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Abstract: Treatment of several autoimmune diseases and types of cancer has been an intense area
of research over the past two decades. Many signaling pathways that regulate innate and/or
adaptive immunity, as well as those that induce overexpression or mutation of protein kinases,
have been targeted for drug discovery. One of the serine/threonine kinases, Interleukin-1 Receptor
Associated Kinase 4 (IRAK4) regulates signaling through various Toll-like receptors (TLRs) and
interleukin-1 receptor (IL1R). It controls diverse cellular processes including inflammation, apoptosis,
and cellular differentiation. MyD88 gain-of-function mutations or overexpression of IRAK4 has
been implicated in various types of malignancies such as Waldenström macroglobulinemia, B cell
lymphoma, colorectal cancer, pancreatic ductal adenocarcinoma, breast cancer, etc. Moreover, over
activation of IRAK4 is also associated with several autoimmune diseases. The significant role of
IRAK4 makes it an interesting target for the discovery and development of potent small molecule
inhibitors. A few potent IRAK4 inhibitors such as PF-06650833, RA9 and BAY1834845 have recently
entered phase I/II clinical trial studies. Nevertheless, there is still a need of selective inhibitors for
the treatment of cancer and various autoimmune diseases. A great need for the same intrigued us to
perform molecular modeling studies on 4,6-diaminonicotinamide derivatives as IRAK4 inhibitors.
We performed molecular docking and dynamics simulation of 50 ns for one of the most active
compounds of the dataset. We also carried out MM-PBSA binding free energy calculation to identify
the active site residues, interactions of which are contributing to the total binding energy. The final
50 ns conformation of the most active compound was selected to perform dataset alignment in a
3D-QSAR study. Generated RF-CoMFA (q2 = 0.751, ONC = 4, r2 = 0.911) model revealed reasonable
statistical results. Overall results of molecular dynamics simulation, MM-PBSA binding free energy
calculation and RF-CoMFA model revealed important active site residues of IRAK4 and necessary
structural properties of ligand to design more potent IRAK4 inhibitors. We designed few IRAK4
inhibitors based on these results, which possessed higher activity (predicted pIC50) than the most
active compounds of the dataset selected for this study. Moreover, ADMET properties of these
inhibitors revealed promising results and need to be validated using experimental studies.

Keywords: autoimmune disease; cancer; IRAK4; inhibitor; MM-PBSA; molecular docking; dynamics
simulation; 3D-QSAR

1. Introduction

One of the significant serine/threonine kinases, IRAK4 (Interleukin-1 receptor associ-
ated kinase 4), is essential for the scaffolding and phosphorylation of the toll-like receptor
(TLR) [1,2]. IRAK1, IRAK2, IRAK-M, and IRAK4 are all homologs of the IRAK protein
and they have an N-terminal death domain, a linker, and a kinase domain; however, only
IRAK4 lacks a C-terminal extension [3,4]. IRAK4 kinase domain contains typical two lobe
conformation observed in several protein kinases with the ATP binding pocket. The N-
terminal lobe of IRAK4 has two distinctive features: An N-terminal extension of unknown
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function and a tyrosine as the gatekeeper residue [3,4]. Usually, in the ATP-binding pocket,
the key gatekeeper is responsible for providing access to the pre-existing hydrophobic
pocket shaped by the residues of α helix C, DFG motif, and the gatekeeper residue. The
existence of a tyrosine gatekeeper, which is unique to the IRAK family, has significance for
the development of selective IRAK4 inhibitors [3,5].

IRAKs are important mediators of interleukin-1 receptor (IL1R) and TLR signalling
processes including IL-33, IL-18, and IL-1 receptors [2]. TLR/IL1R-mediated signalling
regulates multiple cellular processes such as apoptosis, inflammation, and cellular differ-
entiation. TLR/IL1R signalling is associated with the employment of adaptor molecules
such as Mal/TIRAP, MyD88, TRAM and TRIF that play crucial role in the operating
and activation of IRAK family [3,6]. When IRAK4 is recruited to MyD88, activation of
IRAK4 causes IRAK1 and/or IRAK2 to be phosphorylated [7]. The MyD88:IRAK4:IRAK2
het-eromeric structure is known the myddosome complex. When the myddosome com-
plex is formed, IRAK1 phosphorylation initiates the accomplishment of scaffolding with
TRAF6 that further induces downstream signaling such as NFκB-mediated transcription
activation [8].

In combination with B cell and T cell hyperactivity, abnormal IRAK4 activation stimu-
lates the inflammatory chemokine and cytokine pathways, which increases autoimmune
signaling in the associated disease [9]. Other study disclosed that human patients missing
IRAK4 are seriously hyporesponsive and immunocompromised to IL-1 and LPS [10]. There-
fore, IRAK4 has a vital role in innate immunity and its inhibition by small molecules would
be significant for the treatment of various types of inflammations and autoimmune disease
such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and Systematic Lupus
Erythematosus (SLE) [8,11].

Moreover, IRAK4 has a vital role in the growth of several malignancies [11]. Patients
with melanoma have been found to have higher basal levels of IRAK4 phosphorylation [12].
MyD88 gain-of-function mutations (L265P somatic mutation) lead to numerous rare and
difficult to treat hematological malignancies such as activated B cell diffuse large B-cell
lymphoma (ABC-DLBCL), Waldenström macroglobulinemia (WM), chronic lymphocytic
leukemia (CLL) and pancreatic ductal adenocarcinoma (PDAC) [13,14]. Aberrant activation
of the NF-κB is also responsible for various cancer types, including colorectal cancer [15].
The evident role of IRAK4 inhibitors as probable anticancer and anti-inflammatory agents
impelled us to perform several molecular modelling studies including 3D-QSAR toward
the discovery of novel IRAK4 inhibitors. Although there have been previous reports aimed
at the generation of IRAK4 inhibitors, the development of cancer drugs is currently of
renewed interest.

Over the past few years, there have been dozens of patent applications as well
as the peer reviewed literature filed/published appealing small molecule inhibitors of
IRAK4 [16,17]. It seems that autoimmune and cancer diseases are being targeted. Few
pharma companies have proposed their inhibitors, among which Pfizer is the most ad-
vanced, having completed a phase II clinical study with their candidate compound, PF-
06650833 (IC50 = 0.2 nM) for rheumatoid arthritis (RA) and BAY 1834845 has entered phase
1 clinical trials [17,18]. Additionally, Aurigene/Curis and BMS companies proposed their
compounds, CA-4948 (IC50 < 50 nM) and BMS-986126 (IC50 = 5.3 nM) respectively [16,17].
Each candidate small molecule has demonstrated reasonable efficacy in several murine au-
toimmune disease models and are currently in Phase I or II clinical trials [1,4]. However, the
design of potent and selective IRAK4 inhibitors for the treatment of cancer is still required.

Hence, in the current study, we have implemented various molecular modelling
studies on the diaminonicotinamide derivatives as IRAK4 anticancer inhibitors. Initially
we executed molecular docking and 50 ns dynamics simulation (MD) of the most active
compound 33 from selected dataset for this study [2], following MM-PBSA binding free
energy calculations. These studies helped us to understand the binding mode of IRAK4
inhibitor and key active site residues of IRAK4, which contribute most to the total binding
energy. We then performed (3D-QSAR) 3D-quantitative structure-activity relationship
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by using the 50 ns pose from MD to align dataset compounds into the binding site of
receptor. Altogether, analyses of results revealed crucial structural characteristics of ligand
to improve the potency. We designed few IRAK4 inhibitors that possess better-predicted
activity (pIC50) than the most active compound of the dataset used in this study. Our
design scheme and predicted ADMET values could be useful for medicinal chemists or
pharmaceutical companies to develop novel IRAK4 inhibitors. Further experimental studies
need to be performed to validate our designed IRAK4 inhibitors.

2. Results and Discussion
2.1. Molecular Docking

The co-crystalized ligand was re-docked into the IRAK4 active site to evaluate the
docking technique. The co-crystallized ligand and the re-docked ligand had similar binding
conformations and H-bond interactions. Their difference in RMSD (root mean square
deviation) was 1.20 Å that proved the docking technique was reliable. Then we docked the
most active compound 33 from selected dataset into the active site of IRAK4 (Figure 1A).
Based on the lowest binding energy and binding interactions with the active site residues,
compound 33′s docked pose was chosen. Binding energy of the compound 33 with IRAK4
was found to be -7.94 kcal/mol which showed six hydrogen bonds. Three hydrogen
bonds were formed with the key hinge region residues. The NH from methylnicotinamide
and pyridyl nitrogen formed two hydrogen bonds with residue Met265. Third hinge
region hydrogen bond was observed between residue Val263 and the NH of amide. These
three hydrogen bonds are known as ‘classical triad hinge binding interaction’, which are
important interactions and were seen in docking of co-crystallized ligand as well as other
IRAK4 inhibitors [2]. The two OH groups from phenylbutane-1,2-diol formed 3 hydrogen
bonds with residues Ser269 and Asp272 respectively. Furthermore, indoline ring was
docked into the hydrophobic pocket and it formed pi-pi interaction with the gatekeeper
residue Tyr262. The interaction with Tyr262 was reported to be unique and essential for the
inhibition of IRAK4 [2].
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Figure 1. (A) Docked pose of the most active compound, 33, within the active site of IRAK4 (Hydrogen
bonds are represented as yellow dotted lines); (B) The most active compound 33 (shown in stick
model) within the hydrophobic pocket of IRAK4; the red coloured region represents the most
hydrophobic surface of the protein, and the white colour represents the least hydrophobic surface.
Hydrophobic residues are indicated with red sticks.

The docked pose of compound 33 was further analyzed to assess hydrophobic interac-
tions. A Python script ‘colour h’ was utilized to colour the hydrophobic residues of IRAK4
and check their interactions with compound 33. This script uses an Eisenberg hydrophobic-
ity scale (Figure 1B) to colour the receptor in PyMOL [19]. The most hydrophobic residues
were colored red, and the least hydrophobic area was colored white. The amide group and
indoline ring are docked deep inside the hydrophobic pocket occupying residues Val200,
Ala211, Leu318 and Tyr262. As discussed earlier, Tyr262 is one of the im-portant residue in
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the active site of IRAK4 and unique to the IRAK family as a gatekeeper residue, interaction
of which makes it crucial for IRAK4 inhibition. It was also reported that the interaction with
Tyr262 plays an efficient role in selectivity over other kinases such as JAK3 [2]. Therefore,
based on observed important interactions of compound 33 with IRAK4 and its low binding
energy, this pose was selected for further validation using molecular dynamics simulation.

2.2. Molecular Dynamics Simulation

To examine the binding stability and conformation of the ligand, Gromacs-2018 [20]
was used to conduct MD simulation of the docked complex of compound 33 and IRAK4. A
production run of 50 ns MD simulation was performed. Figure 2A shows the root mean
square deviation (RMSD) for a ligand and protein. The protein RMSD and ligand RMSD
are shown in red and black colored lines in the graph, respectively. The plot indicates
that the protein’s RMSD approached stability at 20 ns, varied somewhat between 25 and
40 ns, and then stabilized at the end of the simulation, indicating that the protein’s stable
conformation was attained. Prior to the 50 ns simulation, no variations with less than
0.1 nm deviations were seen in compound 33′s RMSD, which stabilised at 18 ns. During the
simulation, there were hardly any fluctuations seen, with the exception of the loop sections,
and the inclusive fluctuation was less than 2Å. At the end of the simulation, the system
was in equilibrium, according to overall RMSD analyses.
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Figure 2. (A) Root mean square deviations (RMSDs) of the protein and compound 33, lig-and RMSD
is shown in black color and protein RMSD in red color; (B) The graph of hydrogen bonds between
compound 33 and IRAK4 throughout the 50 ns of MD.

Hydrogen bond analysis of compound 33 at 50 ns showed that it formed 3 H-bonds
with the crucial residues of IRAK4 from hinge region (Figure 3A). These 3 hydrogen bonds
with residues Val263 and Met265 (classical triad hinge binding interaction) are same as
that of hydrogen bonds observed in the docking analysis above. These three interactions
were consistent throughout the 50 ns of simulation (Figure 2B). Therefore, 50 ns pose of
compound 33 retained three crucial hydrogen bonds with IRAK4. The pi-pi interaction of
indoline with Tyr262 was also observed. But other 3 hydrogen bonds with residues Ser269
and Asp272 were lost after 50 ns MD simulation due to the change in the conformation
of phenylbutane-1,2-diol moiety. This conformational change was expected due to a
special tyrosine gatekeeper residue, IRAK4 lacks a rear pocket in the ATP binding site,
and its solvent-exposed region is larger than that of other kinases [2]. It was also reported
previously that efforts to strengthen the H-bond to the carboxylic acid of Asp272 were
less successful [2]. However, pi-pi interaction and important hydrophobic interactions
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with residues Tyr262, Val200, Ala211 and Leu318 were reproduced at the end of 50 ns MD
simulation (Figure 3B). Hence, we considered 50 ns pose as a reasonable binding pose of
compound 33 and used it as a template structure for the alignment of dataset compounds
in 3D-QSAR studies.
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line representation).

2.3. MM/PBSA Binding Free Energy Calculation

The MM/PBSA package [21] was utilized to compute the binding affinity of compound
33. The predicted binding free energy was -112.841 kJ/mol. It is the sum of Van der Waal
energy of -220.417 kJ/mol, electrostatic energy of -45.771 kJ/mol, polar salvation energy of
173.117 kJ/mol and SASA energy of -19.859 kJ/mol. Van der Waals energy and electrostatic
energy were important for compound 33′s binding with IRAK4. However, the binding of
component 33 did not benefit from the polar salvation energy. In our docking and MD
analyses, most of the interactions formed by compound 33 were hydrogen bonds and
hydrophobic that were found to be consistent. This explains why Van der Waals energy
contributed the most among them. Additionally, for a thorough understanding of the
ligand-protein interactions, we carried out a binding free energy decomposition analysis.
The energy decomposition of each residue is depicted in column chart (Figure 4). The main
contribution to the binding of compound 33 was from residues Tyr262, Leu318, Tyr264,
Met265, Ala211 and Val263, which were involved in the hydrogen bond and hydrophobic
interactions. On the contrary, residues Glu238 and Lys213 were in disfavor with the binding
of compound 33. In conclusion, the study of the binding free energy demonstrated the role
of essential active site residues in IRAK4 inhibition.

2.4. 3D-QSAR (CoMFA and RF-CoMFA)

Receptor-based comparative molecular field analysis (CoMFA) and region focused
CoMFA (RF-CoMFA) [22] models were developed for the diaminonicotinamide derivatives.
All dataset compounds were sketched and aligned inside the active site of IRAK4 using
the MD conformation of the most active compound 33 as a template in SYBYL-X 2.1. The
alignment of the dataset compounds is shown in Figure 5. The dataset compounds were
separated into training set (26) and test set (12) using the standards given by Golbraikh
et al. and algorithm 4 (activity ranking) in the reported article [23]. We chose algorithm
4 (activity ranking) because there are no large gaps in activity values of dataset compounds
and algorithm 4 can construct a test set that represents the whole range of activities. Thus,
our test set contains compounds having high, medium, and low activity (pIC50) values.
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For assessing the reliability of a 3D-QSAR model, it is essential to calculate several
statistical parameters using the partial least square (PLS) method, such as cross-validated
correlation coefficient (q2), non-cross-validated correlation coefficient (r2), standard error of
estimate (SEE), optimal number of components (ONC), and F value. We developed CoMFA
models (q2 = 0.502, ONC = 4, r2 = 0.823) for the full dataset. These statistical values were in
an acceptable range but quite low to consider them as a good predictive model. Therefore,
we derived region focused CoMFA by using the PLS analysis obtained in the CoMFA model
(RF-CoMFA: q2 = 0.527, ONC = 6, r2 = 0.905). The obtained RF-CoMFA model possessed
better statistical results hence it was selected for further validation. RF-CoMFA model
derived using external test set validation (q2 = 0.751, ONC = 4, r2 = 0.911) showed highest
q2 and r2 values. The latter model was selected as a final model due to its better q2 and r2

values. The detailed statistical values of the selected RF-CoMFA model are given in Table 1.
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Table 1. Detailed statistical values of the selected RF-CoMFA model.

Parameter RF-CoMFA RF-CoMFA (Test Set 16)

q2 0.527 0.751
ONC 6 4
SEP 0.694 0.395
r2 0.905 0.911

SEE 0.258 0.236
F-value 73.716 53.689

Q2 - 0.568
BS-r2 - 0.932
BS-SD - 0.038
r2

pred - 0.808
LOF - 0.751
rm2 - 0.523

∆ rm2 - 0.120

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: standard er-
ror of prediction; r2: squared correlation coefficient; SEE: standard error of estimation; F value: F-test value;
LOF: leave-out-five; BS-r2: bootstrapping r2 mean; BS-SD: bootstrapping standard deviation; r2

pred: predictive r2;
rm2: average rm2 metric calculation; ∆ rm2: standard error.

Validation of RF-CoMFA Model

A number of validation techniques were used to assess robustness and predictive
ability of produced CoMFA model. All the techniques, such as bootstrapping, predictive
r2 (external test set), progressive scrambling (Q2), and rm2 metric calculation, exhibited
statistical values that were within the adequate range [24,25]. These findings showed that
the chosen model was reliable and predictive. Detailed statistical values are shown in
Table 1. In Table S2 of the Supplementary Material, the experimental and predicted activity
values for this model are presented. The scatter plot for the same is shown in Figure 6. The
compound 33 is shown superimposed with RF-CoMFA contour maps into the active site
of IRAK4.
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Figure 6. Scatter plot for the selected RF-CoMFA model; the plot shows the actual pIC50 versus
predicted pIC50 activity of the training and test sets; the training set compounds are represented as
blue diamonds; the test set compounds are represented as red squares.

2.5. Contour Map Analysis
RF-CoMFA Contour Maps

Figure 7 displays the steric and electrostatic contour maps of the RF-CoMFA model.
Green and blue colors indicate locations that are suitable for steric and electropositive
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substitutions, while yellow and red colors indicate regions that are unfavorable for these
types of replacements.
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contour map green contour shows the regions favorable for bulky substitutions and yellow con-
tours shows the regions unfavorable for bulky substitutions; Blue contour favors electropositive
substitutions while red contour favors electronegative substitutions.

In steric contour map, a big green-colored contour (Figure 7A) was observed at
R2 position of the propan-1,2-diol moiety, indicating that in this area, bulky groups are
preferred to elevate the activity. Substituting a steric group at R2 position could interact
with many hydrophobic pocket residues of IRAK4. The hydrophobic interactions with
residues Leu318 and Gly268 seen in our docking and MD simulation study of compound
33 can help to explain this. Similarly, two small yellow colored contours were present near
both phenyl ring of the R2 substitution and methylacetamide at R1 position, which suggests
that this region is unfavorable for the bulky groups. Adding bulky group at these positions
may hinder with the hinge region residues. In the electrostatic contour map (Figure 7B),
a small blue colored contour was located near the NH of indoline ring at the R3 position,
which shows that the electropositive group in this position is favorable and may interact
via H-bonds with neighboring active site residues. Conversely, a small red colored contour
was seen near phenyl ring at R2 substitution; signifying that electronegative groups at
this place are favorable. Thus, overall contour map analysis, docking and MD simulation
analyses revealed important structural features of a ligand to improve their potency.

2.6. Designing of IRAK4 Inhibitors and Their ADMET Calculation

A reliable RF-CoMFA model development and its contour map analysis was valuable
to propose a design strategy to design more potent IRAK4 compounds (Table 2). The
structural characteristics studied and analyzed from contour maps were used to design
new IRAK4 inhibitors. Using this strategy, we designed a small number of inhibitors,
whose activities were then predicted using the chosen RF-CoMFA model. All designed
compounds exhibited predicted activity (pIC50) more than the activity of the most potent
compound 33 of the dataset. In Table 2, the proposed compounds’ structures and predicted
pIC50 values are displayed.

Additionally, we predicted the ADMET characteristics for each designed compound.
Table 3 displays their properties in detail. We have predicted in silico ADMET (absorption,
distribution, metabolism, excretion and toxicity), physicochemical properties, pharma-
cokinetics, drug-likeness and medicinal chemistry friendliness using Artificial Intelligence
based In-silico ADME/Tox prediction online tool (https://www.aidrug.re.kr/web/, ac-
cessed on 18 July 2022). This tool quickly and accurately predicts ADMET properties of
molecules using the 2D structure of the molecule (SMILES code) that is extremely helpful
in making decisions that can determine the success of designed compounds. Hence, pre-
diction results showed in Table 3 shows that designed inhibitors have promising ADMET
properties. These inhibitors could be further evaluated using experimental studies and our
design strategy can be used to develop potent and selective IRAK4 inhibitors.

https://www.aidrug.re.kr/web/
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Table 2. The structures and the predicted pIC50 values of the designed IRAK4 antagonists.
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Table 3. In silico ADMET prediction and synthetic accessibility values of designed IRAK4 inhibitors.

Compound

Properties Absorption
(in %)

Distribution
(in %)

Metabolism
(in %)

Elimination (Liver
Microsomal

Stability) (in %)

Toxicity
(in %)

TPSA (in %) AlogP
Passive

Absorption
(Permeability)

Blood-Brain
Barrier

Penetration

P-gp Sub-
strates

CYP1A2
Inhibition

CYP2D6
Inhibition

CYP2C9
Inhibition

CYP2C19
Inhibition

CYP3A4
Inhibition Human Mouse Rat hERG

Inhibition

D1 111.80 3.36 52 67 39 55 34.50 57 49 44 53.38 77 66 48.43
D2 97.97 2.96 55 65.50 43 53 39 57.20 57 47 51.48 76 61 54.33
D3 125.44 3.30 46 57 42 56 32 49.60 44.67 48 54.28 71 59 51.28
D4 106.51 1.33 55 65 28 53.50 22.33 56.10 47.08 41 54.46 76 63 43.17
D5 143.81 1.04 44 68 45 45.50 19.50 56.90 50.33 43 53.19 79 69 41.17
D6 106.51 1.85 58 61 37 50.50 23.33 55.20 49.89 44 50.63 78 52 43.63
D7 106.51 3.27 55 59 41 45 27.33 54.80 54.33 49 54.21 73 56 46.30
D8 106.51 3.99 50 56 38 46 29.17 55.40 48.67 43 48 78 63 50.30
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3. Materials and Methods
3.1. Test Set/Training Set Selection for 3D-QSAR Analyses

A dataset of 38 IRAK4 inhibitors, with the diaminonicotinamide as a common scaffold,
was selected for our study [2]. SYBYL-X 2.1 was used to draw and optimize the structures
utilizing energy minimization with Tripos force field [26]. To create 3D-QSAR models,
biological activities (IC50) were translated into pIC50 (-log IC50) values and used as depen-
dent variables. The activity log span of pIC50 values of dataset compounds was more than
3 logarithmic units, that is within the necessity range [24,26]. The dataset was divided
into a training set of 26 compounds for model generation and 12 compounds as test set for
model validation based on the activity span of compounds. The chemical structures of the
dataset compounds with their IC50 values are listed in Table S1 of supplementary material,
in which the test set compounds are denoted by *.

3.2. Modeling of the Missing Residues

The crystal structure of IRAK4 with high resolution (PDB ID: 5W85) was obtained
from the protein data bank for our study. Missing residues are present in the loop region
from residue Ala216 to Thr223 and Glu337 to Gln341, which were modeled and refined
using the modellerV9.14 [27]. Taking into consideration the energy, GA341 score [28], and
DOPE score [29], the final modeled structure was selected.

3.3. Preparation of the Protein and Molecular Docking

We used Autodock 4 to perform molecular docking of the most potent compound
33 of the series [30]. The co-crystal structure (PDB: 5W85) was utilized as a reference
to dock the compound 33 inside the active site of the IRAK4 kinase. Before performing
docking, the receptor structure was prepared by the addition of polar hydrogens, applying
Kollman charges and assigning AD4 atom types. Subsequently, Autodock tools were used
to prepare the ligand by keeping the number of rotatable bonds less than 6. The active
site grid was produced using the x, y, and z coordinates of the co-crystallized ligand. The
grid box was extended to 70 × 70 × 70 points, with a grid spacing of 0.375 Å. The docking
was executed using the Lamarckian genetic algorithm (LGA) by setting the number of the
genetic algorithm (GA) run to 100 [24]. The docked pose of compound 33 was selected
based on its interactions with IRAK4 kinase and the lowest binding energy.

3.4. Molecular Dynamics Simulations

The MD simulation was performed using Gromacs-2018 [20]. The protein and ligand
topology files were generated using Amber99SB force field [31] and general AMBER force
field (GAFF) [32], respectively. The ligand force field parameters were developed using the
ACPYPE program [33]. The system was neutralized by adding 13 sodium ions. A three-
point water model (TIP3P) was used as the solvent. Energy minimization was performed
by using the steepest descent method for 50,000 steps. Subsequently, the system was
equilibrated first via a NVT ensemble for a 100 ps at 300 K using Berendsen thermostat [34]
and then using NPT for 100 ps with the constant pressure of 1 atm. The bonds were
constrained using the LINCS algorithm [35]. The particle mesh Ewald (PME) method [36]
was utilized to handle the long-range coulombic interactions. A 50 ns production run was
performed using NPT ensemble at 300 K with 1.0 atm pressure with a time step of 2 fs.

3.5. MM/PBSA Binding Free Energy Calculations

The g_mmpbsa package was used to perform molecular mechanics Poisson-Boltzmann
surface area (MM/PBSA) free energy calculation [21]. The last 1 ns from the production
run of 50 ns MD simulation was utilized for the calculation of binding free energy. The
binding free energy contains three energetic terms, including potential energy in vacuum,
polar-solvation energy, and nonpolar solvation energy. The molecular mechanics force
field parameters were used to calculate both bonded (angle, bond, and dihedral) and
non-bonded (electrostatic and van der Waal) interactions included in the potential energy
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in vacuum. Similarly, the Poisson-Boltzmann equation and solvent accessible surface area
(SASA) model was used to calculate polar solvation energy and nonpolar solvation energy,
respectively [37]. The assessment of binding free energy for the protein-ligand complex in
a solvent was calculated based on the equation given below:

∆Gbinding = ∆Gcomplex − (∆Gprotein + ∆Gligand) (1)

where, ∆Gbinding is the binding free energy and ∆Gcomplex, ∆Gprotein, and ∆Gligand represent
the free energy of complex, protein, and ligand, respectively.

3.6. CoMFA and RF-CoMFA

3D-QSAR models were developed using Comparative Molecular Field Analysis
(CoMFA) and Region-Focused CoMFA (RF-CoMFA) to correlate the biological activity
with the 3D structure of the compounds using SYBYL-X 2.1. CoMFA utilizes the steric and
electrostatic potential energies which are calculated using Lennard-Jones and Coulombic
potentials respectively. The dataset compounds were aligned using a template molecule
(50 ns MD pose of the most active compound 33) [24]. The selection of an appropriate
partial charge scheme is important to develop reasonable 3D-QSAR models [24]. We have
selected Pullman as partial charge scheme to generate CoMFA models. Default parameters
were utilized to develop CoMFA and RF-CoMFA models. An sp3 hybridized carbon as
probe atom with +1 charge and a grid spacing of 2.0 Å was used. Statistically reasonable
CoMFA and RF-CoMFA models were developed using the Partial Least Squares (PLS)
regression. In the PLS analysis, CoMFA descriptors and biological activity values (pIC50)
were used as independent variables and dependent variables respectively. PLS analysis
with Leave-one-out (LOO) crossvalidation was executed to evaluate the reliability of the
generated models. PLS analysis was used to calculate the squared cross-validated corre-
lation coefficient (q2) value, an optimal number of components (ONC) and the standard
deviation of prediction (SEP). A column filtering value of 2.0 was used. Based on the
obtained ONC, non-crossvalidation analysis was then performed to calculate the squared
correlation coefficient (r2), F-test value (F) and standard error of estimate (SEE).

Similarly, RF-CoMFA model was generated using the PLS analysis obtained during
CoMFA model development. RF-CoMFA is an iterative process that refines a built model
by improving the weight for those lattice points which are most related to the model. This
enhances the predictive capability of the PLS analysis used in RF-CoMFA.

Model Validation

The selected RF-CoMFA model was checked for predictive ability using different
validation techniques such as bootstrapping, leave-five-out (LOF), an external test set
validation, and rm2 metric calculations [25]. Bootstrapping for 100 runs was performed to
validate the model’s predictability [38]. The models were also validated by the predictive
correlation coefficient (r2

pred).

3.7. Design of New IRAK4 Inhibitors and ADMET Calculation

We have derived a design strategy based on the structural information obtained from
the contour map analysis of selected RF-CoMFA models. We designed new eight com-
pounds and further calculated their in-silico ADMET (absorption, distribution, metabolism,
excretion and toxicity), pharmacokinetic properties using Artificial Intelligence based In-
silico ADME/Tox prediction online tool (https://www.aidrug.re.kr/web/ accessed on
18 July 2022). This tool quickly and accurately predicts ADMET properties of molecules
using the 2D structure of the molecule (SMILES code) that is extremely helpful in making
decisions that can determine the success of designed compounds.

4. Conclusions

IRAK4 is a one of the important serine/threonine kinases that play fundamental role
in cell signaling, inflammation, apoptosis, and cellular differentiation, which makes it an

https://www.aidrug.re.kr/web/
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ultimate drug target for several types of cancers and autoimmune diseases. In this study,
we have employed various molecular modeling techniques, such as molecular docking,
MD simulation, and MM/PBSA binding free energy calculation, in order to examine and to
identify the essential active site residues accountable for IRAK4 inhibition. A comprehen-
sive investigation showed that active site residues Val200, Ala211, Tyr262, Val26, Met265
and Leu318 were important for the IRAK4 inhibition. It was concluded from the MM/PBSA
binding free energy calculation that residues Tyr262, Leu318 and Met265 were found to be
involved more in the total binding energy. Moreover, RF-CoMFA resulted in reasonable
statistical models in terms of q2 and r2 (q2 = 0.751, ONC = 4, r2 = 0.911). The model was
found to be predictive and reliable. Our docking and MD results were compatible with the
analysis of contour maps produced using a chosen RF-CoMFA model, thereby it elucidated
the structural features requisite to design more potent IRAK4 inhibitors. We proposed
a new design strategy based on the overall analysis and acquired structural features to
modify the ligand and designed eight IRAK4 inhibitors. Our designed IRAK4 inhibitors
exhibited predicted activity (pIC50) greater than the most potent compound of the di-
aminonicotinamide derivatives and their ADMET calculation showed promising results,
which can be further evaluated using experimental studies for their specific contribution in
the inhibition of IRAK4 as well as pharmacodynamics/pharmacokinetics properties. Our
design scheme and predicted ADMET values could be useful for medicinal chemists or
pharmaceutical companies to develop novel IRAK4 inhibitors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196307/s1, Table S1: The chemical structures of the
selected IRAK4 inhibitors with their IC50 values; Table S2: The predicted pIC50 and residual values
for RF-CoMFA model.
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