4.1 66.6 ± 3.8 67.2 ± 3.8 67.4 ± 3.3

95% CI [− 0.26, 2.64] [−0.82, 2.07] [− 0.88, 1.74]

t-value* 1.85 0.98 0.74

p value* 0.098 0.353 0.480

HA_2 4.9 ± 5.1 7.3 ± 3.5 5.9 ± 4.8 6.3 ± 5.1

95% CI [−5.81, 1.05] [−2.41, 0.39] [−3.28, 0.39]

t-value* −1.57 −1.63 − 1.79

p value* 0.151 0.137 0.108

KneeJointAngle KA_1 94.6 ± 4.3 *91.0 ± 7.1 *92.0 ± 8.5 92.9 ± 8.5

95% CI [0.89, 6.34] [0.88, 5.34] [−1.21, 4.70]

t-value* 3.022 2.34 1.34

p value* 0.015 0.044 0.214

KA_2 68.1 ± 2.9 68.3 ± 2.2 69.6 ± 3.3 69.3 ± 3.6

KA_3 18.1 ± 5.4 *21.3 ± 4.6 *20.6 ± 5.6 *20.4 ± 5.7

95% CI [−5.33, −1.06] [−4.28, −0.71] [−4.19, −0.32]

t-value* −3.39 −3.16 −2.64

p value* 0.008 0.012 0.027

AnkleJointAngle AA_1 12.6 ± 3.5 *15.3 ± 3.4 *15.4 ± 3.7 *15.2 ± 3.6

95% CI [−4.62, −0.75] [−5.51, − 0.02] [− 5.11, − 0.03]

t-value* −3.14 −2.28 − 2.29

p value* 0.012 0.049 0.048

AA_2 28.6 ± 2.8 28.3 ± 3.2 28.3 ± 3.1 28.0 ± 2.8

AA_3 18.2 ± 4.0 18.3 ± 5.1 19.3 ± 4.7c 18.1 ± 5.3b

95% CIa,b,c – [0.03, 2.30] [0.03, 2.30]

t-valuea,b,c – 2.32 2.32

p valuea,b,c – 0.045c 0.045b

AA_4 24.1 ± 3.2 *26.4 ± 2.4 *25.6 ± 2.4 25.0 ± 2.4a

95% CI* [−3.97, −0.50] [2.95, −0.04] [−2.82, 0.97]

t-value* −2.91 −2.33 −1.10

p value* 0.017 0.045 0.298

95% CIa,b,c [0.58, 2.03] – [0.58, 2.03]

t-valuea,b,c 4.07 – 4.07

p valuea,b,c 0.003c – 0.003a
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difference between 190 Hz and 250 Hz (95% CI: − 0.04 
- -0.01, p = 0.004) stimuli.

Discussion
The present pilot study has examined the transition 
from level walking-to-stair ascent of the elderly by com-
paring with young adults and investigated the effect of 

the VSS on the transition movement in the elderly and 
the changes that occur depending on the frequency of 
the VSS.

Participants in the present study are the same as in 
our previous study [27]. Our previous study [27] exam-
ined the influence of local tendon vibration on postural 
sway during sit-to-stand movement, whereas the present 

Table 2  Joint moments depending on the frequency of the VSS in the elderly

Mean ± Standard deviation, Unit: N∙m/kg (Newton meters/kilogram), +: Flexor moment, −: Extensor moment

CI Confidence interval,  t-value paired t-test, Z-valueWilcoxon signed rank test

* indicates significant difference between Non-Stimulus and Stimulus (p < 0.05)
a  indicates significant difference from 180 Hz stimulus (p < 0.05)
b  indicates significant difference from 190 Hz stimulus (p < 0.05)
c  indicates significant difference from 250 Hz stimulus (p < 0.05)

Elderly
Non-Stimulus

Elderly
180 Hz Stimulus

Elderly
190 Hz Stimulus

Elderly
250 Hz Stimulus

HipJointMoment HFM_1 0.093 ± 0.048 *0.114 ± 0.045bc *0.109 ± 0.045 a *0.111 ± 0.043a

Z-value* −5.012 −5.012 − 5.012

p value* p < 0.001 p < 0.001 p < 0.001

Z-valuea,b,c – −3.855 −2.676

p valuea,b,c – p < 0.001a 0.007a

HEM −0.513 ± 0.299 *-0.544 ± 0.317 *-0.560 ± 0.322 *-0.549 ± 0.318

Z-value* −6.331 −5.632 −5.897

p value* p < 0.001 p < 0.001 p < 0.001

HFM_2 0.134 ± 0.069 *0.167 ± 0.064 *0.174 ± 0.063 *0.153 ± 0.078ab

Z-value* −2.201 −2.201 −2.197

p value* 0.028 0.028 0.028

Z-valuea,b,c −2.201 −2.201 –

p valuea,b,c 0.016c 0.004c –

KneeJointMoment KFM_1 0.061 ± 0.043 0.060 ± 0.035 0.061 ± 0.035c 0.058 ± 0.035b

Z-valuea,b,c – −2.150 −2.150

p valuea,b,c – 0.032c 0.032b

KEM −0.406 ± 0.218 *-0.384 ± 0.243bc *-0.397 ± 0.230ac −0.404 ± 0.225ab

Z-value* −4.462 −2.659 −1.575

p value* p < 0.001 0.008 0.115

Z-valuea,b,c −4.544 −3.861 − 4.991

p valuea,b,c p < 0.001b p < 0.001c p < 0.001a

KFM_2 0.111 ± 0.048 *0.080 ± 0.029bc *0.083 ± 0.028ac *0.055 ± 0.023ab

95% CI [0.02, 0.05] [0.02, 0.05] [0.04, 0.08]

t-value* 4.49 4.15 6.49

p value* 0.001 0.002 p < 0.001

95% CIa,b,c [−0.004, − 0.001] [0.02, 0.03] [0.02, 0.03]

t-valuea,b,c −3.81 11.92 10.49

p valuea,b,c 0.003b p < 0.001c p < 0.001a

AnkleJointMoment AEM −0.465 ± 0.361 *-0.568 ± 0.359bc *-0.597 ± 0.361ac *-0.553 ± 0.351ab

Z-value* −4.598 −5.261 −4.454

p value* p < 0.001 p < 0.001 p < 0.001

Z-valuea,b,c −3.689 −4.302 − 3.486

p valuea,b,c 0.015b p < 0.001c p < 0.001a
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study investigated the effect of the vibrotactile soma-
tosensory stimulus on neuromotor control of the transi-
tion movement from level walking-to-stair ascent. That 
is, the topic, measure and analysis methods, the analyzed 
parameters and the motion in each study are different.

During the transition movements, in the first half of 
the stance, the elderly presented a higher function of the 
hip extensor to pull up compared to young adults. In the 
second half of the stance, dorsiflexion and plantar-flexor 
moment and power to the push-up was higher in the 
elderly than the young adults. When the VSS was applied, 
those results were further developed. The hip extensor 
function for the pull-up and the plantar-flexor function 
for the push-up increased. Consequentially, the extensor 
function of the lower extremity (i.e., support moment) 
increased during the entire stance phase. In addition, 
joint moment and power during the single-limb support 
phase were affected by the change in frequency of the 
VSS.

Features of the transition from level walking to stair ascent 
in the elderly
In the early swing phase, compared with young adults, 
the elderly showed higher dorsiflexion (AA_1), followed 
by higher hip flexion (HA_1) and dorsiflexion (AA_2). 
This could be the modality to pass a step of the staircase 
safely. In other words, it may be a strategy to ensure toe-
clearance to prevent tripping over the staircase.

After that, lower dorsiflexion (AA_3) appeared in the 
elderly compared to young adults. It is possibly being 
used to clearly land the foot on the staircase through 
more ankle extension than the young adults. Conse-
quently, ankle extension induces smooth foot landing, 
resulting in a decreasing impact force from the step dur-
ing the weight acceptance.

In the stance phase, both groups used dominantly 
the extensor of the hip and knee joint to the lift body. 
However, the modality of use was opposite between the 
two groups. The elderly predominantly used hip exten-
sor, whereas the young adults used the knee extensor. 
This can be attributed to weakness of the quadriceps 
femoris. It is a well-known fact that the elderly have 
lower muscle strength in the lower extremity compared 
with young adults. In particular, Hortobágyi et  al. 
[37] reported that older adults had 60% lower maxi-
mal leg press moments compared with young adults. 
Due to this, the support moment could appear low in 
the elderly (SM_1). This could induce more activity of 
the hip extensor to compensate for the weakened knee 
extensor, and in the case of the plantar-flexor, it con-
tributes to some compensation. These features could 
provide a clinical reference for training the quadricep 
muscles in the elderly.

Although joints of the hip and knee extended continu-
ously in both groups, dorsiflexion decreased by plantar-
flexor activity (AP_1) in young adults, whereas it was 
sustained in the elderly. This may be a strategy of the 
elderly to ensure stability while ascending the stairs. First, 
sway of the shank can be minimized by fixing the ankle 
joint. Second, if the ankle joint is extended, the position 
of the center of mass (COM) increases, which may cause 
postural instability due to COM acceleration. Finally, 
knee extension that is created by pulling the shank back, 
which contributes to the forward acceleration of the 
COM, can be prevented by restricting activity of the 
plantar-flexor.

In the late stance phase, dorsiflexion and knee flex-
ion were higher in the elderly than in the young adults. 
This can contribute to a reduction in COM height, foot 
landing of the contralateral leg, and weight shift to the 

Table 3  Support moment parameters depending on the frequency of the VSS in the elderly

Mean ± Standard deviation, Unit: N∙m/kg (Newton meters/kilogram)

Z-value Wilcoxon signed rank test
*  indicates significant difference between Non-Stimulus and Stimulus (p < 0.05)
a  indicates significant difference from 180 Hz stimulus (p < 0.05)
b  indicates significant difference from 190 Hz stimulus (p < 0.05)
c  indicates significant difference from 250 Hz stimulus (p < 0.05)

Elderly
Non-Stimulus

Elderly
180 Hz Stimulus

Elderly
190 Hz Stimulus

Elderly
250 Hz Stimulus

SupportMoment SM 0.446 ± 0.189 *0.481 ± 0.195bc *0.484 ± 0.202ac *0.473 ± 0.195ab

Z-value* −5.785 −5.847 − 5.354

p value* p < 0.001 p < 0.001 p < 0.001

Z-valuea,b,c −2.643 −4.916 −5.696

p valuea,b,c 0.008b p < 0.001c p < 0.001a
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opposite leg. For this, the support moment (SM_3) 
increased more, which was attributed to the extensor 
moments of the hip and knee joints. This is a modality 
for securing energy for the subsequent push-up and com-
pensating for the weakened quadriceps femoris in the 
opposite leg.

At the end of the stance phase, the plantar-flexor posi-
tive power is greater in the elderly. This was attributed to 
the larger dorsiflexion just earlier, and was a strategy to 

counter the more flexed dorsiflexion and assist the pull-
up function of the proximal extensor of the opposite leg.

In summary, the elderly tended to use more hip 
extensors than young adults to lift the body, and to pre-
sumably ensure stability during locomotion, the exten-
sion of the ankle joint was restricted. In addition, the 
plantar-flexor power increased by increasing the flex-
ion of the distal segments, possibly to assist the pull-up 
function of the opposite leg.

Table 4  Joint power parameters depending on the frequency of the VSS in the elderly

Mean ± Standard deviation, Unit: W/kg (Watt/kilogram), CI Confidence interval

 t-value paired t-test, Z-value Wilcoxon signed rank test
*  indicates significant difference between Non-Stimulus and Stimulus (p < 0.05)
a  indicates significant difference from 180 Hz stimulus (p < 0.05)
b  indicates significant difference from 190 Hz stimulus (p < 0.05)
c  indicates significant difference from 250 Hz stimulus (p < 0.05)

Elderly
Non-Stimulus

Elderly
180 Hz Stimulus

Elderly
190 Hz Stimulus

Elderly
250 Hz Stimulus

HipJointPower HPP_1 0.787 ± 0.532 0.786 ± 0.584bc *0.851 ± 0.595a *0.837 ± 0.604a

Z-value* −1.525 −5.782 −4.846

p value* 0.127 p < 0.001 p < 0.001

Z-valuea,b,c −4.710 −0.868 −6.463

p valuea,b,c p < 0.001b 0.385c p < 0.001a

HPP_2 0.326 ± 0.193 0.323 ± 0.225c 0.328 ± 0.219c *0.395 ± 0.195ab

95% CI* [−0.08, 0.03] [− 0.09, 0.02] [− 0.15, − 0.05]

t-value* −1.23 −1.36 −4.91

p value* 0.264 0.222 0.003

95% CIa,b,c [−0.02, 0.01] [−0.09, − 0.04] [−0.11, − 0.04]

t-valuea,b,c −0.75 −6.36 −4.93

p valuea,b,c 0.480b 0.001c 0.003a

KneeJointPower KNP −0.170 ± 0.119 *-0.141 ± 0.091c *-0.141 ± 0.092c −0.154 ± 0.102ab

Z-value* −2.688 −2.427 −1.344

p value* 0.007 0.015 0.179

Z-valuea,b,c −1.792 −2.728 −3.584

p valuea,b,c 0.073b 0.006c p < 0.001a

KPP 0.689 ± 0.508 0.609 ± 0.483 *0.692 ± 0.517 *0.705 ± 0.489

Z-value* −0.198 −3.876 − 3.832

p value* 0.843 p < 0.001 p < 0.001

AnkleJointPower ANP −0.135 ± 0.090 *-0.214 ± 0.138 *-0.222 ± 0.137c *-0.197 ± 0.126b

95% CI* [0.05, 0.13] [0.06, 0.11] [0.04, 0.08]

t-value* 4.90 7.42 6.15

p value* p < 0.001 p < 0.001 p < 0.001

95% CIa,b,c – [−0.04, −0.01] [−0.04, − 0.01]

t-valuea,b,c – −3.35 −3.35

p valuea,b,c – 0.004c 0.004b

APP 1.510 ± 0.952 1.519 ± 1.021 1.410 ± 1.005c 1.598 ± 0.934b

95% CIa,b,c – [−0.14, −0.02] [−0.14, − 0.02]

t-valuea,b,c – −2.70 −2.70

p valuea,b,c – 0.019c 0.019b
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Effect of VSS on the transition from level walking to stair 
ascent in the elderly
In the swing phase, after toe-off, dorsiflexion (i.e., 
AA_1) increased, followed by a decrease in knee 
joint flexion. Toe clearance was ensured more by the 
increased dorsiflexion, and the decreased knee joint 
flexion could have contributed to control foot-landing 
by compensating for increased dorsiflexion. Conse-
quently, the VSS induced further toe clearance, result-
ing in more stable stepping and more cautious foot 
contact.

In the stance phase, the moments and positive powers 
of the hip extensor increased. This could indicate that 
the function of the hip extensor to lift-up the body was 
enhanced by the VSS and that features of the elderly 
in the pull-up phase were also developed. In addition, 
the support moments increased. Hence, the results 
indicated that VSS increased function of the body sup-
port during the single-limb support phase and contrib-
uted to the pull-up of the body by activating the hip 
extensor. Furthermore, moments of the plantar-flexor 
increased slightly during the first half of the stance 
phase, which may have contributed to an increase in 
the support moments. Consequently, VSS contributed 
to an increase in the body support function while tran-
sitioning from the double limb support stance phase to 
the single-limb support stance.

In the second half of the stance phase, an increase 
in the knee joint flexion, dorsiflexion, and support 
moments appeared; that is, the VSS possibly further 
reinforced the body support (i.e., an increase in the 
SMs and negative plantar-flexor powers) and contrib-
uted to increasing the push-up of the plantar-flexor and 
assisting the pull-up of the contralateral limb.

These results indicated that the VSS could further 
develop characteristics of the transition movement in 
the elderly. In summary as follows:

The VSS possibly ensures safer toe clearance by 
increasing dorsiflexion, enhancing lift-up function of 
the hip extensor, increasing body support during the 
single-limb support phase, and assisting in the push-up 
of the plantar-flexor and the pull-up of the contralateral 
limb.

Despite the listed effects of VSS, the duration of the 
transition can be lengthened due to the increase in 
joint flexion and support moment. With increasing 
joint flexion, more extensor activity and antagonist 
muscle activation are required to prevent lower-limb 
collapse, and to restrict joint movement, respectively. 
These are factors that increase the joint stiffness. Thus, 
future studies should include spatiotemporal variables 
and electromyography (EMG).

Parameters depending on the frequencies of the VSS
For the hip joint angle, although there were no signifi-
cant differences under non-stimulus and stimulus con-
ditions, HA_2 had a tendency to increase. For the knee 
joint angle, there was a significant difference between 
non-stimulus and stimulus in KA_1 and KA_3, despite 
no difference between frequencies. For the ankle joint 
angle, there was a statistically significant difference 
between non-stimulus and stimulus in the AA_1 and 
AA_4. In particular, statistical significance was found 
between 180 Hz and 250 Hz for AA_4.

Overall, the VSS can be considered to cause a change 
in kinematics, and the trend seems to be common at 
all frequencies. This common trend may have resulted 
from the fixed dimensions of the staircase. However, 
differences depending on frequencies may occur in 
kinetic parameters considering that the joint angles of 
each stimulus condition were different.

As shown in Table  2, statistically significant differ-
ences between the non-stimulus and stimuli appeared 
between each frequency pair. Furthermore, signifi-
cant frequency-dependent differences were found 
in the support moment, a sum of extensor moments 
of the lower limb joints [36, 38], as shown in Table  4. 
Steyvers et  al. [39] measured motor evoked potential 
(MEP) depending on vibration frequency and revealed 
that frequency-dependent effect appeared in the MEPs. 
Therefore, it is indicated that the VSS affects joint 
kinetics while transitioning from level walking to stair 
ascent, and thus it can be presumed that joint kinetics 
can be regulated depending on the VSS frequency; that 
is, the VSS could influence neuromotor control (NMC). 
As a result, performance degree in sub-biomechanical 
tasks (i.e., weight acceptance, pull-up, body support, 
and push-up) during transitioning from flat ground 
walking to stair climbing will be affected.

There were significant differences between each fre-
quency pair in the KNP for foot landing, the HPP_1 
for the pull-up, the SM for preventing lower-limb col-
lapse, and the ANP for ensuring stability, support-
ing the lower-limb and assisting the opposite leg. 
Although not all frequencies, this indicated that the 
same function is performed during the transition, but 
the degree varies with the vibration frequency; that is, 
it suggests that the NMC of the transition is frequency 
dependent.

In conclusion, the VSS has the possibility to control 
the degree of performance of sub-biomechanical tasks 
by affecting the NMC. It can further develop the char-
acteristics of the transition movement in the elderly. 
For more insight, future investigations on EMG and 
muscle synergy are required.
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Role of VSS in assisting level walking‑to‑stair ascent and its 
application
In this study, it was found that the elders’ characteristics 
of the transition motion differed from those of young 
adults. The predominant characteristics were larger hip 
joint flexion (HA_1), sustained dorsiflexion and larger 
dorsiflexion (AA_4), higher moment (HM_2) and power 
(HP_2) of the hip extensor, higher power of the plantar-
flexor (AP_3) and the lower support moment (SM_1). 
These characteristics of the elderly might be an adapta-
tion of motor control strategy according to neuro-physio-
logical changes due to aging.

When the VSS was applied, some characteristics 
(i.e. AA_4, HM_2, HP_2, and SM_1) and unexpected 
parameters (i.e. AM_2, AM_3, AP_2, SM_2, and 
SM_3) were affected; that is, the function of the hip 
extensor in the first half of the stance phase, function 
of the plantar-flexor in the second half of the stance 
phase, and support moment in the entire stance 
phase. Consequently, the VSS enhanced motor con-
trol of the transition movement in the elderly, and 
motor control can be regulated depending on the fre-
quency of the VSS as shown in Tables 1, 2, 3 and 4.

These findings suggest that the VSS can be utilized as a 
means of assisting the transition movement in the elderly. 
To apply the VSS, various commercial linear actuators 
can be used. The linear actuator used in the present study 
was small. Its diameter and thickness were 9 mm and 
3.4 mm, respectively. In addition, to detect the transition 
movement or any motions, an inertial measurement unit 
(IMU) device and a device combined with an accelerom-
eter and gyroscope can be used.

There is already a variety of sensors and methodol-
ogy to detect and recognize human movement. In other 
words, if the VSS, IMU, power supply, communication 
module, and regulator for voltage and frequency are 
combined and miniaturized, the assistance device can 
be realized. Park et al. [40] and So et al. [41] used iner-
tial sensors to detect gait events and small vibrators to 
apply somatosensory stimulation, and suggested an algo-
rithm for detecting and stimulating. In addition, portable 
devices that detect motion and apply stimulation have 
been used in various clinical studies [42–44]. Therefore, 
the results of this study can be sufficiently utilized as 
clinical reference to assist the elderly in their movements, 
and support the design of assistive devices to enhance 
motor control by combining the above-mentioned 
devices and methodologies.

Limitations
This pilot study has some limitations. 1) the number of 
participants in this study was small and the sample size 

between both groups did not the same. 2) the steady-
state stair ascent was not investigated in this study. 
That is, further insight into elders’ stair walking, it is 
required that more sample size and comparing the 
transition from level walking-to-stair ascending with 
the steady-state stair ascent.

Conclusion
The present pilot study showcased the features of the 
transition from level walking-to-stair ascent in elderly 
people, and that the VSS may accentuate the features 
of the transition movement of the elderly. Addition-
ally, it indicated that the frequency of the VSS has 
the potential to regulate neuromotor controls of the 
transition.

The results of this study can provide information on 
the transition movement of the elderly and the refer-
ences for clinical rehabilitation training to assist and 
improve their movements. In addition, the observa-
tions in this pilot study should be considered when 
planning future research in the development of motion 
assistance devices.
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