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Progressive supranuclear palsy (PSP) has been initially described
as a neurodegenerative disease of unknown etiology, affecting
the brain stem, basal ganglia, and cerebellum, leading to supra-
nuclear gaze palsy, dysarthria, dysphagia, dystonic rigidity of the
neck and upper trunk, postural instability, and a mild degree of
dementia.1 Meanwhile, the clinical spectrum and neurodegener-
ative changes in PSP have been more precisely described.2–4 The
neurobiological definition of PSP has emerged to focus a unique
neuropathological pattern characterized by formation of insoluble
aggregates composed mainly of 4-repeat isoforms of the
microtubule-associated protein tau in the shape of globose neu-
rofibrillary tangles, neuropil threads, oligodendroglial coiled bod-
ies, and specifically tufted astrocytes.4,5 The predominance of
4-repeat tau aggregates led to the joint classification of a group
of neurodegenerative diseases, including but not limited to PSP,
corticobasal degeneration, argyrophilic grain disease, and globular
glial tauopathies, as 4R-tauopathies.3,5 Because of their rapid
clinical progression and the limited symptomatic therapeutic
options available, there is a high unmet medical need to develop
disease-modifying therapies for 4R-tauopathies.

The temporal and anatomical distribution of tau pathology in
PSP appears to follow characteristic patterns and sequential
stages,4 suggesting a propagation of tau pathology along axonal
tracks. Because brain homogenates from patients with PSP can
induce tau pathology in transgenic mice expressing wild-type
human tau,6 a prion-like propagation of spreading-competent
tau species via the extracellular cerebral compartment has been
assumed to constitute an important disease mechanism in PSP
and other tauopathies.4–6

Therefore, 2 recent, sufficiently powered, randomized, con-
trolled trials in PSP tested the hypothesis that passive immuniza-
tion using monoclonal antibodies targeting the N-terminus of

tau would be efficacious to block the spreading of tau pathology
and the associated disease progression. The antibody BIIB092
(gosuranemab), a humanized version of a murine antibody raised
to target tau released from induced pluripotent stem cells from a
familial patient with Alzheimer’s disease,7 has been shown to
strikingly reduce the concentration of free tau in the cerebrospi-
nal fluid8 but failed to slow down the progression of clinical dis-
ease severity in a phase 2 trial.9 Also, the antibody ABBV-8E12
(tilavonemab), a humanized version of a mouse monoclonal anti-
body raised against full-length human tau,10 failed to show clini-
cal efficacy in a phase 2 trial.11

Therefore, the concept to target tau to develop disease-
modifying therapies has been challenged. Although this series of
unmet endpoints is painfully perceived as a drawback for the
field, the results need to be put into the right perspective to
avoid inordinate conclusions that risk to overshoot the mark,
thereby preventing progress into the very right direction.

First, PSP is a primary 4-repeat tauopathy from a neuropatho-
logical perspective.4,5 There is no pathogen other than tau identi-
fied in PSP that would sufficiently explain neuronal dysfunction
and death and subsequent neurological deficits. In a recent clinico-
pathological case series, we concluded after exhaustive characteri-
zation of potential alternative pathological features in the brains of
PSP patients that copathology in PSP, albeit present not infre-
quently, does not sufficiently explain presence and progression of
clinical symptoms in PSP.12 Primary dysfunction of tau, on the
contrary, is well proven to be sufficient to explain progressive neu-
ronal dysfunction and degeneration, as evidenced by mutations in
the tau gene MAPT with an autosomal dominance trait pattern.13

Because the overwhelming majority of PSP cases are sporadic,
mutations with loss-of-function or gain-of-function consequences
for the protein product do not obviously explain the pathogenesis
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of PSP. Still, a large genome-wide association study identified
common variation at the MAPT locus to strongly increase the risk
for PSP (odds ratio, 5.46).14 The strongest signal of this association
points to an inversion polymorphism in the MAPT region, which
appears to affect the expression of tau and its isoform balance.14

An epigenome-wide DNA-methylation study did not identify sig-
nificantly different methylation at MAPT in PSP versus controls,
but methylation changes in pathways that indirectly appear to
affect tau expression.15 An epidemiological association of an unex-
pectedly high prevalence of a PSP-like tauopathy in Guadeloupe
with the consumption of fruits containing the mitochondrial com-
plex I inhibitor annonacin pointed to possible environmental
mechanisms explaining disease risk.16 Importantly, annonacin
induced a shift of tau and mitochondria from axons to somata and
an increase in 4-repeat tau isoforms in cultured neurons, thereby
reproduction hallmarks of 4-repeat tauopathies.17,18 In sum, all
lines of evidence available so far point to a dysfunction of tau as an
essential, if not primary, deficit leading to neuronal dysfunction,
neurodegeneration, and neurological deficits in PSP.

Therefore, it appears not appropriate to question tau as the
prime target for the development of therapeutic interventions,
just because the first 2 trials did not hit the right spot within the
protein. We may conclude with due care that antibodies
targeting N-terminal tau in the currently applied paradigm do
not modify disease progression in established PSP. Although
patients and scientists would have hoped very much for success
at the first try, these results provide important insights to move
the field forward.

Recent years have provided insights to suggest that the N-
terminus of tau might not be the appropriate target, both with
regard to the abundance in the extracellular space and the bio-
logical relevance in the pathological seeding and aggregation
mechanisms of tau.19–21 On the contrary, there is emerging pre-
clinical evidence to suggest that antibodies targeting the mid-
region of tau next to the aggregation-prone repeat domain might
possess superior properties to block tau spreading.22,23 A
corresponding humanized antibody (UCB0107, bepranemab) has
recently entered the clinical evaluation in a phase 1 trial in PSP
(NCT04185415, NCT04658199). Also silencing of tau expres-
sion by intrathecal injection of antisense oligonucleotides, proven
efficacious in tauopathy mouse models,24 is currently being eval-
uated in a phase 1 study in PSP (NCT04539041). In the preclin-
ical setting, there are upcoming tau-targeting opportunities by
stimulating cellular defense mechanisms against misfolded tau,25

by reducing tau expression,26 or by altering tau splicing and
thereby isoform expression.27 A more comprehensive presenta-
tion of tau-targeting opportunities is presented elsewhere.5

Of course, our perspective has to remain wide open so as not
to miss any relevant therapeutic opportunities, including the rele-
vance of tau loss-of-function mechanisms,28 cell types other than
neurons (eg, astrocytes),29,30 neuroinflammation,31 and energy
failure.17,32 Furthermore, it appears possible that the current
therapeutic interventions have just been initiated at a too
advanced stage of the disease, when extensive cell-to-cell trans-
mission of the pathologic tau is already too established by the

time the diagnosis is made currently, arguing for further research
into early diagnosis.33

In conclusion, on our way into unknown territories, failed
clinical trials need to be accepted as important learning opportu-
nities to find the right path to reach the target safely and effica-
ciously. Failed trials need to stimulate the community to
reconsider the approach toward the target, not the well-set target
itself, without having tried all opportunities in an appropriate
manner. Patients rightfully request this effort from research.
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