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Abstract 
Although the exact etiology of inflammatory bowel diseases (IBD) is unknown, studies have shown that dysregulated immune responses, ge-
netic factors, gut microbiota, and environmental factors contribute to their pathogenesis. Intriguingly, serotonin (5-hydroxytryptamine or 5-HT) 
seems to be a molecule with increasingly strong implications in the pathogenesis of intestinal inflammation, affecting host physiology, including 
autophagy and immune responses, as well as microbial composition and function. 5-HT may also play a role in mediating how environmental 
effects impact outcomes in IBD. In this review, we aim to explore the production and important functions of 5-HT, including its impact on the 
gut. In addition, we highlight the bidirectional impacts of 5-HT on the immune system, the gut microbiota, and the process of autophagy and 
how these effects contribute to the manifestation of intestinal inflammation. We also explore recent findings connecting 5-HT signalling and 
the influence of environmental factors, particularly diet, in the pathogenesis of IBD. Ultimately, we explore the pleiotropic effects of this ancient 
molecule on biology and health in the context of intestinal inflammation.

INTRODUCTION
The gastrointestinal (GI) tract represents a nexus of neuronal, 
immunological, digestive, endocrine, and microbial elements 
working in concert to maintain physiological homeostasis. 
Indeed, the gut represents the largest endocrine organ in the 
human body, plays host to nearly two-thirds of the body’s im-
mune cells and houses trillions of microorganisms (1–4). Each 
of these factors, if perturbed, can disrupt the delicate homeo-
static balance, resulting in pathophysiological conditions like 
inflammatory bowel disease (IBD).

Endocrine signals, including the biogenic monoamine ser-
otonin (5-hydroxytryptamine or 5-HT), coordinate and per-
petuate the necessary actions of the gut (5–7). Though best 
known for its neuronal effects (8,9), only a small portion 
of the body’s total 5-HT resides in the nervous system, in-
cluding the brain, and the vast majority is produced in the 
intestines (10). This peripherally-produced 5-HT cannot 
cross the blood-brain barrier; thus, centrally-produced and 
peripherally-produced 5-HT represent distinct pools that are 
synthesized via different biochemical pathways (11–13).

In the gut, the vast majority of 5-HT, approximately 95%, 
is produced via enterochromaffin (EC) cells in the intestinal 
mucosa (11,12,14), with the remaining synthesized within 
enteric neurons and a small portion by resident microbes 
(15). Acting as sentinels in the GI tract, EC cells respond 
to various mechanical and chemical stimuli (16,17). Within 
these cells, 5-HT is synthesized from dietary tryptophan 
(18) via a pathway controlled by the rate-limiting enzyme, 

tryptophan hydroxylase 1 (TPH1) (19). First, dietary tryp-
tophan is taken up into cells, where TPH1 converts this 
tryptophan to 5-hydroxytryptophan (5-HTP) (20–22). The 
enzyme, aromatic amino acid decarboxylase then converts 
5-HTP to 5-HT (23). From here, 5-HT is shuttled to secre-
tory storage vesicles via vesicular monoamine transporter 
1 at the basolateral membrane of EC cells until primed for 
release (24,25). Once released via exocytosis (19,26,27), 
peripheral 5-HT mediates its effects largely through inter-
action with a multitude of receptors on various cells (8,11) 
including a variety of both innate and adaptive immune cells, 
afferent neurons, and smooth muscle cells (16,22). Recent ev-
idence has expanded 5-HT’s known mode of action, showing 
the molecule has receptor-independent effects, including a 
direct influence on the gut microbiota (28) and can partic-
ipate in post-translation epigenetic modifications known as 
serotonylation (29,30).

Reuptake of 5-HT is controlled by the serotonin reuptake 
transporter (SERT) (31) found on neighbouring enterocytes 
and immune cells, where it can be broken down via monoa-
mine oxidase A (11,14,32). Released 5-HT can also be taken 
up by platelets via SERT, entering circulation where it acts at 
various sites throughout the body (33–35).

Neuronal 5-HT, representing approximately 10% of the 
body’s 5-HT, is synthesized via the rate-limiting enzyme, tryp-
tophan hydroxylase 2 (TPH2) (3,36,37). The biosynthesis of 
5-HT from EC cells and its targets in the GI tract is illustrated 
in Figure 1.
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FUNCTIONS OF 5-HT IN MAMMALIAN 
SYSTEMS
5-HT, acting as both a hormone and neurotransmitter, has 
myriad physiological effects across multiple body systems 
(8,38). The majority of these effects are carried out by at least 
14 different subtypes of serotonin receptors (5HTRs), which 
are categorized into seven major families (8,39). Acting in 
concert or on their own, these receptors each have multiple 
physiological impacts, which are, in part, determined by local 
biological context. Though here the focus will be on the GI 
tract, an overview of these effects across various body systems 
can be seen in Figure 2.

In the gut, five of the seven 5-HTR families (5-HTR1, 2, 3, 
4, and 7) are expressed, emphasizing serotonin’s influential 
role in this environment (40). As mentioned above, the vast 
majority of the body’s 5-HT is produced in the GI tract via 
EC cells and, to a smaller extent, enteric neurons (41). With 
that being said, 5-HT impacts myriad GI functions, including 
motility and transit, peristaltic reflexes, secretion, and visceral 
sensitivity (7,42).

Regulation of fluid, ion and mucus secretion is also under 
the purview of 5-HT, either by interaction with enterocytes 

via 5-HTR4 and 5-HTR2 or stimulation of reflexive neurons 
via 5-HTR1B, 5-HTR3, and 5-HTR4 (41,43–45).

In addition, 5-HT, both directly and indirectly, modulates 
the immune system and regulates various immune cells. In 
turn, factors released from these cells can influence the syn-
thesis and actions of 5-HT. The role of serotonin on various 
immune cells has been extensively explored by Koopman et 
al. (46), Herr et al. (47), and Shajib et al. (16).

Within the nexus of the gut, 5-HT also modulates the mi-
crobiota and the immune system (36) and has a substantial 
impact on the pathogenesis of several GI disorders, including 
IBD, which is discussed in depth below (11,48).

ROLE OF 5-HT IN REGULATION OF GUT 
MICROBIAL COMPOSITION
Trillions of microorganisms occupy the digestive tract and 
play key roles in the processing of nutrients, competitive 
exclusion of pathogens, and the proper development of the 
gut and the immune system. These microbes, which include 
bacteria, fungi, archaea and viruses, hold great sway over 
the physiology of the gut, particularly the maintenance of 

Figure 1. Gut-derived serotonin (5-HT) and its impact in the gut. In enterochromaffin (EC) cells, dietary tryptophan is converted by the rate-limiting 
enzyme tryptophan hydroxylase 1 (TPH1) to 5-hydroxytryptophan or 5-HTP. 5-HTP is then converted by aromatic amino acid decarboxylase (AADC) to 
serotonin or 5-hydroxytryptamine (5-HT). 5-HT is then sequestered by vesicular monoamine transport 1 (VMAT1) into storage vesicles at the basolateral 
membrane of the enterochromaffin (EC) cell until primed for release. Upon release by exocytosis, 5-HT can, in neighbouring enterocytes or neurons, 
interact via several receptors found in the gut, be taken up by the serotonin transporter, where it can be broken down, or contribute to post-translational 
modifications via serotonylation (1). 5-HT may also be taken up by platelets and distributed to various sites around the body, where it can elicit 
numerous physiological effects (2). 5-HT can also directly affect local immune cell activity and proliferation (3), and impact the composition and function 
of gut microbes (4).
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immunological processes. Disruption in the delicate balance 
between host and microbiota can influence the propensity 
for inflammation and can also alter the serotonergic system. 
Though still an area of active investigation, building evidence 
suggests that 5-HT and the intestinal microbiota impact each 
other in a reciprocal manner.

Microbial Impact on 5-HT
Experiments in germ-free (GF) mice neatly illustrate the im-
pact of the microbiota on 5-HT biology (49). Compared to 
conventionally raised mice, GF animals have reduced serum 
and colonic 5-HT concentrations (50–53). However, upon 
administration of either human or murine microbial samples, 
the restoration of the microbiota triggers increased expression 
of colonic TPH1 and elevated 5-HT concentrations (50,52). 
In a seminal work, Yano et al. (52) provided a mechanism 
of how these physiological changes may occur. Through a 
series of in vitro and in vivo studies, the authors identified 
key metabolites, including butyrate, cholate, and propionate, 
secreted by indigenous microbes, that directly interact with 
EC cells to increase the biosynthesis and release of 5-HT 
and amplify TPH1 expression in the colon of supplemented 
GF mice. These microbially-derived changes also had down-
stream effects, including altering GI motility and platelet 
aggregation.

We have also demonstrated a direct relationship between 
microbes and 5-HT production through toll-like receptors 
(TLRs) (54). Expressed on numerous colonic cells, including 
EC cells, TLRs act as immunological surveillance, recognizing 
microbial-associated molecular patterns and subsequently 
prompting an immune response (55). In this study, post-
antibiotic treatment, C57BL/6 mice displayed significantly 
altered microbial compositions in conjunction with reduced 
colonic 5-HT levels, diminished EC cells and significantly 
downregulated expression of TLR2. These findings prompted 
investigation in TLR2 and TLR4 knockout mice. TLR2−/− 
mice, but not TLR4−/−, had significantly lower EC cell numbers 
and 5-HT concentrations in the colon compared to wild-type 
mice. Further, in both GF mice and 5-HT-producing BON-1 
cells, manipulation of TLR2 signalling affected TPH1 expres-
sion and 5-HT production. Together, these findings suggest 
that TLR2, a key microbial sensor, is an important factor in 
not only EC cell biology but also the generation of 5-HT in 
the colon (54).

5-HT’s Impact on Microbes
In vitro and in vivo studies have demonstrated that 5-HT ma-
nipulation can affect the microbiota. For instance, Turicibacter 
sanguinis, a spore-forming bacteria, expresses a protein struc-
turally similar to mammalian SERT (56), suggesting a direct 

Figure 2. Physiological impacts of 5-HT. Both central nervous system-derived and gut-derived 5-HT can have a vast array of physiological impacts 
throughout the cardiovascular, skeletal, and genitourinary systems but also contribute to the functioning of the gut, metabolic processes, and to 
behaviour, development and mood in the brain.
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interaction with 5-HT. Further, administering either 5-HT or 
the selective serotonin reuptake inhibitor  (SSRI), fluoxetine, 
affects the ability of this microbe to compete against other 
microbes in the intestinal milieu (56). In addition, several 
bacterial species capable of synthesizing 5-HT include but 
are not limited to Klebsiella pneumoniae, Staphylococcus 
aureus, Escherichia coli K-12, and Lactobacillus plantarum 
(46). In vitro work has also demonstrated that 5-HT can af-
fect the growth of certain bacterial species, including E. coli, 
Enterococcus faecalis, and Rhodospirillum rubrum, in a dose-
dependent manner (15,57).

Recent work from our lab has also added to the growing 
body of research illustrating this reciprocal relationship, 
suggesting 5-HT can have both a direct and indirect impact 
on microbial composition and function (28). In this study, 
intrigued by our previous work implicating 5-HT in the path-
ogenesis of colitis (58), we investigated microbial differences 
between in Tph1−/− mice that have significantly reduced 5-HT 
in the gut compared to heterozygous Tph1+/− littermates. Deep 
sequencing revealed distinct compositional and functional 
alterations in the microbiota between Tph1−/− and Tph1+/− 
mice, the effects of which were tied with colitis severity in 
fecal transplant studies. Isolated commensal microbes, in-
cluding Bacteroides thetaiotaomicron, B. fragilis, E. coli and 
Ruminicoccus gnavus were directly affected by 5-HT, showing 
diminished growth in a concentration-dependent manner. We 
also uncovered in both in vivo and in vitro work that 5-HT 
can impact the microbiota indirectly by modulating the pro-
duction of antimicrobial peptides, particularly β-defensins, 
through 5-HTR7 signalling. In parallel, work by Singhal et 
al. (59) illustrated that increased intestinal 5-HT by way of 
SERT−/− also impacted murine microbial composition.

ROLE OF 5-HT IN GUT INFLAMMATION
Alterations in the 5-HT signalling, including modifications 
in EC cell number and 5-HT production, are associated 
with altered severity of intestinal inflammation as seen 
across both clinical studies and experimental models of IBD 
(48,58,60–62).

Clinical Evidence
The precise role 5-HT plays within the context of IBD is still 
under investigation. With that being said, the current state of 
research suggests that alterations, whether positive or nega-
tively associated with disease severity, are present in the se-
rotonergic system in IBD. It should be noted, however, that 
between studies, these changes are not always consistent, and 
alterations in sample size and severity of disease at the time of 
sampling may, in part, account for the discrepancies.

In UC patients, decreased levels of 5-HT (60,61) and 
TPH expression (60) have been documented, as well as 
downregulation of SERT (63). However, both increased (64) 
and decreased (60,62) EC cell number have also been re-
ported in this condition.

In contrast, in CD patients, increased TPH1 expression, as 
well as downregulated expression of SERT (64), have been 
reported. EC cell number has been shown to be increased in 
CD (65,66). Moreover, mucosal 5-HT content in CD patients 
seems to vary with symptom status; CD patients who ex-
perience irritable bowel syndrome-like symptoms had sig-
nificantly higher colonic 5-HT than those without (67). 

Inflamed intestinal tissue of CD patients also showed signif-
icantly increased 5-HTR7, 5-HTR4, and 5-HTR3 expression, 
suggesting that alterations in 5-HT signalling may influence 
inflammation in CD patients (64,68).

Experimental Evidence
Across several experimental models of colitis, including dex-
tran sulphate sodium (DSS), trinitrobenzene sulfonic acid 
(TNBS), dinitrobenzene sulfonic acid (DNBS), as well as 
genetically susceptible models such as IL10−/− (69,70) and 
the CD4+ T cell transfer model, changes in the serotonergic 
system have been reported.

In DSS-treated rats, the density of EC cells was increased in 
both proximal and distal colonic tissue. Colonic levels of 5-HT 
were also increased (71). In guinea pigs administered TNBS, 
the resultant inflammation was correlated with increased 
5-HT content and diminished SERT expression (72). Further, 
TNBS-treated SERT−/− mice manifested more severe intestinal 
inflammation than wild-type controls (70). In fact, SERT ex-
pression and functioning are, in part, controlled by local pro- 
and anti-inflammatory cytokines (73,74), demonstrating the 
bidirectional relationship between serotonergic and inflam-
matory processes. Downregulation of SERT has also been re-
ported in DSS and CD4+ T cell models of colitis (63).

In addition, when treated with either DSS or DNBS, Tph1−/− 
mice or mice with pharmacologically reduced 5-HT displayed 
less severe colitis characterized by decreased levels of the pro-
inflammatory cytokines, Interleukin(IL)-1β, IL-6 and tumour 
necrosis factor (TNF)-α, as well decreased macrophage infil-
tration in comparison to their wild-type counterparts (58). 
Further, Tph1−/− mice, when treated with the immediate pre-
cursor to serotonin, 5-HTP, restoring 5-HT levels, displayed 
colitis severity similar to that found in wild-type counterparts.

ROLE OF 5-HT IN THE REGULATION OF 
AUTOPHAGY IN THE CONTEXT OF GUT 
INFLAMMATION
Autophagy is the process of cellular ‘recycling’, a catabolic 
process that comprises packaging and shuttling damaged 
cellular components, debris and infectious agents to seques-
tered areas like the autophagosome and autolysosome where 
degradation and recycling can occur (75,76). It is a process 
crucial in the homeostatic balance of the gut, playing roles 
in antimicrobial defence and barrier function as well as 
combating the effects of local stressors such as hypoxia, in-
fection, and cell death (77,78).

Genome-wide association studies have linked disrupted 
autophagy via genetic polymorphisms, such as ATG16L1 and 
IRGM, as a potential force in the pathogenesis of IBD (76). In 
animal models, mice lacking the autophagy genes, ATG16L1 
and ATG7, develop more severe colitis when exposed to DSS 
than their wild-type counterparts (79–81). Moreover, treat-
ment of IL-10−/− mice, which develop spontaneous colitis, 
with the potent autophagy inducer, rapamycin, ameliorated 
colitis severity, helping to restore disrupted intestinal permea-
bility and diminish levels of the pro-inflammatory cytokines, 
IL-17, Interferon (IFN)-γ, and TNF-α, in the colon (82).

We have recently uncovered a key interaction between 
5-HT and autophagic processes in the context of colitis. In 
mice, elevated 5-HT via 5-HTP or in SERT−/− mice, was found 
to impair autophagy, whereas reduced 5-HT, in Tph1−/− mice, 
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was linked with upregulation of autophagic process (83). 
These findings were respectively linked with enhanced and di-
minished colitis susceptibility. Work in double knockout mice 
with both genetically disrupted autophagy in intestinal epithe-
lial cells and diminished 5-HT, revealed that the protective ef-
fect of reduced 5-HT in the Tph1−/− mice in the context of DSS 
colitis was abrogated when Tph1−/− mice also had a deficiency 
in the key autophagosome formation enzyme, autophagy re-
lated 7 (ATG7). These double-knockout mice also exhibited 
a colitogenic microbial composition. Taken together, these 
findings suggest a key role of the 5-HT-autophagy axis in the 
processes of intestinal inflammation.

ROLE OF ENVIRONMENTAL AND DIETARY 
FACTORS IN THE REGULATION OF COLITIS 
VIA 5-HT
Environmental factors, including microbial exposure, antibi-
otic use, hygiene practices, diet and smoking, can impact the 
pathogenesis of IBD (84–88). One such factor at the forefront 
of research is the pattern of eating deemed as the ‘Western’ 
diet, which consists of low fibre, high salt, high fat, high-caloric 

intake, and elevated consumption of highly processed foods 
(89). Emerging research suggests that additives used within 
the processed foods common in the Western diet, including 
those utilized to improve colour, flavour or texture, may con-
tribute to the pathogenesis of IBD (89–91).

For instance, dietary emulsifiers (91–95) have been 
implicated in the pathogenesis of colitis and the rising inci-
dence of IBD. In particular, the common emulsifier, carra-
geenan, in both in vivo and in vitro studies, has been shown 
to promote pro-inflammatory cytokine expression, intes-
tinal permeability, bacterial translocation, microbial changes 
and contribute to the severity of intestinal inflammation 
(91,92,96–98).

In addition to emulsifiers, the consumption of synthetic 
food colourants, such as Allura Red (AR or Red 40), Brilliant 
Blue (BB or Blue 1), and Sunset Yellow (SY or Yellow 6), have 
been increasing steadily since the 1950s (99,100). Studies 
show that Allura Red and Sunset Yellow are connected 
with fibrosis and leukocyte infiltration in both the liver and 
kidneys of rats by the promotion of oxidative stress (101), 
AR induces significant DNA damage in colonic tissue (102), 
and synthetic food dye consumption may also play a role in 

Figure 3. Serotonin (5-HT) and intestinal inflammation. 5-HT is a major mediator of gut physiology and can contribute to the pathogenesis of intestinal 
inflammation. Recent works have highlighted how serotonin signalling is impacted by environmental factors, including processed foods, hygiene 
practices, antibiotic exposure and food dyes, such as Allura Red (1). Altered 5-HT production and functioning can also affect the cellular recycling 
process of autophagy and ultimately impact both microbiota and the severity of intestinal inflammation (2). Additionally, 5-HT can prime various immune 
cells toward a pro-inflammatory profile and contribute to the exacerbated immune responses characteristic of inflammatory bowel diseases (3). 5-HT 
can also directly (4) and indirectly, through the production of host antimicrobial peptides, including β-defensins (5), impact the gut microbiota and 
contribute to a colonic environment predisposed to colitis.
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early-onset colorectal cancer (103). Work by He et al. (104) 
has furthered the notion that consumption of these dyes has 
a negative impact on colonic homeostasis. In a 2021 study, 
the authors found that the dye, Red 40, contributes to the de-
velopment of colitis in mice which overexpress IL-23. These 
findings contribute to the idea that in genetically susceptible 
individuals, the interactions between the host immune system, 
microbiota, and environmental factors can create a ‘perfect 
storm’ in the GI tract to prompt colitis.

Recent work from our lab has supported this idea and 
linked the chronic consumption of Allura Red AC (FD&C 
Red 40) to the pathogenesis of colitis via alterations in the 
serotonergic system through both microbiota-dependent and 
independent mechanisms (105). Allura Red AC is a common 
ingredient in candies, soft drinks, dairy products and some 
cereals and is used to add colour and texture to foodstuffs, 
often to attract children. We uncovered that C57BL/6 mice 
exposed to AR, in food or water over the course of 12 weeks, 
displayed exacerbated intestinal inflammation, impaired 
barrier function and a perturbed microbiota across various 
models of colitis, including DSS and the CD4+ T cell-induced 
model of colitis (105). In addition, chronic exposure to AR 
was associated with increased levels of colonic 5-HT, and 
notably, in Tph1−/− mice, with significantly reduced levels of 
5-HT in the colon, this chronic exposure to AR did not im-
pact colitis susceptibility suggesting that the effects of AR 
are mediated through 5-HT. Further, AR significantly altered 
microbial composition and germ-free mice administered 
cecal content from these AR-exposed mice also exhibited 
heightened colitis susceptibility and elevated 5-HT.

Though extensive future work is needed, particularly 
within the human population, a growing body of evidence 
suggests that environmental factors are key contributors to 
the pathogenesis of IBD.

SUMMARY AND PERSPECTIVES
The mammalian gut is the nexus of immunological, endo-
crine, neuronal, and microbial factors. Emerging evidence 
suggests that 5-HT may serve as the intermediatory between 
host, microbiota, and environmental factors, and evidence 
continues to advocate that this molecule is a crucial medi-
ator of gastrointestinal physiology and homeostasis. More 
and more environmental factors, including dietary composi-
tion and food additives, are becoming a significant area of 
concern with regard to intestinal inflammation. Recent work 
from our lab and from others has suggested that 5-HT plays 
a key role in modulating immune responses, gut microbiota, 
and autophagy, and in integrating environmental factors in 
the pathophysiology of colitis. A summary of recent work on 
the impact of serotonin in the context of intestinal inflam-
mation can be seen in Figure 3. The complexity of IBD, as a 
multifactorial disease, is continuously being uncovered, and 
current research suggests manipulation of the serotonergic 
system in both direct and indirect ways may prove an exciting 
possibility for future therapies in IBD.
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