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INTRODUCTION

Charles Darwin said that emotions such as fear are innate, 
highly specific to situations and the product of coordinated 
brain activities, and that different animal species with diverse 
environmental demands (or histories) have evolved unique, 
specialised sets of fear (or defensive) responses to maximise 
survival.1 Sigmund Freud argued that humans use a defence 
mechanism to reduce anxiety arising from unconscious con-
flicts.2 However, defence mechanisms in evolutionary psychia-
try refer to adaptive responses in which individuals maximise 
their fitness from threatening environmental stimuli toward 
them. In an evolutionary context, the term fitness is a quanti-
tative representation of natural selection or sexual selection. It 
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refers to the ability of a genotype or phenotype to survive in 
the environment and produce offspring. So, as behavioural 
strategies to avoid risk and reduce conflicts, defence mecha-
nisms are adaptive survival and reproductive strategies.3

Organisms have evolved to maximise fitness by reacting ap-
propriately to various stimuli that occur within and outside of 
their bodies. Emotions are the evolutionary product of the 
brain’s effort to regulate physiology and behaviour to gain ben-
efits under certain conditions.4 Humans tend to act according 
to individual goals, thus mapping these goals can help to esti-
mate how emotions might have benefited potential fitness.4 
For example, in a variety of social or non-social threat situa-
tions, individuals respond in ways to protect themselves from 
potential or actual threats.5 For example, individuals may use 
social avoidance, social withdrawal, arrested fight, blocked es-
cape, or involuntary subordination as defensive behavioural 
strategies.6 

However, defensive behaviour is deeply related to negative 
emotions triggered by unfavourable ecological or social cues.7 
Emotions with negative valence are often considered undesir-
able and unhealthy. Negative emotions generally pertain to 
the difficulties of life, such as family death, separation, isola-
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tion, unemployment, loss of status, physical illness, social 
trauma, and excessive stress. Therefore, depression, anxiety or 
disgust are often regarded merely as unwanted consequences 
by undesirable internal or external happenings.

However, overactive defensive behaviours could be normal 
responses with adaptive value, despite their accompanying 
subjective uncomfortable feelings.8 The trade-off between 
costs and benefits depends not on the individual’s well-being 
but on reproductive fitness. Even if some emotional responses 
are unpleasant, it could be adaptive traits if they increase the 
fitness of individuals or their relatives. Thus, excessive activa-
tion of some defence modules is evolutionarily inevitable.9 

Therefore, defence mechanisms can cause unpleasant re-
sponses to individuals, but cannot be considered maladaptive 
because they have the advantage of improving fitness.9 Ac-
cording to the Error Management Theory (EMT), if the cost 
of false positives is less than the cost of false negatives, adap-
tive bias may occur to protect the individual.8

Excessive behavioural patterns are often considered un-
healthy because they cause subjective discomfort and impair-
ment of physical, mental, and social functioning. If people 
show excessive negative emotion or excessive defensive be-
haviours, they are diagnosed as clinical psychiatric disorders. 
In other words, they could be not only primary evolutionary 
adaptive responses but also maladaptive psychological re-
sponses.10 

Dysfunctional behavioural patterns which are linked to 
negative emotions such as depressed mood, anxiety, fear or 
disgust may solve adaptive problems.4 According to the Diag-
nostic and Statistical Manual of Mental Disorders, Fifth Edi-
tion (DSM-5), these can be broadly divided into three catego-
ries: anxiety disorders, depressive disorders, and obsessive-
compulsive disorders. More specifically, these include Major 
Depressive Disorder (MDD), Persistent Depressive Disorder 
(PDD or dysthymia), Generalised Anxiety Disorder (GAD), 
Posttraumatic Stress Disorder (PTSD), defensive Obsessive-
Compulsive Disorder (D-OCD), specific phobia, panic disor-
der, agoraphobia, Seasonal Affective Disorder (SAD), Avoid-
ant Personality Disorder (APD), social phobia, and the like.11 
These are known as D-type disorders because defence behav-
iours are their main symptoms, although they have different 

clinical features, prognosis, and demographic characteristics.12

D-type disorders, as dysfunctional behavioural patterns, can 
be classified into a distress cluster, which mainly shows depres-
sive symptoms, and a fear cluster, which shows fear symp-
toms.13 However, this division process is not without controversy 
(Table 1).12 For example, social avoidance, which is common 
in social phobia, refers to feelings of discomfort of others but 
also accompanies fears about face-to-face interactions. The 
main symptoms of MDD and GAD are depressive mood and 
anxiety, respectively, but most of the clinical features of these 
disorders are often quite indistinguishable. Also, some of the 
obsessive-compulsive disorders do not appear to accompany 
internal discomfort or fear, but it is appropriate to characterise 
those disorders as defence activation disorders due to the pur-
suit of safety and revitalization of the hate system.11,14

The prevalence of defence activation disorders is quite high. 
The 12-months prevalence rate of MDD, PDD (dysthymia), 
specific phobia, social phobia, panic disorder, GAD, and 
OCD was approximately 7%, 2%, 7–9%, 7%, 2–3%, 2.9%, and 
1.2%, respectively. The lifetime prevalence of PTSD and APD 
is 8.7% and 2.4%, repectively.15

Conversely, if defences are excessively inactive, this can be a 
sign of a defence inactivation disorder.16,17 Often, defence acti-
vation disorders are referred to as D-type disorders and de-
fence inactivation disorders as d-type disorders. The DSM-5 
includes the concept of defence activation disorders but does 
not include the idea of defence inactivation disorders because 
disorders are defined in terms of impairment of subjective 
well-being or social functioning of individuals rather than the 
level of evolutionary adaptation.11 Nonetheless, excessive inac-
tivation of defence modules may severely impair the fitness of 
individuals.18 Thus, the clinical manifestations of a manic epi-
sode of bipolar disorder could be much more harmful than 
those of depression even though many manic patients feel 
happy. Manic patients who voluntarily seek medical help are 
sporadic compared to depressive people who tend to seek 
medical help voluntarily.

The dysfunctional nature of defence activation disorders is 
not a matter of being unable to attend work or participate in 
social activities. Although it seems contrary to the argument 
mentioned above, that the overly activated defensive mecha-

Table 1. Defence activation disorders

Explanations Psychiatric diagnoses
Excessive and prolonged activation  
  of defence modules Distress cluster

Anxiety cluster

Major Depressive Disorder (MDD), Persistent Depressive Disorder  
  (PDD, dysthymia), Generalised Anxiety Disorder (GAD)
Posttraumatic Stress Disorder (PTSD)
Defensive Obsessive-Compulsive Disorder (D-OCD)
Specific Phobia, Panic Disorder, Agoraphobia, Seasonal Affective Disorder  
  (SAD), Avoidant Personality Disorder (APD), Social Phobia
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nisms have adaptive functions, defence activation disorders 
directly reduce the fitness of the individual. For example, the 
mortality rate for the population with MDD is 1.8 times higher 
than that of the general population. Moreover, the Total Fertil-
ity Rate (TFR) is only 0.9 compared to the general popula-
tion.19 In a variety of studies, infertility and affective disorders 
have been linked in a complex way, although the fertility rate 
of the general population varies from study to study.20 There 
have been no reports of mental disorders with higher fertility 
or lower mortality rates. Is defence activation disorder only a 
physiological consequence of environmental stress, not an 
evolutionary trait?

However, defence activation disorder is not just psychologi-
cal damage caused by environmental stress. In fact, the de-
fence activation disorders run in families. The heritability of 
MDD is up to 37%.21 Twins raised in different environments 
also show high concordance rate. The concordance rate of 
identical twins reaches 46–59%, while that of fraternal twins 
is 20–30%22,23 when it comes to MDD. The heritability of anx-
iety disorders, panic disorders and social phobia ranges from 
30 to 67%,24 30 to 60%, and 13 to 76%, respectively.25 

In other words, genetic conditions that significantly lower 
the fitness of individuals continue at high frequencies in hu-
man populations. Although activation of defensive mecha-
nisms contributes to the survival of individuals according to 
the EMT, heightened levels of defence activation seem to be 
related to low fitness. Despite this, defence activation still ap-
pears at a high rate in the population. It is the paradox of com-
mon, harmful, heritable mental disorders.26

Recently, a model of balancing selection has been presented 
as a compelling explanation about the diversity of behavioural 
patterns. The model asserts that polymorphism can be main-
tained by natural selection with eco-evolutionary dynamics,27 
even under the situation of no repetitive mutation, no gene 
flow, and no genetic drift. It has been supported by geneticists 
in the United States, including Theodosius Dobzhansky, and 
British ecologists.28 The heterozygosity advantage phenome-
non mentioned in the previous section is also one example of 
balancing selection, even though it is hard to apply to defence 
activation disorder.

This model can be roughly divided into the niche speciali-
sation and the frequency-dependent selection,29,30 which are 
not mutually exclusive concepts. 

Niche specialisation refers to the phenomenon by which 
each within a habitat adapts to a variety of niches.31,32 It is the 
case that different genotypes are best adapted in different mi-
crohabitat environments, i.e., multiple-niche polymorphism. 
This phenomenon is more apparent when soft selection oc-
curs. That is, the situation of a specific place does not affect the 
absolute fitness of the individual, but only the relative superi-

ority of individuals with one particular genotype.28 This diver-
sifying selection by superior fitness could maintain phenotypic 
polymorphism and possibly explain the various activation lev-
els of defence modules. 

Habitat consists of various patches made up of different bio-
logical or non-biological conditions. An individual may occu-
py only a subset of the ecological niche that the entire popula-
tion inhabits.33,34 The amount of resources provided by each 
ecological patch depends not only on the distribution of food 
resources but also on the risk of attack by predators, the rapidi-
ty of resource exhaustion, the difficulty of acquiring resources, 
and the reproduction and survival competitiveness of popula-
tions lodging the same patches.35,36 Therefore, each develops a 
variety of adaptation strategies that fit the given niches.33,34 
Since the frequency of individuals who employ in a behav-
ioural strategy cannot be ecologically uniform in all habitats, 
niche specialisation can be indirect preconditions that lead to 
the frequency-dependent selection.

The fitness of a phenotype can be determined by the fre-
quency of the individual exhibiting the phenotype in the pop-
ulation. The frequency-dependent selection is a phenomenon 
by which, in various ecological situations, the frequency of in-
dividuals with a particular trait is maintained continuously 
through interrelationships among individuals.30 Frequency-
dependent selection may be caused by interactions between 
individuals with different behavioural traits, or indirectly by 
their relative fitness to environmental conditions. 

There have already been attempts to explicate MDD using 
the frequency-dependent selection model. Various aspects of 
MDD can be explained by involuntary subordinate strategies. 
Taken as a whole, subordinate strategies are overall associated 
with lower fitness but can be maintained as an evolutionarily 
stable strategy (ESS) depending on the frequency of popula-
tion groups.37 As more individuals become submissive, domi-
nant individuals become more profitable. When there are 
more dominant individuals, the submissive individual be-
comes more favourable. In this condition, infrequent pheno-
types have higher fitness (the inverse frequency-dependent 
selection). Although it is a compelling argument, it cannot 
apply to solitary animals. It is also questioning to explain gen-
eral anxiety, fear, panic, and defensive obsession because they 
sometimes occur regardless of interpersonal struggle or posi-
tional competition.38 However, the hierarchical relationship is 
not a prerequisite for the frequency-dependent selection. This 
may be caused by direct interactions between individuals 
with different behavioural traits but may occur indirectly, for 
example, by different population density among discrete eco-
logical regions. 

In the case of the ideal free distribution model, there are re-
source-abundant places as much as necessary, and individuals 
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can leave and stay in any place freely. The population is in-
creased in the affluent area. On the other hand, the population 
decreases in the resource-poor area. As a result, the resource 
acquisition rate becomes the same. Thus, the value of resources 
per individual in the former area and the latter area will even-
tually decrease equally.39 If the population excessively grows in 
the resource-rich area, the individual living in a resource-poor 
area becomes relatively advantageous. The opposite is also ex-
act. Depending on the amount of resources and population in 
the niche, the relative fitness of individuals is frequency-de-
pendently determined.

Thus, behaviours that lead to dysfunctional responses can 
be adaptive behavioural strategies in the circumstance of a 
specific niche, and the genotype associated with the dysfunc-
tional behavioural pattern can be maintained in a frequency-
dependent manner for a long time in the gene pool. Perhaps 
defence activation disorders could be the result of multiple-
niche polymorphism. However, this leads to the question of 
how emotional and cognitive features of depressive disorder, 
anxiety disorder, and obsessive-compulsive disorder have to 
do with the ecological situation.

Aaron Beck mentioned automatic, spontaneous, and un-
controllable negative thoughts about oneself, the world, and 
the future as one of the cognitive characteristics of depressed 
patients.40 They called it the cognitive triad.41 A similar cogni-
tive tendency is observed in individuals with anxiety disor-
ders.42 Emotion, anxiety and cognition are deeply related to 
each other. Three cognitive distortions point to different enti-
ties, but they can be abridged in one schema. It is a belief that 
the ego will not get much from the world in the future. The 
cynical view toward the ego, the world, and the future can 
trigger psychomotor inhibition.41 A negative cognitive sche-
ma leads to inhibitory behaviours such as losing earlier, stay-
ing longer and stopping seeking. So negative cognition makes 
the individuals avoid challenges and remain in situ. 

Emotion is not only a subsequent phenomenon evoked by 
the cognition but also a mediator that guide the cognitive 
judgement. Moreover, emotions are often activated at the un-
conscious level, without any cognitive awareness. Evolution-
ally, feelings are older than the thoughts. The evolution of 
emotions could date back to the early stages of life.43

In other words, emotion may also operate as superordinate 
cognitive programs that appraise what the ego can obtain from 
the world in the future, known as the average resource acquisi-
tion rate in the entire habitat.44 It is impossible to obtain infor-
mation on the resource acquisition rate of many patches in all 
habitats or to calculate the average value thereof. This assump-
tion is in line with Tooby and Cosmides’s argument that emo-
tions exist to orchestrate other subordinate cognitive programs 
to achieve the best consequence of any given situation.45 For 

example, depression may be an emotional condition intended 
to rethink current behavioural strategies and curtail them if 
needed.46 

The benefits and costs of behavioural patterns can be quan-
tified by using ecological currencies. However, it is usually not 
possible to measure, directly, the fitness consequences of a 
particular behaviour. The alternative is the use of proxies.47 
The resource could be a reasonable candidate for the ecologi-
cal currency because the amount of resources acquired is usu-
ally linked to survival or reproduction.47 Thus, an optimal 
model can be designed for how reproductive fitness diverges 
depending on the emotional levels, precisely defence activa-
tion level.

In this study, I tried to a mathematical model for evaluating 
the evolutionary fitness of individuals with defensive activa-
tion strategies that deviated from the average optimal value 
using the marginal value theorem. In addition, the validity 
and reliability of these models were verified through agent-
based simulations. 

METHODS

According to the MVT, the decision between the two strat-
egies depends on the cost of moving to the new patch.48 The 
patches here do not mean just spatial patches; patches are dis-
tributed in the infinite temporal and spatial space. If it pro-
vides an individual with diverse reproductive success, it 
should be regarded as a different patch.49 The MVT is a model 
for explaining behavioural strategies that maximise the long-
term acquisition rate in a patch environment where resources 
are widely distributed. Originally, MVT was proposed as a 
mathematical model to explain the optimal foraging strategy 
of animals, but it is also useful in explaining various human 
behavioural strategies.35

Let us think of individuals in an ecological environment. In-
dividuals who feel potential threats (such as attacks by preda-
tors, depletion of residual resources, conflicts and position 
competitions due to increased populations, and the shrunken 
prospect of reproduction) may activate defence modules.50,51 
What strategies can be employed by individuals with activated 
defence modules?

First, individuals can leave the niche with a high diminishing 
rate of return and search for a new ecological niche. For exam-
ple, individuals can move to a patch with abundant resources 
and no threats from predators. Alternatively, they can defeat 
other competitors to monopolise the patch and redouble the 
return.34 At any rate, achieving enough total reproductive fit-
ness matters. In both cases, the defence mechanism need not 
be activated.

Second, individuals may remain at their patch for a longer 
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time. This strategy works under the condition of gloomy pros-
pects; in other words, ‘wait until spring.’34 It is the strategy of 
choice if the cost or risk of moving to a new patch is enormous. 

In a patch occupied by an individual, if the rate of resource 
acquisition per unit time is reduced, it is helpful to leave and 
find a new patch. However, if a new promising patch is far in 
the distance or there is high uncertainty about the resource 
acquisition rate of new potential patches, staying in the cur-
rent patch is a better choice.52 The optimal moment to leave 
for a new patch depends on the marginal resource acquisition 
rate of the current patch, the average resource acquisition rate 
of the entire habitat, and the expected movement cost or trav-
el time (Figure 1).48

The resources of a patch (i) decrease gradually because the 
individuals continually pick up them. Since the individuals 
pick up easy-to-acquire resources first, the resource acquisi-
tion per unit time (T) - that is hi (Ti) - also decreases gradual-
ly. Each patch has a different hi (Ti). In Patch A with a high hi 
(Ti), the rate of the resource returns declines slowly (solid 
line A). On the other hand, in Patch B with a low hi (Ti), the 
rate of the resource returns declines rapidly (solid line B). 

Then, the optimal time to leave the patch, uTi, which is the 
sum of the time spent in the patch (i) and travel time (t), is:  

[where t=average time to search and move to the new patch; 
Ti=time spent in the current patch i (i=1, 2…, k)]

The mean rate of resource acquisition, that is nEi, during 
the time spent in patch i and while moving to the next patch 
can be expressed as:

[where ET=cost per unit time to explore and move to new 
patches; hi (T)=the amount of resources acquired per unit 
time, T, from the patch (i=1, 2…, k); hi (Ti)=resource acqui-
sition per unit time in patch i (i=1, 2,…, k)]

When the equation is differentiated by the time spent in 
the patch, T, the slope of the resource return obtained at a 
specific time in a patch is as follows:

Therefore, when the rate of resource return obtained at a 
specific time at a patch become equal to or smaller than the 
average return of the resource in the total habitat, h total (T), 
that is if ∂hi (Ti)/∂Ti-h total (T) <0, the agent should leave the 
current patch.

When the value of ∂hi (Ti)/∂Ti-h total (T) approaches zero, 
the defence module would be activated. The reduction in the 
resource acquisition rate is the critical ecological pressure 
that directly affects the survival and reproduction of individ-
uals. In Figure 2, it is advantageous for individuals in the 
patch A to stay there longer than individuals in the patch B, 
because the resource acquisition rate decreases more slowly 
in the patch A than in the patch B. In other words, the de-
fence module should be activated more quickly and robustly 
in resource-poor patches (Figure 2). This logic is consistent 
with results of clinical studies that defence activation disor-
ders occur more often in the unfortunate socioeconomic sit-
uations such as high competition, socioeconomic crisis, high 
unemployment rate, and natural disasters.53-57

As mentioned above, the optimal time to leave the patch is 
determined by ∂hi (Ti)/∂Ti-h total (T). The agent in the patch 
already knows the hi (Ti) and Ti. However, information about 
h total (T), the average resource acquisition rate in a given hab-
itat, cannot be obtained accurately at the individual level.

Figure 1. A graphical representation of the MVT (travel time reflects movement cost). MVT: marginal value theorem.

Cumulative resource intake

Optimal load

Travel time Time foraging in the current patch

Optimal time in patch

Patch A

Patch B

Tangent to intake curve
Expected travel time  
  between patches
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In Figure 3, let Ca be the initial value. Then, the x-axis val-
ue Ta, where the dashed line A touches the marginal value 
curve, is the optimal time to remain in the current patch or 
the cost of remaining in the current patch. However, the cost 
(or risk) of leaving to a new patch is relatively small for 
Ca1(Ta1<Ta). In this case, even if the cost of seeking a new 
patch is added, movement can increase the average return of 
the agent. Therefore, it is advantageous to move to another 
patch after Ta1, whereas the cost (or risk) of Ca2 moving to a 
new patch is relatively higher than that of Ca. Therefore, it is 
advantageous to stay longer in the current patch (Ta2>Ta).

However, when the actual h total (T) is the slope of the dashed 
line A, if the agent misinterprets it as the dotted line A1, the 
agent leaves the current patch earlier than the optimal time and 
moves to a new patch. In this case, the agent underestimates the 
cost (or risk), for leaving to a new patch. By contrast, if the 
agent misinterprets it as the dotted line A2, it leaves the current 
patch later than the optimal time. In this case, the agent overes-
timates the cost (or risk), for leaving to a new patch. 

Let d be the weight of the individual for h total (T). There-
fore, the weight of average resource acquisition per unit time, 
weighted h total (T), can be expressed as:

Here, d is assumed to be a normal distribution with an av-
erage of 1, a maximum value of 2, and a minimum value of 0. 
In other words, an individual in a patch will try to leave the 
patch when ∂hi (Ti)/∂Ti-h total (T)·(1-(d-1))<0. Here d>1 
means that the agent is more pessimistic than the actual con-
dition of the entire habitat, and d<1 means that the agent is 
more optimistic than the actual condition of the entire habi-
tat. Thus, d is greater than 1 for D-type disorders and d is less 
than 1 for d-type disorders.

The primary alternate hypothesis of this study is that a 
range of dysfunctional behavioural strategies with different 
levels of defence activation can be maintained as ESS within 

Figure 2. A graphical representation of the activation of defence module and the resource acquisition rate (travel time reflects movement 
cost).

Figure 3. Optimal time to spent in the current patch depending on movement cost.
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the agent-based evolutionary simulation environments by the 
evolutionary mechanisms of balancing selection only when 
the gradient distribution of resource exists (H1). Therefore, 
the null hypothesis is that a range of dysfunctional behav-
ioural strategies with different levels of defence activation 
cannot be maintained in any case or can be maintained re-
gardless of the gradient distribution of resource (H0) within 
the agent-based evolutionary simulation environments.

In order to verify these hypotheses, I assume the following 
three environments. In the first environment, the resources 
are uniformly distributed both spatially (E1). In the second 
environment, resources are not distributed spatially uniform-
ly, but are randomly distributed throughout the environment 
(E2). In the third environment, resources are not uniformly 
distributed in space, and resources are distributed in a gradi-
ent in accordance with a certain spatial tendency in the entire 
environment (E3).

If a range of dysfunctional behavioural strategies with differ-
ent levels of defence activation can be maintained only in E3, 
the null hypothesis can be dismissed. Otherwise, I cannot prove 
the alternative hypothesis. Otherwise, the alternative hypothesis 
cannot be verified in an evolutionary simulation environment.

The agent-based model of defence activation disorders via 
the MVT was programmed using NetLogo.58 Model descrip-
tion followed the ODD (Overview, Design concepts, Details) 
protocol.59,60 The abbreviations used in the model are as fol-
lows (Table 2).

ODD (Overview, Design concepts, Details) protocol

Overview 

Purpose
The purpose of the agent-based model of defence activa-

Table 2. The abbreviations used in the marginal value model of defence activation disorders

Abbreviation Meaning 
C.C. Carrying Capacity
d-value Level of d. It ranged from 0 to 2, and the initial average is 1.
E Energy. The amount of energy in each circle.
E0 Initial Energy.

Env.Ht.
Environmental Heterogeneity. The linear distribution of the amount of resources in the patch, the average amount of  
  resources is mean E0, and the width of resources varies according to Env.Ht.

ht.w Weighting factor for Env.Ht.
Int.No. Initial Number. The population of circles at the beginning of the simulation.
M.E.R. Minimal Energy for Reproduction. It includes the energy for nurturing.
mer.w The weighting factor for M.E.R.
Max.D. The maximum distance which circles can move at a time. It represents the socioecological fluidity.
Mnt.Cost Maintenance Cost.
Mov.Cost Movement Cost.
mov.w The weighting factor for Mov.Cost
M.R.D.R. Mean Rate of Diminishing Returns. 
NA Agents with neutral defence module
OA Agents with overactivated defence module
R Resource. The amount of resource in each patch.
R0 Initial Resource. The original amount of resources.
R.D.R. Rate of Diminishing Returns.
Rep.Prob. Reproductive Probability.
R.O.P. The ratio of Occupied Patches.
Local R.O.P. The ratio of Occupied Neighbouring Patches.
TFR Total Fertility Rate
TSS Time Span of Staying in the current patch before moving to another patch.
TT Transit Time for the lifespan
UA Agents with under-activated defence module
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tion disorders is to determine whether diverse activation lev-
els work as ESS, even though they are sub-optimal in the 
context of the entire environmental condition. The model 
aims to demonstrate the phenomenon that the proportion of 
individuals with high d-value and low d-value maintains sta-
ble under various patchy environment. Additionally, the fac-
tors affecting the proportion of individuals with high or low 
d-value are analysed. 

Entities, State Variables, and Scales
This model has two kinds of entities: the people, which are 

represented as circles (movable agents), and the ecological 
niches, which are represented squared patches (fixed agents) 
in the two-dimensional squared environment reflecting the 
entire habitat. The model is spatial: the patch consists of 
1,369 square grid environments (37×37). In this model, 
patches with spatially unequal resource level are arrayed on a 
two-dimensional plane. Only one circle can be placed in a 
patch. Patches do not just mean the spatial place, but also re-
fers to the various environmental conditions within entire 
habitat (Figure 4). 

Each patch has two important state variables
The R0, the R. The circle can get information about the R 

from the patch. The amount of resources is distributed dif-
ferentially, according to Env.Ht. The distribution is vertically 
uniform and horizontally gradient. R0 of patches arranged 
from the lowest to the highest through x-coordinates. The 
average amount of resource is set as 150 (at xcor 9). When 
Env.Ht. is 1, the resource amount of patch with xcor 0 is 300, 

and the resource amount of patch with xcor 18 is 0. If Env.
Ht. is 0, the resource amount of patch with xcor 0 is 150, and 
the resource amount of patch with xcor 18 is also 150. If Env.
Ht. is 2, the resource amount is distributed from -150 to 450. 
The details are explained again in the section of sub-models.

The circle has state variables of age, E0, E and d-value. The 
Int.No. and the E0 of the circle is set at the initial setting. A 
circle represents each movable agent on the interface screen, 
and a new-born circle is displayed in yellow for one year. 
Movement between patches means leaving to a new ecologi-
cal patch, and the energy required to movement corresponds 
to Mov.Cost.

The model runs at a yearly time step. Each circle survives for 
up to 25 years, reflecting the reproduction period from 15 to 
40 years of age. Anthropologically, children aged 15 or young-
er are hard to give birth without potential health problems and 
acquire enough resources for nurturing by themselves.61 Re-
sources for survival to age 15 are included in M.E.R. Also, al-
though individuals after age 40 can increase inclusive fitness 
through additional production, this is purposefully disregard-
ed for the simplification of the model. The circle of the model 
has no gender. Time-span of simulations reflect mainly 5 or 10 
kiloyears (kyr).

Process overview and scheduling
The model includes the following actions. They are per-

formed in the order listed at each time step. 1) Energy Acquisi-
tion and Maintenance: The circle acquires resources from the 
patch. The E increases by multiplying the patch’s resources by 
R.D.R. The default value of R.D.R. is 0.3. The R of the patch is 
reduced by the same amount which the circle gets. Moreover, 
the E of the circle falls by Mnt.Cost. If the circle’s E reaches be-
low 0 or the age exceeds 40, the circle dies. Died circles are re-
moved from the environment at the beginning of the next 
step. 2) Decision of Movement: The circle moves to another 
patch if the expected amount of energy acquisition on the 
patch is less than the expected amount of average energy ac-
quisition in the entire habitat in addition to Mov.Cost and if E 
exceeds Mov.Cost.48 At this time, the expected average amount 
of energy acquisition in the entire habitat is calculated by 
weighting the d-value of each circle on the actual amount of 
average energy acquisition. If the circle does not move, the TSS 
of it increases by 1. When a move is completed, the TSS re-
turns to zero. 3) Movement: The circle moves randomly to one 
of the neighbouring patches. If there are no empty patches in 8 
neighbours, the circle stays. If movement becomes successful, 
Mov.Cost is paid from E. 4) Decision of Reproduction: If the 
age is between 15 and 40 years old, the E of the circle is higher 
than M.E.R. weighted by (1-Rep.Prob.), and there are empty 
patches among neighbours, the circle breed a new offspring. 

Figure 4. The simulated world of the model.
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The new-born circle begins the life at one-of neighbouring 
patches. If there are no empty neighbouring patches, the circle 
waits for the next chance. The d-value assigned to the new-
born circle is set by multiplying the parental d-value by a ran-
domly determined number in the distribution with an average 
of 1 and a standard deviation of d (SD-of-d). Here, Rep.Prob. 
is determined by the logistic function. Details are provided in 
the section of sub-models. 

Design concepts

Basic principle
The basic principle of this model is about the fitness of 

agents with sub-optimal d-value. The purpose of this model 
is to determine the usefulness of the MVT for explaining the 
relationship between d-value and distribution of R, Mnt.
Cost, Mov.Cost, and M.E.R. within various simulation envi-
ronments. It is also to identify whether dysfunctional behav-
ioural patterns associated with defence activation disorders 
can be maintained as ESS within simulated evolutionary en-
vironments.

Emergence
The results that emerge from the model are the E of circles, 

TFR, mortality, average d-value and distribution of circles ac-
cording to the d-value. 

Adaptation
Adaptive behaviour of circles are judgements of move-

ment. Circles adapt to the local environment through gener-
ations by differential survival and reproduction. The d-value 
of each agent limit their adaptive behaviour and their behav-
iours modified d-value of themselves by generations. Breed-
ing and death are determined by the R and the availability of 
empty surrounding patches. So, population density and re-
source amount in local environment restraint the circle’s be-
haviours indirectly. 

Objective, Learning, Prediction, Sensing and Interaction 
The objective is to maximise the final currency, i.e., the 

TFR. Learning or prediction is not included in the model. 
Each agent can perceive the amount of resource acquisition as 
well as its diminishing rate and the average amount of re-
source acquisition per unit time of the entire environment 
adjusted by the d-value. Here, the average amount of resource 
acquisition per unit time perceived by circles is not accurate 
because circles cannot sense it. Moreover, circles cannot per-
ceive any other information about the environment, patches, 
or other circles even whether there are empty neighbouring 
patches around them. Interaction between the patches is not 

considered in the design, but they can affect other circle’s be-
haviours through the crowdedness. 

Stochasticity
The stochasticity of the model is as follows. The new patch 

for movement or reproduction and d-value of each circle are 
determined stochastically in an ecological environment. Also, 
in the initial setup, the placement of the circles is determined 
randomly. In the real-world, circles may have some informa-
tion about the amount of resources of neighbouring patches 
from their experience or a social network. Moreover, all indi-
viduals have different competencies about movement efficien-
cy, survival, and reproduction. However, the model does not 
consider asymmetric information levels or differences in phys-
ical or psychological capabilities between individuals for sim-
plification. The model was designed based on the killjoy expla-
nation, to say, intricate behavioural patterns could be produced 
by simple mechanisms.62-64

Observation
Through the interface window, the behaviours circles, indi-

vidual state of E, the distribution of R and number of new-
born circles can be observed in real time. There are 13 plot 
charts, for example, No. of circles, Mean TSS, Mean R, TFR, 
Total net E for lifespan, TT, Total Mnt.Cost for lifespan, Total 
Mov.Cost for live span, mean lifespan, mean age, the propor-
tion of OA and UA, R.O.P and d-value (mean and SD). Some 
of them offer 4 different results per charts according to their d-
value (UA, NA, OA). They can be observed in real time. Also, 
there are 4 histograms for age, E, R, d-value. Also, a specific 
number of them are monitored in real time. All of them are 
presented the Supplementary Materials (in the online-only 
Data Supplement). 

Details

Initialization
The model initiated with 400 circles, but the population of 

circles can be modified from 1 to 1,369 (Int.No.). The num-
ber 400 is an arbitrary number, but it is intended to reflect 
the magic number 500 of typical hunter-gatherer societies.65 
The number 400 is close to the 475 people considered as the 
natural reproduction population size.35 However, because it 
did not reflect the population under 15 and over 40, 400 cir-
cles were supposed to be enough number above the mini-
mum population size to withstand short-term fertility and 
mortality changes.66

Circles located at the centre of each patch randomly. Co-
lour of circles is blue; the more energetic they are, the lighter 
their colour is. However, new-born circles coloured yellow 
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for one year. The initial energy level (E0) of the circle can be 
adjusted up to 200, but the initial default value is a mean of 
50 (0–100). The R.D.R. and M.R.D.R. of each patch can be 
within 0 and 1. Mov.Cost. can be set from 0 to 100, but the 
initial default value is 7. Mnt.Cost can be within 0 and 100, 
but the initial default value is 20. The Env. Ht. is 1, but it can 
be adjusted from 0 to 2. The C.C. can be up to 1,500, but the 
initial default value is 900. M.E.R. may reach 400, but the ini-
tial default value is 130. The d-value of the parent mostly de-
termines the d-value of the offspring. The model is designed 
to give birth to one to three offspring for a lifespan. It reflects 
two to six offspring because parents in this model to give 
birth to a 15-year-old offspring. Indeed, childhood mortality 
rates in hunter-gathering communities range from 50 to 
60%.67,68 Innate d-value is determined by parent’s d-value 
multiplied by the number randomly selected from the nor-
mal distribution with an average of 1 and a standard devia-
tion of d (SD-of-d). The default value of SD-of-d is 0.03. 

Input data
This model uses no time series inputs. 

Sub-models
(1) Energy acquisition and maintenance 

Let R0 be the initial resource amount of each patch. In each 
patch, the circle acquires resources as energy. Energy acquisi-
tion and Mnt.Cost are set as follows:

Each patch also loses the same amount of resources. Also, 
each circle loses Mov.Cost. (if move) and Mnt.Cost. When k 
times are repeated, the amount of final energy obtained is as 
follows:

Let Rk be the amount of resources remaining in the patch 
after k repetitions, as follows:

This can be reflected as follows:

(2) Gradation of resource distribution
When the coordinates of the centre patch are (0.0), the 

habitat has a square structure with 37 vertical and 37 hori-
zontal patches. If the coordinates of a patch are (X, Y), it has 
a value of R0: 300 minus the absolute value of X divided by 
18 multiplied by 300. If the X value is 0, the resource is 300, 
and if the X value is 18, the resource is 0 (default). It is calcu-
lated as follows. 

              
                                   

As mentioned above, the structure of the habitats is de-
signed as a continuous torus of revolution.
(3) Movement cost

Mov.Cost is a value obtained by multiplying Mov.Cost by 
the average number of movements. Here, the average num-
ber of movements is determined as below. The mobility is 
different depending on the micro-environment, but it is sim-
plified to be determined by the occupancy of the entire habi-
tat. Thus, Mov.Cost is calculated as follows (sub-model 1):

                           

(4) Movement decision
The movement of the circle is determined as follows. If the 

proportion of the patches occupied by the circle is R.O.P., n= 
the number of all patches and Y–U([0, 1]); 

and if the following conditions are satisfied, the circle moves.

Here, R(pn) is the amount of resources in the nth patch.
(5) Reproductive probability

Reproductive probability is calculated as follows. When 
the population (X1) is 50% of the carrying capacity (C.C.) of 
the entire habitat, the likelihood of reproduction is P1; when 
the population (X2) is 100% of the C.C. of the whole habitat, 
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the likelihood of reproduction is P2. Then, intermediate vari-
ables A and B can be obtained as follows:

Here, Rep.Prob. for the given population number X is as fol-
lows:

If the object capacity is 500, P1 is 0.7, and P2 is 0.2, the logistic 
function of the probability of reproduction can be expressed 
as shown in the following chart (Figure 5).
(6) The circle’s d-value

In the initial state, the d-value of a circle is determined as 
follows: 

Each agent is classified as an overactivated agent (OA), a 
neutral agent (NA), or an under-activated agent (UA) de-
pending on d-value. Therefore, they are classified as follows 
(SD is 0.15): 

Additional data about the the entire ODD (Overview, De-
sign concepts, Details) protocol, the complete schedule of the 
model and whole program code are available at the Supple-
mentary Materials (in the online-only Data Supplement). 

The main parameters of this simulation model are as follows: 
R.D.R. (and M.R.D.R.), Env.Ht., Mov.Cost, Mnt.Cost, SD-of-d. 
If the setting is extreme, all circles will behave the same way. For 
the stable proceeding of the simulation model, the limits of 
each parameter were calibrated. Also, the stress tests were per-
formed for several hundred times. Mnt.Cost is set to 20. And 
E0 is set to 50. So, if net resource acquisition is 0, circles will die 
soon (about 3yrs after). For survival, the circle should be posi-
tioned in patches where offer at least 20 units of R every year. 
SD-of-d is set to 0.03. Therefore, the phenotypic variation (Vp) 
between parent and offspring is a maximum of 0.03. The results 
of the calibration are presented in the Supplementary Materials 
(in the online-only Data Supplement) comprehensively. The 
calibrated ranges of the primary parameters used in the simula-

tion model are as follows. When parameters not listed in Table 
3 are used in some simulation environment, they are described 
again.

RESULTS

First, the model has trustworthy reliability and feasibility. 
TSS was varied according to their d-value. UA, NA and OA 
showed different TSS. The model provided stable ranges of 
d-values over time. And the proportions of UA, NA and OA 
were also stably different across the time. The simulation 
model showed stable and predictable results for 5 or 10 kyr. 
Stress tests were conducted for 97.5 kyr, and the stability of 
the model is confirmed.

Second, the model yielded the expected results of niche 
specialisation and frequency-dependent selection at least in 
the simulation environment. The population density was pro-
portional to the local resource amounts. The local d-values 

Table 3. Main parameter’s value and range

Parameter Range
Int. No. 400
E0 0–100 (mean 50)
Max.R0 0–300 (mean 150)
RDR (MRDR) 0.30
Mov.Cost 3–12
Mnt.Cost 20
Env.ht. 0–2
MER 90–170
SD-of-d 0.03
Age 15–40
RDR: Rate of Diminishing Returns, MRDR: Mean Rate of Dimin-
ishing Returns, MER: Minimal Energy for Reproduction

Figure 5. Logistic function of Rep.Prob.
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were distributed differentially according to the amount of re-
sources, and the numbers of UA, NA, and OA were distribut-
ed as expected with niche specialisation. The counts of UA, 
NA, and OA were negatively correlated with each other in the 
correlation analysis. 

Within the primary calibrated model environment, de-
scriptive statistical analysis was performed, and the summa-
ries of them are presented in the table below. The analysis of 
variance (ANOVA) was performed on d, population, TSS, 
Total Energy, and TFR to see the differences between the 
groups (UA, NA and OA). Bartlett’s test was performed, and 
each group was found to have the same variance. As will be 
explained later, the proportion of each subpopulation group 
was undoubtedly stabilised after about 0.5 to 1.5 kyr, even if 
an extreme initial condition is given. Therefore, data from 
1,501 years to 5 kyr were collected and analysed. Most simu-
lations were repeated for 16 times, that is 80 kyr. 

Simulations were performed for 5 kyr. Several Mov.Cost 
and M.E.R. values were applied within the calibrated ranges. 
There were significant differences in d, population, TSS, total 
energy, age, and TFR between varied environmental condi-
tions except for one condition. Also, there were significant 
differences among the three groups of UA, NA, and OA in 
the same environmental conditions (Table 4). 

Especially TSS showed remarkable differences among the 
three subgroups (UA, NA and OA). In the environment 
where Mov.Cost is 7 and M.E.R. is 130, the TSS of UA was 
0.2175±0.0621, but the TSS of NA was 0.4189±0.0750 and 
the TSS of OA was 0.8070±0.1794. In the environment 
where Mov.Cost is 7 and M.E.R. is 150, the TSS of UA was 
0.2104±0.0559, but the TSS of NA was 0.4120±0.0586, and 
the TSS of OA was 0.7938±0.1638 (Table 4). This tendency 
suggests that the average TSS of the circle increases as Mov.
Cost increases, and that the difference among the subgroups 
is maintained so that the sub-models of this simulation algo-
rithm work well.

The simulation model worked reliably as the niche speciali-
sation model. The relative proportions of UA, NA, and OA are 
shown in the following chart (Figure 6). The simulations were 
repeated for a total of 80 times. There was a slight tremor of 
each proportion over time, but the proportion of UA and OA 
was relatively low compared to NA during the most period. 
UA variability was higher than that of OA, but it was increased 
and decreased each other in an inverse way. After an average 
of about 400 yrs, the frequency of UA, NA, and OA entered a 
stable state and then continued consistently for 5 kyr.

If a balancing selection by a niche specialisation occurs, a 
stable frequency will be reached even if the initial d-value of 
the object is extreme. In the basic simulation setup, the d-val-
ue was set to 0.5, 1.0, and 1.5, respectively, and randomly se-

lected one of the three d-values in each circle. So, experiments 
were conducted to ascertain whether d-value converged to a 
similar value even if it started at 0.5 or 1.5. The experiments 
were repeated for a total of 32 times. If the initial d-value re-
mains unchanged or does not converge to a particular level, 
the assumption of balancing selection model should be re-
jected in the simulation environment. However, despite the 
extreme initial setting, the d-value converged to constant val-
ue over time. This agent-based model of defence activation 
disorder shows the expected outcomes of balancing selection. 
The relative proportion of UA, NA and OA became stable af-
ter about 1 kyr (Figure 7).

When d-value of each circle was randomly assigned from 
0.5, 1.0, and 1.5 at the beginning, the standard deviation de-
creased gradually with time, and d-value converged to a value 
close to 1. The mean d-value was 0.949, and the standard de-
viation was 0.156. When d-value of each circle was fixedly as-
signed between 0.5 and 1.5 at the initial setting, the standard 
deviation gradually increased over time but stabilised at a 
similar level. And d-value also converged to a value close to 1 
as well. The mean d-value was 0.939 and 0.947, and the stan-
dard deviation was 0.149 and 0.138, respectively. After about 
1.5 kyr, they converged to similar patterns (Figure 8).

As the above results, d-value of the circle stably converged 
in the simulation model. The initial condition affected the 
distribution, but after about 0.5 to 1.5 kyr, the influence of it 
disappeared.

Will this stable tendency persist for a very long time? The 
simulations were conducted under the same conditions for 
about 100 kyr (97.5 kyr). The results are shown in Figure 9 
(Note: Until 45 kyr, four runs were averaged, and then three 
runs were averaged). The average of d-values for the 97.5 kyr 
was 0.95374+/-0.018, and the maximum and minimum val-
ues were 1.016 and 0.895, respectively. Based on the above re-
sults, it is concluded that the agent-based simulation model of 
defence activation disorder has fine reliability and feasibility. 

This simulation model was designed to distribute the re-
source amount in a direction on a two-dimensional continu-
ous plane. In default mode, maximum R is 300, and the mini-
mum R is 0. From 1,501 to 5 kyr, data on the location and d-
value of circles according to the resource distribution were 
collected and analysed. The optimal d-value of the individual 
differs according to the resource distribution. Also, the local 
population densities varied depending on the amount of re-
sources. As Mov.Cost increased, circles tended to gather in 
places with many resources, but the overall distribution was 
similar. The absolute d-value was also different, but the ten-
dency of the difference according to the resource gradient was 
somewhat identical (Figure 10).

As commented in chapter 2, the circles of the simulation 
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Table 4. The d-value, populations, TSS, energy, age and TFR according to Mov.Cost and M.E.R

Mov.Cost - M.E.R. (repetitions) 3–130 (16) 7–130 (16) 12–130 (16) F
d-value (mean±SD) 1.017±0.037 0.954±0.034 0.815±0.030 774.71*
Population (mean±SD)

Total 736.3±29.6 641.7±26.2 560.5±20.6 286994.23*
UA 149.1±54.6 169.1±56.2 345.6±52.3 451.81*
NA 400.0±60.1 400.2±54.0 208.7±51.1 586.98*
OA 187.2±52.0 72.4±28.5 6.2±5.8 543.29*
F 625.73* 1498.44* 1882.26*

TSS (mean±SD)
Total 0.2714±0.0651 0.4115±0.0810 0.4858±0.0806 492.16*
UA 0.1089±0.0418 0.2175±0.0621 0.3773±0.0651 6066.92*
NA 0.2260±0.0554 0.4189±0.0750 0.6363±0.0995 7352.47*
OA 0.4899±0.1084 0.8070±0.1794 1.2647±0.6692 2984.14*
F 5684.67* 7451.49* 5161.64*

Total E. (mean±SD)
Total 314.88±46.99 316.81±48.44 300.09±42.53 266.90*
UA 309.99±94.42 314.54±92.57 308.08±55.92 31.36*
NA 314.44±58.01 322.08±58.02 290.05±66.36 773.12*
OA 322.73±81.65 299.40±123.61 244.86±171.58 1070.44*
F 96.72* 232.39* 880.26*

Lifespan (mean±SD)
Total 29.62±1.85 28.08±1.69 26.24±1.36 13367.69*
UA 29.29±3.68 27.65±3.17 26.27±1.75 5143.68*
NA 29.50±2.27 28.27±2.05 26.24±2.29 5444.84*
OA 30.32±3.36 28.34±4.95 26.19±7.32 1500.68*
F 625.72* 156.64* 0.69

TFR (mean±SD)
Total 1.009±0.158 1.008±0.162 1.004±0.157 1500.69*
UA 0.991±0.399 0.993±0.361 1.004±0.211 31.91*
NA 1.016±0.217 1.021±0.207 1.005±0.259 159.76*
OA 1.000±0.322 0.958±0.479 0.866±0.698 361.12*
F 102.72* 484.23* 560.90*

3–150 (16) 7–150 (16) 12–150 (16) F
d-value (mean±SD) 1.023±0.039 0.957±0.029 0.811±0.027 1727.05*
Population (mean±SD)

Total 721.194±23.114 629.6±19.5 550.0±15.9 393212.31*
UA 132.187±54.386 147.4±50.3 353.6±47.9 925.59*
NA 407.822±52.928 420.3±50.6 192.9±47.8 1041.69*
OA 181.185±52.275 61.9±22.4 3.5±3.9 1745.68*
F 1808.12* 4537.68* 2250.05*

TSS (mean±SD)
Total 0.269±0.058 0.4035±0.0632 0.4690±0.0648 811.18*
UA 0.103±0.039 0.2104±0.0559 0.3761±0.0533 7904.55*
NA 0.225±0.046 0.4120±0.0586 0.6220±0.0848 8427.23*
OA 0.482±0.094 0.7938±0.1638 1.2160±0.7747 5198.41*
F 20008.39* 12095.97* 7757.28*
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Total population                  OA                  NA                  UA

Figure 6. The proportion of UA, NA, and OA over time. UA: agents with under-activated defence module, NA: agents with neutral defence 
module, OA: agents with overactivated defence module.
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Table 4. The d-value, populations, TSS, energy, age and TFR according to Mov.Cost and M.E.R (continued)

Mov.Cost - M.E.R. (repetitions) 3–150 (16) 7–150 (16) 12–150 (16) F
Total E. (mean±SD)

Total 360.926±47.375 366.06±50.23 352.11±48.08 179.30*
UA 357.364±109.72 364.54±107.35 361.45±61.94 52.42*
NA 361.047±58.932 370.56±59.85 337.44±78.90 977.92*
OA 365.402±88.611 344.21±145.88 282.81±196.18 1031.37*
F 63.73* 406.92* 1011.27*

Lifespan (mean±SD)

Total 31.114±1.823 29.57±1.72 27.72±1.52 16465.67*
UA 30.848±4.147 29.14±3.61 27.79±1.93 7827.94*
NA 31.003±2.247 29.73±2.07 27.64±2.68 6919.09*
OA 31.684±3.507 29.81±5.66 27.55±8.18 1253.79*
F 429.39* 159.89* 5.24*

TFR (mean±SD)

Total 1.005±0.154 1.005±0.161 1.002±0.162 53.44*
UA 0.984±0.424 0.979±0.383 1.005±0.212 132.21*
NA 1.014±0.209 1.020±0.201 1.000±0.270 162.95*
OA 0.996±0.326 0.948±0.512 0.845±0.716 339.12*
F 205.17* 440.96* 506.41*

*p<0.05. d-value: Level of d, TSS: Time Span of Staying, TFR: Total Fertility Rate, Mov.Cost: Movement Cost, M.E.R: Minimal Energy for Re-
production, UA: agents with under-activated defence module, NA: agents with neutral defence module. OA: agents with overactivated de-
fence module
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Figure 7. The relative proportion of UA, NA, and OA over time according to d-value. Lt.: When the initial d-value is set to 1.5 (all objects are 
OA), the relative proportion of UA, NA, and OA over time. Rt.: When the initial d-value is set to 0.5 (all objects are UA), the relative propor-
tion of UA, NA, and OA over time. UA: agents with under-activated defence module, NA: agents with neutral defence module, OA: agents 
with overactivated defence module.
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Figure 8. A time-series pattern of d-values and SD-of-d under three different initial settings. 
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model have been simplified not to sense any information 
from patches or other circles without the R of the current 
patches. There is no communication and no memory. How-
ever, over the generations, the circles were specialised for lo-
cal niche’s environment. The model shows the phenomenon 
of niche specialisation well. 

On the contrary, when the resources are uniformly distrib-
uted in the whole environment, there is no local population 
difference (Figure 11). In addition, no regional population 
differences were observed when the resources were random-
ly distributed unequally in the overall environment (Figure 
12). From these results, the null hypothesis can be rejected.

As mentioned above, the population density varies accord-
ing to the amount of local resources. The population density 
of UA, NA, and OA were different from the distribution pat-

tern of total population density. As can be seen in Figure 13, 
NA was more populated in areas with high resources. How-
ever, OA was relatively populated in areas with low resources. 
Of course, OA has also declined at patches where resources 
are scarce. In contrast, UA has a relatively high population in 
areas with high resources. The population declined rapidly in 
low-resource areas, but interestingly, UA had a higher popu-
lation than OA in areas with very few resources.

Various optimal d-values are depending on each local en-
vironment. In other words, the diversity of defence activation 
level by niche specialisation was apparently observed in the 
simulation environment.

On the other hand, there was no difference in the local 
distribution of each subpopulation in the environment of 
homogenous or random resource distribution (Figure 14). 
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Figure 9. Changes in UA, NA, and OA fractions by 97.5 kyr. UA: agents with under-activated defence module, NA: agents with neutral de-
fence module, OA: agents with overactivated defence module.
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Figure 11. Distribution of local populations and the average d-value in the environment of homogenous resource distribution.
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Figure 12. Distribution of local populations and the average d-value in the environment of random resource distribution.
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From these results, the null hypothesis can be rejected. 
In an environment of Mov.Cost 7, the correlation of UA, 

NA, and OA population for 5 kyr was calculated (total 16 
runs). NA and OA showed high negative correlations, and UA 
and OA also showed negative correlations. UA and NA also 
showed negative correlations, but the relationship was not ro-
bust when only the data after 1,500 are considered (Figure 15).

In the simulation environments where the total population 
is limited, UA, NA, and OA showed inverse frequency-depen-
dent selection. OA showed relatively high negative correlations 
with UA and NA. OA tends to have relatively high densities in 
areas with low resources. However, as the population of UA or 
NA increased, the number of patches optimised for OA de-

Figure 13. The population density of UA, NA, and OA according 
to resource gradient of the x-axis. UA: agents with under-activat-
ed defence module, NA: agents with neutral defence module, 
OA: agents with overactivated defence module.
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creased, because UA and NA moved to other areas more often. 
Over time, an OA or UA that has moved to a patch with a low 
resource will be unfavourable to OA because they have rela-
tively suboptimal behavioural strategies. 

In other words, in patchy environments in which the move-
ment is not strictly restricted, and the amount of resources is 
graded, the populations of individuals with various d-values 
would maintain inverse frequency-dependent selection.

DISCUSSION

This study is compatible with previous researches that adap-
tation in localised areas can evolve various behavioural pat-
terns.30,69 Moreover, the results also show that defence activa-
tion can be maintained as ESS at different levels in the 
simulation environment by balancing selection. Niche special-
isation is a potent hypothesis explaining why there are various 
behavioural patterns. Agent-based Evolutionary Simulation 
model of D-type disorder is one useful way to see how niche 
specialisation occurs and what the environmental require-
ments for it are. 

Beside balancing selection model, several potential evolu-
tionary explanations have been proposed for the ultimate 
causations of dysfunctional behavioural patterns.70,71 Most of 
them are explained in the introduction briefly. Why are so 
many hypotheses struggling with each other until now? There 
may be two reasons. First, the conceptual pluralism may re-
flect the complex nature of the psychological disorder.72 Since 
the human mind is so complex, there have been many hy-
potheses about it so far. It must of necessity be so. Second, it 
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may reflect the diverse academic interests and historical tra-
ditions about the human mind. Competing hypotheses are 
featured by a lack of theoretical agreement and many models 
are vigorously conflicting with each other.73 A theoretical 
framework that can encompass many phenomena will be a 
solid background for building a general theory of human be-
haviour.74

For an empirical evolutionary study of dysfunctional be-
havioural patterns, some problems must be solved.10 First, 
proxy indicators as an interim measure should be established 
for the evolutionary study of human psychological phenome-
na. It is because the human mind is too complex to be quanti-
fied objectively.75 Therefore, a human behavioural ecological 
approach can be useful. A simple and straightforward ap-
proach is needed. Second, appropriate currencies should be 
presupposed as proxy indicators. It should be universal, mea-
surable, simulatable, and directly connected to fitness. Third, 
appropriate research methods are needed to observe how 
dysfunctional human behaviour evolved in the scale of geo-
logical time. The human mind does not remain in the fossil. 
Studies about contemporary hunter-gatherer studies have a 
variety of limitations, including small populations and exter-
nal effects due to globalisation. Most of all, hunter-gatherers 
are not primitive survivors. Archaeological research could be 
useful for studying the evolution of general human psyche, 
but not for studying dysfunctional behavioural patterns.76

To set the interim model, in this study, the agent-based 
model quantified the psychological state of anxiety, depres-
sion, and obsession as energy acquisition using the MVT. Al-
though psychological mechanisms have not evolved solely to 
activate defence modules, in this study, I proposed the MVT 

model that can quantify defence activation level by correlat-
ing them to the appraisal weight (i.e., d-value) for the ego, the 
world and the future. There has been no study that have 
quantified the traits of dysfunctional behavioural patterns in 
the context of human behavioural ecology or evolutionary 
neuro-anthropology as far as I know.

MVT is a well-established ecological theorem and has al-
ready proven its value in explaining animal and human mi-
gration phenomena.48 Animal studies have already been 
conducted using simulation models using MVT,77 and the 
theorem is useful for explaining the mobility of foraging so-
ciety.35 However, a simulation model of depressive disorder 
or anxiety disorder using MVT has not been proposed.

Of course, although MVT is a compelling ecological mod-
el, it is not possible to explain all features of the dysfunctional 
behavioural patterns of human with MVT. Nonetheless, sim-
plified models can be useful in explaining aspects of complex 
human behaviours and evolutionary phenomena. It is not 
necessary to say again that the most critical element in the 
agent-based model is simplification.78 In this paper, the effect 
of defence activation level, i.e., d-value, on ecological curren-
cy, i.e., the acquisition of energy, was studied.

In this model, the carrying capacity is used in three life ac-
tivities, i.e., the movement cost, the maintenance cost, and the 
reproductive cost. As a result, the reproductive fitness of each 
can be calculated. Using ABM, it is elucidated for what evolu-
tionary phenomena emerge in the geological timescales. As a 
result, this simulation model has proven to be an effective and 
straightforward method for evolutionary analysis of defensive 
activation disorders. Perhaps the results of the model can be 
applied to infer the phenomena of the real world.

Figure 15. The Correlation between the population of UA, NA, and OA. UA: agents with under-activated defence module, NA: agents with 
neutral defence module, OA: agents with overactivated defence module.
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According to the results of the study, each individual was 
adapted to have optimal d-value corresponding to local envi-
ronmental conditions. The local optimal d-value was differ-
ent from the global optimal d-value of the entire habitat. It 
was also observed that individuals with different d-values 
clustered differently depending on the local environment. In 
the resource-rich area, the subgroup with low defence activa-
tion level was clustered. In contrast, in resource-poor area, 
the subgroup with high defence activation level was clus-
tered. The model showed that multiple defence activations 
level could be ESS by the mechanism of balancing selection, 
specifically, niche specialization, at least, in a simulated envi-
ronment. A schematic diagram is shown below (Figure 16).

However, this phenomenon did not occur when resources 
were randomly distributed (not shown in this study). The 
random patchy environment was a prerequisite for ensuring 
the universality of all individuals with a global optimal d-val-
ue. If all other factors are controlled, different levels of defen-
sive behaviour are less likely to be evolved. The Total Niche 
Width (TNW) of the population can be divided into the 
Within-Individual Component (WIC) and Between-Indi-
vidual Component (BIC).79 All individuals in this model 
were premised to have the same mental and physical abilities. 
So Env.Ht. affect the BIC and d-value is only WIC. Speciali-
sation occurs when WIC are much smaller than TNW or 
BIC is a large proportion of TNW. Therefore, under the 
evenly patchy environment, specialisation is hard to occur 
because BIC is small. However, under the resource-gradient 
environment, specialisation can occur quickly if free move-

ment is limited. 
In this study, the amount of resources that each individual 

expects depends on the resource of birthplace. Much of TNW 
is BIC. In the real world, however, the differences in individu-
als are significant. In future studies, it is necessary to investi-
gate whether and how WIC, that is, individual traits influence 
the specialisation.

Also, as the population of a subgroup increased, the number 
of other subgroups increased. If a balancing selection occurs 
only by a niche specialization, the fluctuation of the propor-
tion of individuals with different d-values will be minimised. 
This is because the total number of niches is limited. Since the 
number of niches where their d value is optimal is limited, the 
growth of the sub-population increases the likelihood of mov-
ing to the suboptimal area. Thus, the niche specialisation phe-
nomenon could work as the environmental factor that main-
tains the proportion of subgroups with different d values in a 
frequency-dependent manner.30 However, it does not appear 
as a predator-prey relationship, as the Lotka-Volterra equa-
tion80 suggests. It is unclear what the negative correlation in 
this study has evolutionary meaning. A more sophisticated 
model is needed to distinguish the effects of the niche speciali-
sation and frequency-dependent selection.

In conclusion, the simulation results offer theoretical support 
for the argument that defence activation levels can be main-
tained by multiple-niche polymorphism. The d-value by itself 
does not induce absolute selection pressures, but a variety of 
optimal d-values may appear over the long term through rela-
tive superior fitness to others in various microenvironments.28 
The multiple-niche polymorphism model could work with 
multiple ESS if the geographic or social gradient of the environ-
ment does not change often.

There are some limitations to this study. First, this simula-
tion model does not have an evolutionary approach at the 
gene level. However, the full spectrum of genes related to be-
havioural traits is not yet clear, and genetic-level simulation 
studies are at a rudimentary level. It is also known that genetic 
competition is less likely to be the cause of the distinctive be-
havioural syndrome as the behavioural phenotype is under the 
control of the parliament of genes.81 Behavioural traits are 
complex adaptations that are dominated by many genes. 
Agent-based evolutionary simulations using methodological 
individualism82 could be feasible way at the present level of 
knowledge. Secondly, the optimal ecological model is not pos-
sible to verify why defensive behaviour is manifested in the 
real world.36 However, the purpose of using the optimal simu-
lation model is not to confirm whether individuals are behav-
ing optimally, but to investigate qualitatively whether defensive 
behaviour can be explained by the criteria of optimal behav-
iours or constraining factors presented in the model. There 

Figure 16. Niche Specialization and Frequency-Dependent Se-
lection of UA, NA and OA. UA: agents with under-activated de-
fence module, NA: agents with neutral defence module, OA: 
agents with overactivated defence module.
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may also be critical that the model and the actual defence acti-
vation phenomenon will be different. However, it is inevitable 
because the constraints or variables cannot, and need not, be 
perfect or reflect all the factors in the world.36 The evolutionary 
simulation model is handy for a qualitative approach.83 Third, 
there may be criticism that the optimal behaviour proposed in 
the model cannot be expressed in the real world. However, the 
ESS model with all the phenotypic gambit is a practical and 
useful research method that provides a robust approximation 
to a wide range of phenomena.84 It is especially useful in iden-
tifying the limiting factors by ABM. The purpose of this study 
is to confirm the maintenance of various defence activation 
levels in simulation environments and to estimate the con-
straints. The precise optimal degree of defence activation in 
the microenvironment or the expected prevalence of the 
MDD or anxiety disorder is beyond the scope of this research. 
Quantitative variables have only been used as a means for 
qualitative approaches. The ABM itself is not designed for 
quantitative approach. This model should not be used to esti-
mate the amount of defence activation, that is, how often de-
pressive or anxiety disorders occur. As demonstrated in prior 
research, qualitative models are superior to quantitative mod-
els in explaining ecological phenomena in general.36

This model shows that the fitness of the object with vari-
ous d-value is relatively determined by the distribution gradi-
ent of the resources in the simulation habitat. It is due to the 
fixed environmental conditions,36 where each agent is locat-
ed, but also by the frequency-dependent mechanism of local 
population density.35 Within these conditions, there is no 
evolutionary significance of the so-called “the best defence 
activation level,” (i.e., globally ideal level mood, anxiety, fear) 
corresponding to the average resource value of the entire 
habitat. The irrational behaviour can be caused by adaptive 
decision process the domain of selection and the domain of 
testing mismatch.85,86 The optimal level of defence activation 
appears relative to various conditions and circumstances, 
and this demonstrates there is no absolute optimal value.

This study is the first agent-based simulation study about 
the behavioural patterns of defence activation disorder, con-
vert it into ecological currency by using the MVT, and recon-
vert it to reflect the fitness in the simulation environment to 
find out the ultimate causations and the relationship between 
d-value and ecological constraints. In particular, the model 
was designed using the NetLogo programming platform, 
which is a robust multi-agent programmable modelling envi-
ronment.  

A model is an intentional representation of the real world.87 
Real systems are often too complex to be implemented through 
experimentation. Therefore, a simplified representation of the 
system is required.78 Agent-based simulations are particularly 

useful for behavioural and evolutionary researches. Some 
studies are using ABM in the field of evolutionary anthropolo-
gy; however, until now, ABM has never been used for the 
study of evolutionary medicine. Evolutionary anthropological 
knowledge, experience, and research methodology may ex-
pand the scope of evolutionary psychiatry.

The MVT is a well-known theorem in human behavioural 
ecology and a robust explanatory framework. However, except 
for some preliminary attempts to study mental disorders,52 this 
theorem has never been used in the field of evolutionary med-
icine. This study will confirm the value of MVT as a functional 
interim model for the study of neuro-anthropology.

Defence activation disorders could be results of cognitive 
and emotional traits that provide a pessimistic view on the self, 
the world and the future. Various levels of defence could be lo-
cally adaptive behaviours optimised in a variety of ecological 
settings. High or low level of defence activation could act as 
ESS in a simulated environment. They could be dysfunctional, 
but the outcome of an adaptive process to discourage futile at-
tempts and save unnecessary energy consumption. 

There are some caveats in interpreting this study, but there 
are undoubtful advantages of evolutionary explanations of 
various dysfunctional behavioural patterns. Agent-based 
simulation studies on mental disorders are still in its infancy. 
I hope that the results of this research will be fruitful in the 
future. 
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SUPPLEMENT MATERIALS

Calibration of Main Parameters

Movement Cost
Circle compares R available in the current patch (R.D.R. × R) with R of the entire habitat (M.R.D.R. × R0). If Mov.Cost is zero; 

the circle will move immediately when the latter exceeds the former. If Mov.Cost is huge; the circle never moves. All circles will 
die soon.

What happens if the circle stays? As TSS increases, obtainable E decreases. Therefore, as the TSS increases, the circle will con-
sider movement. UA moves first, NA moves next. OA moves most late. Suppose that Env.Ht. is 0, R0 is 100, R.O.P. is 0.4, and 
R.D.R. and M.R.D.R. are 0.3. These figures are obtained by experiments of several hundred times. The expected E acquisition of 
the moving circle and the expected E acquisition of the staying circle are shown in Supplementary Figure 1. UA, NA, and OA are 
shown in orange, blue, and red, respectively (the designated colours are the same throughout the paper). The expected E acquisi-
tion of the staying circles is indicated by different kinds of black lines. When TSS is increased, the expected E for staying circles 
decreases gradually.

Supplementary Figure 1. Weighted expected energy from the new patch.

The three small graphs above show the population of each circle over time when Mov.Cost is 0, 7, and 20, respectively (Note 
that the circles move freely here, and the patch’s R are randomly distributed). As seen in the chart, if Mov.Cost is 0, the fitness of 
UA and NA is the same. If Mov.Cost is 20, the fitness of NA and OA is the same.

When Mov.Cost is 7, it gets a bit complicated. When TSS is 1, the behavioural pattern of OA and NA is the same. OA and NA 
stay, but UA moves. If TSS is 2 or more, the behaviour of UA and NA becomes the same.NA decides to leave. If Mov.Cost is going 
up, UA becomes more watchful than before. If Mov.Cost is beyond 16, UA starts to stay on TSS 1. The small graph on the right 
above shows the TSS until NA shows the same behaviour as OA according to Mov.Cost. 

As the TSS increases, (R.D.R. × R) converges to 0. However, weighted expected E of UA, NA, and OA shows a monotonic de-
creasing function. So, if Mov.Cost exceeds 30, 20, and 10, weighted expected E shows a negative value. Therefore, if Mov.Cost ex-
ceeds these values, the circle will not move in any case. However, since Mnt.Cost must be considered, the TSS cannot be infinitely 



increased. If Mov.Cost is excessively high, all circles will die in the order of OA, NA, UA. Therefore, the value of Mov.Cost, which 
is appropriate for the simulation environment, should be between 4 to 20. If R.D.R. is 0.3, it should be between 6 and 20, and if it 
is 0.4, it should be between 10 and 20. Practically, TSS cannot be increased infinitely. If the maximum value of the TSS is regarded 
as about 5, it should be between 3 and 14 when R.D.R. is 0.2, and between 6 and 14 when R.D.R. is 0.2

R.D.R.
When the average R0 is 100 and Env.Ht. is 1, the R0 of each patch is distributed as a linear distribution between 0 and 200. If 

Env.Ht. is set to 25, then each R0 is distributed as a linear distribution between 75 and 125. Under resource-poor patches, the cir-
cle should leave the patch more rapidly. Under resource-rich patches, the circle should leave the patch more slowly. Therefore, in a 
habitat showing environmental heterogeneity, the circles exhibit different TSS depending on the amount of each patch’s resources.

R.D.R. calibration is tricky, because the expected E acquisition are differed from moving and staying circles according to the 
change of R.D.R.

The following assumptions were made. Mov.Cost is assumed to be 3, 7, and 12, and R0 is 50, 100, and 150. Then, the expected E 
acquisition according to R.D.R. is calculated for leaving and staying. The results are shown in the following chart (Supplementary 
Figure 2). The red window represents the range of changes in the behaviour of OA and NA throughout 5 TSSs. The yellow window 
represents the range in which the behavioural tendency s of UA and NA change throughout five TSSs (Note: in some graphs the full 
range of red and yellow windows is not visible). 

Supplementary Figure 2. Weighted expected energy when leaving.



Suppose TSS is a maximum of 5. If Mov.Cost is 3 and R0 is 50 and RDR is more than 0.17, OA and NA behave differently in 
TSS 5. The same behaviour (staying) is seen when the RDR is less than 0.16. This pattern remains the same until the RDR is 0.65. 
If the RDR exceeds 0.66, OA and NA show the same behaviour (leaving). It is indicated by a red window. If the TSS diverges be-
yond 5 and infinitely, the lower limit is lowered until the expected E acquisition is zero, which is 0.24. 

The graph shows only RDRs up to 0.43, so some segments are not shown. On the other hand, if RDR is 0.11 or more, EA and 
NA behave differently in TSS 5. When it is less than 0.10, the same behaviour (staying) is shown. This tendency is the same until 
the RDR is 0.31. If RDR exceeds 0.32, UA and NA will show the same behaviour (leaving) again. This is indicated by a yellow win-
dow. The following Supplementary Table 1 summarises the ranges of red and yellow windows for all nine cases.

Taken together, if Mov.Cost is 7 and R0 is uniformly distributed between 50 and 150, the most suitable RDR should be located 
between 0.24 and 0.27. Since the TSS is unlikely to emerge infinitely, the largest value of 0.27 in the above range can be regarded as 
the most suitable RDR value. However, it is assumed that the ROP is 0.4. As the ROP increases, each window moves up. Also, as 
the average R increases, each window also moves down. Also, as Env.Ht. becomes higher, the width of R0 becomes more exten-
sive, so that the interval in which there is no proper RDR value corresponding to the R of different patches becomes longer. Over-
all, in an environment where Mov.Cost is 7 and R0 is 100, the value between 0.17 and 0.34 where the red window (assuming TSS 
max is 5) and the yellow window overlaps, or the value between 0.24 and 0.27 mentioned above can be considered as the suitable 
RDR range for stable simulation experiments.

Supplementary Table 1. Range of yellow window and red window according to each Mov.Cost and R0 value

Mov.Cost
Yellow window Red window

R0 Low limit Upper limit Low limit* Low limit** Upper limit
3 50 0.11 0.31 0.1 0.17 0.65

100 0.07 0.22 0.05 0.12 0.58
150 0.05 0.18 0.04 0.09 0.55

7 50 0.2 0.48 0.24 0.29 0.79
100 0.12 0.34 0.12 0.17 0.67
150 0.09 0.27 0.08 0.15 0.62

12 50 0.31 0.63 0.4 0.43 0.93
100 0.28 0.44 0.2 0.26 0.76
150 0.14 0.36 0.14 0.2 0.69

*until Expected Energy when leaving go down below 0, **until TSS is 5



Supplementary Figure 3. Flow chart of defence activation disorder model. 

Schematic Diagram of Flow Chart (Supplementary Figure 3)



Supplementary Figure 4-2. Display interfaces of balancing selection model of defence activation disorder. Inspecting the 
Demography (Current Situation the Histogram windows of Age, Resource and Energy and the Plotting Window of R.O.P. 
with adjunct Monitoring Windows for Accumulated No. of Death, Rep.Prob, Year and so on). 

Supplementary Figure 4-1. Display interfaces of balancing selection model of defence activation disorder. The entire in-
terface of the simulation model. 

Display Interface of Simulation Model (Supplementary Figure 4)



Supplementary Figure 4-4. Display interfaces of balancing selection model of defence activation disorder. Inspecting the 
Accumlated Outcomes (the Plotting Window of Total Net Energy (Acquisition), Total TSS, Total Mnt.Cost, Total Mov.Cost 
For Lifespan with Adjunct Monitoring Windows). 

Supplementary Figure 4-3. Display interfaces of balancing selection model of defence activation disorder. Inspecting the 
Current Situation (the Plotting Window of No. of Circles, Mean Time Span of Staying, Mean Energy and TFR with Adjunct 
Monitoring Windows for Inspecting the Current Situation). 



Supplementary Figure 4-5. Display interfaces of balancing selection model of defence activation disorder. Inspecting d-
value and Fitness of Agents (the Plotting Window of Mean Age, d-value, TFR, proportion of OA and UA and Life Expectan-
cy with Adjunct Monitoring Windows).


