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Abstract

Motivation: A major challenge in molecular and cellular biology is to map out the regulatory net-

works of cells. As regulatory interactions can typically not be directly observed experimentally,

various computational methods have been proposed to disentangling direct and indirect effects.

Most of these rely on assumptions that are rarely met or cannot be adapted to a given context.

Results: We present a network inference method that is based on a simple response logic with min-

imal presumptions. It requires that we can experimentally observe whether or not some of the sys-

tem’s components respond to perturbations of some other components, and then identifies the

directed networks that most accurately account for the observed propagation of the signal. To cope

with the intractable number of possible networks, we developed a logic programming approach

that can infer networks of hundreds of nodes, while being robust to noisy, heterogeneous or miss-

ing data. This allows to directly integrate prior network knowledge and additional constraints such

as sparsity. We systematically benchmark our method on KEGG pathways, and show that it outper-

forms existing approaches in DREAM3 and DREAM4 challenges. Applied to a novel perturbation

dataset on PI3K and MAPK pathways in isogenic models of a colon cancer cell line, it generates

plausible network hypotheses that explain distinct sensitivities toward various targeted inhibitors

due to different PI3K mutants.

Availability and implementation: A Python/Answer Set Programming implementation can be

accessed at github.com/GrossTor/response-logic. Data and analysis scripts are available at github.

com/GrossTor/response-logic-projects.

Contact: nils.bluethgen@charite.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Complex molecular networks control virtually all aspects of cellular

physiology as they transduce signals and regulate the expression and

activity of genes. Understanding those molecular networks requires

an appropriate simplification of the stupefying complexity that we

find in cells. A very successful and common abstraction in molecular

cell biology is to define effective modules and map out their interac-

tions (Ideker and Nussinov, 2017). But even though new experimen-

tal techniques can reveal and quantify countless cellular components

in ever increasing level of detail, they typically cannot identify the

relationships between them. This is why for more than two decades

various methods were developed to infer gene regulatory networks,

signalling pathways and genotype–phenotype maps (De Smet and

Marchal, 2010). These methods vary widely in their notion of net-

work (e.g. directed versus undirected, weighted versus unweighted

links), their mathematical methodology (e.g. statistical measures

versus model-based parameter fits) or their goals (e.g. interaction

discovery versus network property characterization versus perturb-

ation response prediction) (Basso et al., 2005; de la Fuente et al.,

2004; Ghanbari et al., 2015; Kholodenko et al., 2002; Klamt et al.,

2006; Molinelli et al., 2013; Natale et al., 2017). Not surprisingly,

different methods produce radically different results on same data-

sets (Marbach et al., 2010; Meisig and Blüthgen, 2018). This makes

for an intricate choice of method and guarantees a certain degree of

arbitrariness in interpreting the inferred networks.

One major goal of network inference for signalling and regula-

tory networks is to derive directed networks, that is, to infer infor-

mation about causal relations within the studied system. This differs

profoundly from the inference of undirected associations between

node pairs, such as by correlation, as it requires to trace the flow of
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information through the network. A popular approach is to use

time-series data, for which methods like convergent cross mapping

(�Cenys et al., 1991; Sugihara et al., 2012) or Granger causality

(Granger, 1969) can distinguish correlation from causation, given

sufficiently dense samples. But most often, experimental protocols

or excessive expenditures preclude the observation of suitable tem-

poral trajectories for many contexts in molecular biology. Thus, a

complementary approach is to observe the system’s responses, for

instance the steady-state response, to a set of localized perturbations

(Bruggeman et al., 2002; Sachs et al., 2005; Wagner, 2001a).

Depending on the specific system, these perturbations could, for ex-

ample, be gene knockouts or kinase inhibitions. However, existing

methods for such data rely on context-specific assumptions whose

validity is hard or impossible to assess in practice, which makes it

very difficult to interpret their results. Facing this challenge, we

asked whether we could derive a more generally applicable scheme

for the inference of directed networks—a method that is based on a

principle which is accurate enough for most contexts while also suf-

ficiently simple to allow for an intuitive understanding of how the

network structure was resolved. Furthermore, we noticed that even

though most network inference problems are embedded within very

well-studied contexts, the vast majority of reverse-engineering meth-

ods predicts networks de novo. Therefore, we additionally aimed for

a method that could readily incorporate prior knowledge about

presence or absence of certain links or about other known network

properties. This resulted in what we call the response logic

approach.

In the following, we describe the response logic approach in

more detail and then benchmark it by (i) assessing the performance

using synthetic data derived from KEGG pathways (Kanehisa et al.,

2017), and (ii) comparing its performance to competing methods

using community-wide inference challenges (Dialogue for Reverse

Engineering Assessments and Methods, DREAM) (Stolovitzky et al.,

2007). Finally, we use the approach to study RAS/MAPK/PI3K sig-

nalling in a colon cancer cell line, and predict differences in the sig-

nalling network topology due to different PI3K mutants, that

manifests in differential sensitivity of a colon cancer cell to various

targeted drugs.

2 Materials and Methods

We developed a method to infer directed network structures from

perturbation data that we term response logic (see Fig. 1). As an in-

put, this method requires binary information about which nodes in

the network respond to which perturbation, together with a rank of

confidence of each data point. We refer to this set of experimental

observations as the response pattern. Given this information, the re-

sponse logic approach infers networks that agree to the following

simple rule: a perturbation at a node is propagated along all out-

going edges to the set of connected nodes, and these responding

nodes will in turn propagate the signal and so forth. Consequently, a

perturbation of a node causes a response at all nodes to which it is

connected by a path, and no response at all others. The information

about which node can be reached from which other nodes is known

as the network’s transitive closure. Thus, the central assumption of

our response logic approach is that experimentally observed

responses are in agreement with the transitive closure. This assump-

tion then leads to the inverse problem of identifying the networks

whose transitive closure actually matches the response pattern.

The algorithm to infer these networks consists of two main steps.

Using a logic programming approach, it first modifies the experi-

mental response pattern to match a transitive closure (rectification

step) and then infers either all individual networks that comply to

the given data or the union over all those conforming networks. We

will describe the different steps in the following sections.

2.1 Rectifying the response pattern
The response logic approach interprets the measured response pat-

tern as a noisy, incomplete transitive closure. But because of mis-

classification, a response pattern might not match any actual

(incomplete) transitive closure. Consider for example a three-node

network in which all nodes are observed to respond to a perturb-

ation at node one. This implies two paths, from nodes one to two

and nodes one to three. Therefore, if a perturbation at node two

causes a response at node one, node three is expected to respond as

well. But assume that this response at node three was not observed

(misclassification). Then, there is no directed network with a transi-

tive closure that would match this response pattern. We expect that

such misclassification occurs rather often when working with ex-

perimental data because of experimental noise or because the system

under consideration does not fully comply with the assumptions of

the response logic. Thus, it is necessary to identify the most relevant

subset of the response pattern that forms an (incomplete) transitive

closure which can then be used to infer networks.

Our rectification algorithm requires to rank the observations of

the response pattern from most to least confident. Typically, such

confidence levels are readily available since the response pattern is

often derived from a binarization of continuous experimental read-

outs, in which case a confidence score could be the distance to the

binarization threshold, or a score of statistical significance. The al-

gorithm then iterates the elements of the response pattern from high

to low confidence, and at each step, determines whether the so far

collected elements form a transitive closure and also conform with

additional constraints from prior knowledge. This is done using a

logic program (see below), which determines if there is any network

that is compatible with these elements of a transitive closure. If the

new element is compatible, it is added to the collection of conform-

ing data and otherwise discarded. The more data points enter the

collection the more restrictions apply to the remaining elements of

the response pattern. As high confidence observations are taken into

account first they are thus less likely to be discarded, ensuring that

we extract the most relevant subset of the response pattern that in-

deed forms an incomplete transitive closure that is in line with add-

itional constraints. If confidence levels of different data points

cannot be easily distinguished, it is recommendable to repeat the re-

sponse logic analysis for alternative rankings and inspect how this

impacts the set of compatible networks.

Fig. 1. The steps of the response logic approach. The response logic and all

additional prior network knowledge are formulated as a logic program. It is

first used to rectify the experimentally determined response pattern, and se-

cond, takes the resulting (potentially incomplete) transitive closure as input to

infer either all individual conforming networks or the union thereof
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Figure 2 demonstrates this scheme for a toy network of five

nodes, for which we assume that four nodes were perturbed (indi-

cated as flashes in Fig. 2A, top). The resulting response pattern then

consists of a five-by-four matrix, and we assume that two data

points are missing, and two elements of the response pattern do not

match the transitive closure (compare heat maps in Fig. 2A). In

Figure 2B, we exemplify how the response pattern is iteratively recti-

fied. We assume that we know that a link from node two to node

three exists and that there is no link between node one to node three

(green stars). Given this prior knowledge, already the first (highest

confidence) data point (yellow star in the leftmost panel) additional-

ly implies that node three also responds to a perturbation of node

one. Any subsequent data point that is in conflict with this informa-

tion will be discarded. The middle panels of Figure 2B show that the

five most trusted data points constrain five other elements of the rec-

tified response pattern. Among them are the two misclassified, as

well as the two missing data points. Therefore, in this toy example,

the high confidence data points automatically correct these false or

missing pieces of information. The bottom panel of Figure 2B shows

how adding data points increasingly constrains the network struc-

ture. Once all data are considered, most of the links (but not all, as

discussed later on) are known to be either present or absent from the

network. Note, however, that the rectification process does not re-

quire to compute the shown union of conforming networks, but

only requires to determine if for any network at all, all constraints

are satisfiable, which is computationally far less expensive.

2.2 Finding conforming networks with logic

programming
Mapping the response pattern to its corresponding set of conforming

networks is a substantial computational challenge, as there are 2N�N

possible directed networks (with N being the number of nodes),

making it infeasible to enumerate all networks even for small sizes.

We therefore solve the search problem with a logic programming

approach, which is a form of declarative programming where the

problem is represented via a set of logical rules. We chose to use the

logic modelling language Answer Set Programming (ASP) (Baral,

2003), as implemented in the Potsdam Answer Set Solving

Collection (Gebser et al., 2011). For ASP solving, we apply the

clingo (Gebser et al., 2014) system.

ASPs generate-define-test pattern (Lifschitz, 2002) allows for a

convenient encoding of the response logic, which is detailed in

Supplementary Material S1. In short, we generate the collection of

answer sets, consisting of all possible network structures, then define

auxiliary predicates, in our case the networks’ transitive closure,

and then test whether this transitive closure agrees with the data and

also whether the tested network complies to all other heuristic con-

straints. Then the ASP solver, clingo, allows to enumerate all con-

forming networks. Note that the computational effort needed to

identify a conforming network heavily depends on network size and

the provided heuristic constraints. But overall, the logic program-

ming approach infers networks of up to 100 nodes within seconds,

without any parallelization.

The previously discussed data rectification sequentially checks

the satisfiability of every data point and could therefore become a

performance bottleneck for large systems. However, because this

process only requires to decide whether any network at all is in

agreement with the latest data, instead of having to provide the en-

tire set of conforming networks, we can solve a much simpler logic

program, which is detailed in Supplementary Material S1. It drastic-

ally improves performance because it does not require to define an

answer set for each possible network structure.

2.3 Identifiability and heuristic constraints
While every directed network has a single transitive closure, a transi-

tive closure can often be mapped to many different networks, even

more so if the transitive closure is only partially known. Thus, we

can usually not infer a unique directed network from a rectified re-

sponse pattern alone. For example, any feedback loop creates a

strongly connected network component, that is, a set of nodes for

which any pair is connected by a path. Therefore the response pat-

tern is independent on how exactly the nodes are connected to each

other. Similarly, the response pattern does not change with any add-

itional feed-forward loops that cuts short an existing path. To re-

solve such structures we need to resort to additional constraints that

are derived from contextual knowledge about the studied system. A

crucial advantage of the response logic approach is that it can easily

integrate various kinds of such constraints. Here, we want to exem-

plify this and introduce those constraints that are used in the appli-

cations shown further below.

Rarely will we analyze networks that have never been studied

before. Therefore one can use prior knowledge to constrain net-

works, such as by requiring the presence of well-established links

in the network, or by excluding links that are physically not feas-

ible (such as interactions between molecules located in different

compartments). This information can directly be integrated into

the logic program by defining the presence or absence of links as

additional constraints. In addition, the logic program can also ac-

commodate more subtle constraints, such as to enforce bounds on

the numbers of incoming and outgoing edges of (groups of) nodes,

see the implementation in Supplementary Material S1. This allows,

for example, to encode the information that a module of nodes sig-

nals to other parts of the network without having to explicitly state

which of the module’s nodes has the outward link. The same idea

holds for a module that is known to receive at least one input to

A B

Fig. 2. Response logic inference of a toy network. (A) From top to bottom: an

example network of five nodes, where flashes indicate which nodes were per-

turbed; the full transitive closure; the response pattern that captures parts of

the network’s transitive closure, with missing or misclassified data and confi-

dence scores. (B) Three instants during data rectification: data points are

added sequentially from high to low confidence (stars in top row), and in-

creasingly constrain the inferred network and the (rectified) response pattern

(red and blue fields in top row). Bottom row shows the inferred network at

the given instant during rectification
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any subset of its components. Note that these types of constraints

directly limit the space of possible networks and in turn that of the

transitive closures. They will thus influence how the response pat-

tern can be rectified and must be taken into consideration during

the process.

But even these additional constraint might not sufficiently limit

the number of conforming networks to consider them individually.

Alternatively, an extension of the logic program, described in

Supplementary Material S1, allows to efficiently find the union of

all answer sets. This union reveals which links (or missing links) ap-

pear in all solutions and which are ambiguous. The latter is particu-

larly informative to either guide the choice of additional

perturbation experiments or to reveal effective strategies on how to

further filter the set of solutions.

One widely used strategy in this regard is to require an overall

sparse architecture (Wagner, 2001b). We would thus want to iden-

tify the conforming networks with the fewest links. However,

naı̈vely parsing all network solutions will be infeasible when the set

of solutions is large. To overcome this problem we developed an al-

gorithm that sequentially removes as many ambiguous links as pos-

sible, without violating any constraint. To do so, after every link

removal the pruned network is tested for satisfiability. If it complies

to the given constraints, the link remains removed and the procedure

continues. Otherwise the link is considered necessary and the pro-

cedure continues without the removal of the link. This leads to what

will be referred to as the sparsified network. Yet, such scheme is

only reasonable if the order by which links are removed, reflects to

some extent a knowledge about which links are more likely to be ab-

sent in the underlying network, and should therefore be tested for re-

moval first. However if such information is not available, one can

use yet another approach to filter for sparse networks, termed the

parsimony constraint. This constraint asks whether a link from a

conforming network can be removed without it changing the net-

work’s transitive closure. If that is the case, the network is consid-

ered non-sparse and is removed from the solution set. The specific

encoding is found in Supplementary Material S1. While this proced-

ure does not generally single out a unique solution as before (mul-

tiple networks can be parsimonious), it was nevertheless observed to

drastically reduce the solution space.

Taken together, a response pattern will typically be compatible

with a large number of network topologies, but various types of prior

network information can be incorporated into the response logic ap-

proach to reveal a finer network structure than what would have been

possible from the response pattern alone. At the same time, the ap-

proach states explicitly whether or not the presence or absence of a

link can be inferred from the given data and constraints.

2.4 Implementation and data acquisition
The response logic approach is implemented in Python 3.6 as a

package available at github.com/GrossTor/response-logic.

Numerical computations, data handling and plotting was done using

the SciPy libraries (Jones et al., 2001) and seaborn. Additional

functions were taken from the networkx package (Hagberg et al.,

2008). Clingo’s python API (version 5.2.2) (Gebser et al., 2014) is

used to ground and solve the Answer Set Programs.

The repository contains all Answer Set Programs, which are

accessed by the main response.py module. It includes the

prepare_ASP_program function to set up a logic program according

to the provided data and additional constraints, the conform_res-

ponse_pattern function that rectifies the response pattern, as well as

various functions to solve a logic program. Additionally, a projects

repository available at github.com/GrossTor/response-logic-projects

includes all scripts and data that were used to obtain the results

from the following sections.

KEGG data (Kanehisa et al., 2017) was retrieved via the KEGG

package within the biopython library. The KEGG pathway maps

database was parsed for human pathways and the retrieved KGML

files were used to build network representations based on their ‘rela-

tion elements’.

The data and evaluation scripts for the DREAM3 and DREAM4

challenge was retrieved with the official DREAMTools python pack-

age (Cokelaer et al., 2016). Leaderboards were taken from Cokelaer

and Costello (2015) and Figure 3 from Marbach et al. (2010).

The SW-48 perturbation data were generated using a SW-48 cell

line, and two derived clones with mutations in PI3K. Cell lines were

obtained from Horizon Discovery. All lines were maintained in

RPMI (Invitrogen) with 10% FBS (Invitrogen). Cell growth was

assessed using the Cell Titer 96 Aqueous One Solution Cell

Proliferation Assay (Promega). Cells were treated with compound

24 h after plating and grown for 72 h. The cell growth was deter-

mined by correcting for the cell count at time zero (time of treat-

ment) and plotting data as percent growth relative to vehicle

(DMSO)-treated cells. Reverse-phase protein array (RPPA): cells

were treated 24 h after plating and incubated with inhibitor

(GDC0973, GDC0068, Erlotinib) or solvent control (DMSO) for

1 h, and then stimulated either with EGF, HGF and IGF or with con-

trol (BSA) for 30 min. Cells were lysed in T-PER (Thermo), 300 mM

NaCl, cOmpleteVR protease inhibitor (Roche) and Phosphotase

Inhibitor Cocktails 2, 3. RPPA measurements were carried out by

Theranostics Health. All data can be accessed from the according

data folder in the projects repository (response-logic-proj

ects/SW-48_analysis/data/).

3 Results

3.1 Performance assessment on KEGG pathways
We first set out to systematically quantify how misclassification and

missing data in the experimentally determined response pattern

impacts the quality of the predicted network structure. To this end,

we inferred network structures from synthetic datasets. As a relevant

and representative collection of test networks, we extracted all 270

human gene regulation and signal transduction networks (maximal-

ly containing 100 nodes) from the KEGG pathway database

(Kanehisa et al., 2017). For each of these network structures we gen-

erated its transitive closure, which we considered as the immaculate

response pattern. Then, we repeatedly generated a random confi-

dence pattern, C, where each entry is drawn from a uniform distri-

bution between 0 and 1. To evaluate the effect of missing data, we

remove a fraction �M of data points from the perfect response pat-

tern and to evaluate the effect of measurement error, we also mis-

classify a fraction �C of the remaining data points. Missing or

misclassified data points were chosen with a probability that was

proportional to their confidence score Cij. We then used the result-

ing response and confidence patterns to infer the sparsified network,

as defined in the previous section, via the response logic approach

and, comparing it to the original KEGG network, computed preci-

sion and recall as performance scores, see Figure 3A.

For each of the 270 KEGG networks the procedure was repeated

50 times for different choices of �M and �C, and the mean of the scores

is shown in Figure 3B. In the absence of misclassifications (�C ¼ 0, red

and orange dots in Fig. 3B), prediction errors stem exclusively from

the previously discussed multitude of conforming network structures.
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Interestingly, for a vast set of biological pathways the resulting infer-

ence errors are rather mild, and highly accurate predictions can be

made independent of network size. However, once misclassifications

are present, the predictivity is markedly reduced. Interestingly, this ef-

fect increases with growing network size.

We next examined the dependency on missing data and misclassifi-

cation rates in more detail for the three signalling pathways: RAS, Wnt

and TGF-b. We chose to scan the parameters from 0.0 to 0.5 and 0.0

to 0.25 for �M and �C, respectively, as a complete loss of information

would either occur when all data were missing, �M ¼ 1, or half of the

entries were misclassified, �C ¼ 0.5 (�C ¼ 1 would produce an inversion

of the response pattern). For all pathways, we found that recall is more

affected by missing data than precision (see Fig. 3C). That is, with less

data the predicted links remain rather accurate but fewer of them are

predicted. We also confirmed our previous finding that misclassification

reduces prediction scores much stronger than missing data.

Interestingly, even when half the data were discarded, in many instances

precision remained still close to one. This suggests that discarding low-

confidence data points rather than risking to accept many misclassified

data points might be a good strategy to improve predictions. We will

re-examine this idea by the end of the next section.

3.2 Response logic approach outperforms competing

methods in DREAM challenges
The DREAM (Stolovitzky et al., 2007) provides community-wide

reverse-engineering challenges that foster the development of new

systems biology models. Particularly, the DREAM3 and DREAM4

in-silico challenges (Greenfield et al., 2010; Marbach et al., 2010)

assessed the performance of various gene network-inference meth-

ods and have since become a standard benchmark to which we can

compare the response logic approach. In these two challenges vari-

ous biologically plausible in-silico gene networks of different sizes

were simulated under stochastic conditions to emulate realistic tran-

scription dynamics resulting from knockdowns and knockouts of

each single gene. Participants were given the resulting time courses,

the steady states and the wild-type level of each gene and asked to

infer the directed network structure from them. A ranked list of pre-

dicted gene pair interactions was then compared against the gold

standard from which the area under the precision–recall (PR) and

the area under the receiver operating characteristic curve (ROC) are

computed, see Supplementary Figures S1 and S2. Comparing these

to a null model provides P-values for each of the given five networks

per network size that then get combined into a single overall score

(Stolovitzky et al., 2009).

To infer the DREAM networks with the response logic approach,

we generated response patterns from the in-silico knockout experi-

ments of these challenges only (not considering knockdown or time-

series data). These were computed as follows. When Kij denotes the

level of gene i after knockout of gene j, and the wild-type levels are w,

we defined the normalized global response matrix, R, as

Rij ¼
jKij �wij

si
;

with si being the standard deviation of the knockout levels of gene i

(row i of K). We then defined gene i to be responding to a knockout

of gene j if Rij > 1. The entries of the associated confidence matrix

were defined as a normalized distance of knockout levels to this

threshold, see Supplementary Material S2. We then applied our re-

sponse logic approach to these matrices to infer sparsified networks,

as defined earlier. The goal of the DREAM challenge is to provide a

list of gene pairs that is ranked by their predicted likelihood to be

interacting. We generated it by first listing the predicted interacting

and then the non-interacting gene pairs, where within each group,

the pair list was ordered according to the associated entries in the

global response matrix (interaction i! j was ranked higher than

k! l if Rij > Rkl). As comparison, we also created a ranked list by

simply ranking gene pairs in the order of the global response matrix,

without the grouping that was introduced by the response logic,

which we termed ‘naı̈ve approach’.

These ranked lists were then scored using the official

DREAMTools package (Cokelaer et al., 2016) (with a minor modi-

fication for one network score at DREAM3 N¼100, see

Supplementary Material S2). Figure 4A shows the results of our

method and that of the naı̈ve approach in comparison to the 10 best

performing participants at each network size and challenge that

were provided with the full (knockout, knockdown, time-course)

datasets. Except for the small networks with N¼10, where the re-

sponse logic approach ranks second and third, it outperforms all 29

competitors participating in DREAM3 (Marbach et al., 2010), as

well all 29 competitors participating in DREAM4 (Cokelaer and

Costello, 2015). Note that the best performers for the small net-

works (N¼10) that scored higher than the response logic (Küffner

et al., 2010; Yip et al., 2010) also used the provided time-course

data, which we did not use in our response logic approach.

We also observed that the response logic always outperformed

the naı̈ve approach, confirming that non-trivial additional know-

ledge is gained when applying the response logic. Notably however,

A

B

C

Fig. 3. The performance of the response logic approach on synthetic data

generated from 270 human KEGG pathways (Kanehisa et al., 2017). N

denotes network size, �M quantifies the fraction of missing and �C the fraction

of misclassified data points. (A) Data generation and scoring scheme. (B)

Each dot per colour represents a different pathway, colours represent differ-

ent parameters for misclassification (�C) and missing data (�M). (C) Precision

and recall for three particular signalling pathways as a function of the fraction

of misclassified or missing data
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already the naı̈ve approach scores comparatively well, which let the

challenge’s organizers to conclude that ‘sophisticated methods that

would in theory be expected to perform better than the naı̈ve ap-

proach described above, were more strongly affected by inaccurate

prior assumptions in practice’ (Marbach et al., 2010). This observa-

tion affirms our initial motivation to design an approach with min-

imal assumptions on the data.

Finally, the DREAM data also allowed us to test if disregarding

low-confidence data points, as suggested by the KEGG pathway

analysis, improves predictions. Thus, considering the confidence ma-

trix with scaled entries between 0 and 1 (Supplementary Material

S2), we removed data points with confidence scores below a thresh-

old and re-engineered the networks from those smaller datasets. The

resulting scores relative to the original scores, which were obtained

from the full response patterns, are shown in Figure 4B. With the ex-

ception of the N¼10 networks, these numerical experiments con-

firmed that removing low-confidence data effectively improved

network inference. Peak performance is reached when approximate-

ly 5% of the data are discarded.

In summary, our benchmarks using the DREAM in-silico chal-

lenges provide a strong indication that the response logic approach

is capable of reverse-engineering biological networks. Its simplicity

not only makes its results comprehensible but the DREAM challenge

showed that they are also more accurate than those of existing

methods.

3.3 Reverse engineering MAPK and PI3K signalling in a

colon cancer cell line
Having benchmarked the response logic formalism, we next used it

to investigate signalling networks in cancer cells. In a first step, we

decided to reverse engineer the Ras-mediated signalling network

including MAPK and PI3K/AKT signalling in SW-48 colon cancer

cells. We performed multiple perturbation experiments using either

ligands or inhibitors that targeted EGFR, PDFR, ERK and AKT,

and measured changes in phosphorylation using a reverse-phase pro-

tein assay (RPPA) platform. Ten of the antibody-based readouts

passed a quality control and were relevant to the considered path-

ways, see details in Supplementary Material S3. Using replicate

measurements of both unperturbed and perturbed conditions, we

constructed the response pattern as well as the according confidence

scores, which are shown in Figure 5A (see Supplementary Material

S3 for details).

The RAS signalling network has been well studied, which

allowed us to compile a literature network shown in Figure 5C that

can be used as a gold standard to measure prediction performance.

We then applied our response logic framework to the response

pattern, and evaluated predictions by means of the areas under the

ROC-, as well as PR curves, as shown in Figure 5B, see

Supplementary Material S3 for details. As it was computationally

impossible to enumerate all networks, we determined the union of

all conforming networks, as described earlier, and scored links based

on whether they are found in all, in some and in no conforming net-

works. Doing so led to PR and ROC curves that were only marginal-

ly better than random (top row in Fig. 5B). The apparent challenge

concerning the network inference for this network is the substantial

disparity between 10 readouts to only 4 perturbations, making the

reverse engineering problem strongly underdetermined. A crucial

benefit of the response logic analysis is that it allows for the incorp-

oration of various additional insights about the structure of signal-

ling networks to reduce the space of solutions. We therefore

investigated how the inclusion of generic and indirect network

knowledge rendered the analysis more meaningful. First, we

enforced a hierarchy in the network (heuristic I). Signalling net-

works typically process signals received on the receptor level

through a chain of intermediate kinases, before they are passed on

to a set of targets. We therefore disallowed any direct connections

between the receptor and the target level (according to the allocation

shown in Fig. 5C) (these ruled-out links were obviously not taken

into account for the scoring procedure, which explains the different

areas under the PR curve for the random classifier in Fig. 5B).

Furthermore, kinase interactions are highly specific, resulting in

sparse signalling networks. Therefore, we found it reasonable to rid

the network of redundant links and apply the parsimony constraint,

as defined earlier (heuristic II). Lastly, we required that any node at

receptor level must have at least one outgoing link (heuristic III).

Adding these three heuristics, I–III in Figure 5B, considerably

improved the performance and reduced the solution space to 666

conforming networks. This makes it possible to enumerate them all

and compute for each possible link the fraction of how many times

it was present in all conforming networks (consensus ratio). We rea-

soned that a higher consensus ratio also implies a higher relevance,

which we found confirmed when using the consensus ratio, rather

than the union of networks to score the predictions (heuristic IV).

From these results, we conclude that the response logic is indeed a

valid assumption for the MAPK and PI3K pathway activity in the

SW-48 cell line and that rather apparent additional information can

effectively compensate for the small number of perturbations.

A B

Fig. 4. (A) Performance of the response logic approach for the gene-network

reverse engineering challenges DREAM3 and DREAM4 (Greenfield et al.,

2010; Marbach et al., 2010) (green bars), compared with a ‘naı̈ve’ scoring ap-

proach (orange bars) and the 10 best approaches that took part in the respect-

ive challenges (grey bars). Scores are calculated as in the original challenge,

with higher scores indicating better performance. (B) Relative changes in per-

formance when excluding data points with confidence below a certain thresh-

old. N: network size

A

B

C

Fig. 5. (A) Response pattern of the SW-48 cell line of selected phospho-pro-

teins after perturbations affecting EGFR, PDGFR, ERK1 and AKT. (B)

Performance of response logic network inference under various (combina-

tions of) heuristics, as explained in text, compared to a random classifier

(shaded colours). (C) Literature network (filled arrows) and final network pre-

diction (finer arrows, only links with consensus ratio �0.4 are shown)
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3.4 Modelling the effects of PI3K mutations in a colon

cancer cell line
Having verified the validity of the response logic approach on the

SW-48 cell data, we next used it to investigate how different muta-

tions in the PI3K change signalling. To investigate this, we used

clones of SW-48, in which two mutations that are commonly found

in tumours were integrated, namely PIK3CAH1047R and

PIK3CAE545K. We generated data using the same scheme as before,

by perturbing the cells with ligands and inhibitors, and measuring

the response using RPPA. Considering that the MAPK and PI3K

pathways are very well studied, we assumed that the literature net-

work depicted in Figure 5C is valid for all three cell lines, except for

those links that could be affected by the different PI3K mutations.

Because PI3K is not among the readouts, we model PI3K mutations

to potentially affect links from and to its next downstream target,

which is AKT. Furthermore, the literature network does not include

context-dependent feedbacks in the MAPK pathway (Lake et al.,

2016). As we observed mutant-dependent upregulation of EGFR as

well as SHC upon MEK inhibition, see Supplementary Figure S4, we

considered this option in the inference as well. Therefore, to model

the different mutant response patterns shown in Figure 6A, we used

a heavily constrained response logic approach in which the presence

or absence of network links is governed by the literature network,

except for those links going in and out of AKT and those links going

into EGFR. Not only did these constraints compensate for the few

perturbations but also connect differences in the data to plausible

alterations of the network. Furthermore, as the parsimony con-

straint has proven beneficial in the response logic validation on the

parental cell line data, Figure 5, it is used as well (with the

constrained literature network, previous heuristics I and III no lon-

ger apply, and IV is not relevant as shown next).

This approach resulted in four, one and two conforming net-

works for the parental, the E545K and the H1047R cell line, re-

spectively. For the two ambiguous cell lines, we decided to isolate

the single, biologically most plausible network hypothesis. In the

case of the parental cell line, the four conforming networks consist

of the combined options of whether or not SHC feeds back to EGFR

and whether EGFR signals directly to AKT or via SHC. SHC has

been found to be an adapter protein that is recruited to the activated

EGFR (but does not activate it) and is essential for the receptor’s sig-

nal relay (Ravichandran, 2001). We thus chose the parental network

hypothesis that excludes the SHC to EGFR and the EGFR to AKT

link. The two H1047R networks only differed in whether a feedback

to EGFR originates from p90RSK or from ERK. Since the ERK to

EGFR feedback is well described in the literature (Lake et al., 2016),

we decided for that option. With this, we could compare the mu-

tant-specific network hypotheses, as shown in Figure 6B, which led

to two main observations. First, in contrast to the parental cell line,

the mutant cell lines do not have a link from the EGFR receptor to

the PI3K pathway. And second, the H1047R cell line is the only one

bearing a feedback from ERK (or any node) to EGFR.

We next aimed to explore if these different network topologies

might explain phenotypic differences between these cell lines. We

therefore evaluated the drug response of these cells for different tar-

geted drugs, as shown in Figure 6C. Some differences in drug re-

sponse can be understood directly from the mutations that have

been added to the cell lines: the PI3K and AKT inhibitors seem to be

slightly more effective in the PI3K-mutant cell lines, which is not

surprising as these cells have constitutively active PI3K signalling.

Similarly, inhibition of IGFR was more effective in the wild-type

cells, as the mutant cells are more self-sufficient in PI3K signalling

and therefore potentially require less IGFR activity. The drug

responses to the EGFR inhibitor, and the MEK inhibitor are more

complex and can only be interpreted when considering the network

rewiring. The PI3KH1047 mutant cell line is rather resistant to the

MEK inhibitor. This can be understood by the presence of the nega-

tive feedback from ERK to EGFR in this cell line, which is known to

cause resistance by re-activating ERK and amplifying AKT signal-

ling upon MEK inhibition (Klinger et al., 2013). EGFR inhibition

effects the cell line with the E545K mutant less, and the cell line

with the H1047R mutant more strongly compared to the parental

cell line. Both mutants decouple the EGF-receptor to the AKT path-

way, so one would expect that they also show a less pronounced ef-

fect upon its inhibition. However, in the H1047R cell line there is a

strong ERK-EGFR feedback that generally reduces the MAPK path-

way activity, and one can speculate that additional EGFR inhibition

can push the MAPK pathway activity to sub-critical levels.

Taken together, the response logic modelling allows to recon-

struct networks from complex perturbation data and provides net-

work information that can be interpreted and linked to phenotypic

behaviour. This example demonstrates how this approach allows to

integrate noisy response data, prior network knowledge and generic

signalling constraints to identify hypothesis on changes in networks

due to mutations that can subsequently be studied experimentally.

4 Discussion

We developed the response logic approach as a method to infer

directed networks from perturbation data. Its central idea is to as-

sume that a perturbation of a node is propagated along the edges

A

C

B

Fig. 6. (A) Response pattern for two PI3K-mutant cell lines derived from SW-

48, carrying either the E545K or H1047R mutations in PIK3CA, as in Figure 5.

(B) Mutant-specific networks derived from the response data arrows in blue

(parental cell line), orange and green (two mutant cell lines), with links con-

strained due to literature knowledge shown with large arrows. (C) Dose–re-

sponse curves for different inhibitors targeting the inferred networks in the

parental cell line (blue) and the two clones with PI3K mutations (orange and

green), and the area under the curve displayed as bar graphs
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and thus causes a response at all nodes to which there is a directed

path, starting from the perturbed node. This simple hypothesis is

integrated in a logic program that allows to identify the networks

whose transitive closure most closely matches that of the experimen-

tal data. The power of logic programming, and more generally de-

clarative programming, has enabled its use in a wide range of topics

in computational biology (Backofen and Gilbert, 2001; Becker

et al., 2018; Bockmayr and Courtois, 2002; Dunn et al., 2014;

Videla et al., 2015; Yordanov et al., 2016). In our approach, logic

programming provides a way to efficiently scan the vast search space

of all directed networks and to easily express and incorporate add-

itional information and prior knowledge about the network.

Many reverse-engineering methods involve tunable parameters,

which can drastically affect the results. However, it is often far from

obvious how these parameters should be set in a specific context. In

contrast, our response logic approach is parameter free and strictly

infers the networks that follow from the provided response pattern

and any additional constraints provided.

At first glance, it might seem wasteful to reduce the data to a bin-

ary information of responding versus non-responding, when many

experimental techniques allow to quantify the magnitude of re-

sponse of the observed components. However, data binarization

renders inference more general and robust, and in many settings,

technical issues such as measurement error, heterogeneous data

sources or various normalization steps, make the interpretation of

magnitudes difficult.

The idea to map an experimentally observable response pattern

onto a transitive closure has been proposed before. It was hypothe-

sized that the sparsest directed acyclic graph whose transitive closure

matches the observed response pattern describes the direct regula-

tory interactions in gene networks (Wagner, 2001a). Such a graph is

also known as the transitive reduction and can be computed effi-

ciently (Aho et al., 1972). This approach was heuristically expanded

to also allow for some cycles, and to refine the inferred network by

incorporating double mutant perturbations and information about

up- and downregulation (Tringe et al., 2004). Yet, this procedure

has several shortcomings: it cannot incorporate existing domain

knowledge, it cannot handle missing data points, but simply consid-

ers an unknown or uncertain response behaviour as non-responding

and it only finds a single, most parsimonious, network, which might

not necessarily represent the underlying structure.

This last point is a strategy to compensate for the fact that net-

work inference is an inherently underdetermined problem, because

the number of independent measurements generally falls short on

the number of possible interactions (De Smet and Marchal, 2010).

The response logic approach explicitly addresses this problem as it

considers the entire ensemble of conforming networks rather than to

single out a particular one, based on some fixed and potentially in-

accurate assumption. It thereby reveals which parts of the network

cannot be inferred from the information provided so far. This im-

portant insight can then be used to either guide additional experi-

ments or to systematically reduce the solution space by adding

constraints that are most warranted in the given context. We con-

sider this as a crucial advantage over existing approaches, whose

inferred networks can generally not be intuitively traced back to the

data and thus tend to disguise if and how the inferred network is jus-

tified by the data.

But while the response logic is based on a simple and intuitive

concept, such simplicity comes at a price. As with any other assump-

tion, it might not actually be representative of the studied system.

Major problems might occur due to robustness, or saturation effects,

all of which disrupt the presumed flow of signal but are an essential

part of various biological systems (Fritsche-Guenther et al., 2011).

Also, from a Boolean perspective, the response logic treats nodes ex-

clusively as OR gates, whereas certain systems require a more

involved logic (Razzaq et al., 2018). But again, the declarative na-

ture of the ASP encoding allows to account for such effects. One

could, for example, rather easily implement a maximal path length

over which a perturbation gets attenuated, or explicitly state a

Boolean function that governs the signal propagation of a certain

node. Another important shortcoming for many questions is that it

does not neither assign any weights nor signs to the inferred links.

Yet, the inferred network can serve as an input for methods that are

devised to quantify link strengths on a given input network (Dorel

et al., 2018).

On the other hand, the response logic’s simplicity makes it suit-

able for various different fields of research. Because it is based on a

formalization of an intuitive network behaviour, it can infer eco-

logical, infection, or even social or transportation networks. Such

generality would even permit to use the response logic to ask the in-

verse question: given a certain network structure and the observed

perturbation responses, can I infer where a perturbation hit the net-

work? This question could be particularly interesting in the analysis

of man-made networks, for which the structure is typically known,

but not the location of the perturbation. The inverted logic program

would then identify where an electric connection malfunctioned, an

intruder attacked or a disease originated from. All these possibilities

show that the simplicity of the response logic does not limit its

applicability.
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