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Abstract: The investigation of the constituents of the rhizomes of Dioscorea collettii afforded one new
dihydroisocoumarin, named (−)-montroumarin (1a), along with five known compounds—montroumarin
(1b), 1,1′-oxybis(2,4-di-tert-butylbenzene) (2), (3R)-3′-O-methylviolanone (3a), (3S)-3′-O-methylviolanone
(3b), and (RS)-sativanone (4). Their structures were elucidated using extensive spectroscopic methods.
To the best of our knowledge, compound 1a is a new enantiomer of compound 1b. The NMR data of
compound 2 had been reported but its structure was erroneous. The structure of compound 2 was revised
on the basis of a reinterpretation of its NMR data (1D and 2D) and the assignment of the 1H and 13C NMR
data was given rightly for the first time. Compounds 3a–4, three dihydroisoflavones, were reported from
the Dioscoreaceae family for the first time. The cytotoxic activities of all the compounds were tested against
the NCI-H460 cell line. Two dihydroisocoumarins, compounds 1a and 1b, displayed moderate cytotoxic
activities, while the other compounds showed no cytotoxicity.

Keywords: Dioscorea collettii; chemical constituents; dihydroisocoumarins; dihydroisoflavones;
structural revision

1. Introduction

Dioscorea collettii HK. f. (Dioscoreaceae) is a perennial herbaceous plant of the Dioscorea
genus that is widely distributed in Southwest China, Myanmar, and India. The rhizomes of
D. collettii have been used clinically in combination with its sister species D. collettii HK. f.
var. hypoglauca in the treatment of gouty arthritis, hyperuricemia, hyperlipidemia, inflam-
mation, and tumors in China as a traditional medicine [1–5]. Previous studies have revealed
that the major active constituents of D. collettii are steroidal saponins [6,7]. An unusual
tricyclic diarylheptanoid derivative with thirty-four compounds has been reported on the
basis of the previous work of our group [8,9]. Pharmacological studies have demonstrated
that steroidal saponins of the Dioscorea genus have significant tumor-suppressive activities
in human cancer cells [10,11]. In our previous study, tsaokoarylone, a diarylheptanoid
obtained from D. collettii, also showed strong cytotoxic activity against the NCI-H460 cell
line [8]. However, to date, the chemical constituents of D. collettii and whether its other
types of compounds have significant cytotoxic activities have remained unclear.

As part of our continuous search for structurally unique and biologically valuable
natural products from the Dioscorea genus [8,9,12,13], this study aimed to investigate
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the phytochemical constituents and cytotoxic activity of D. collettii. In the present study,
one new dihydroisocoumarin, named (−)-montroumarin (1a), together with five known
compounds were obtained from the rhizomes of D. collettii (Figure 1). Compound 1a
is the enantiomer of the known compound montroumarin (1b). Compound 2 was first
discovered as a natural product from the marine mollusk Onchidium struma [14]. The
originally proposed structure of compound 2 (2′) (Figure 1) possessed a phenyl ether
skeleton bearing four tert-butyl substituents located in the aromatic rings at the positions
C-1, C-4, C-1′, and C-4′. However, during our structure elucidation of compound 2, a closer
inspection of its NMR data indicated that the originally proposed structure of compound
2 might not be correct. Herein, details of the isolation and structure elucidation of these
compounds, the structural revision of compound 2, and their cytotoxic activities against
the NCI-H460 cell line are described.
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Figure 1. Chemical structures of compounds 1–4 isolated from rhizomes of Dioscorea collettii.

2. Results and Discussion
2.1. Structural Elucidation of the Compounds

Compound 1 (1a/1b) was obtained as a colorless solid. Its molecular formula was
elucidated to be C15H12O4 by HR-ESI-MS at m/z 279.0626 for [M + Na]+ (calculated. for
C15H12O4Na, 279.0633), with ten degrees of unsaturation. The 13C NMR data (Table 1)
in combination with analysis of the HSQC spectrum for 1 showed the presence of one
carbonyl carbon, nine olefinic or aromatic carbons, one oxymethine, and one methylene.
In its 1H NMR spectrum, the five aromatic proton signals between δH 7.48 and 7.36
(δH 7.48 (2H, d, J = 7.5 Hz), 7.39 (2H, t, J = 7.5 Hz), and 7.36 (1H, t, J = 7.0 Hz)) indicated
the presence of one mono-substituted benzene ring. Two meta-coupled aromatic signals
at δH 6.26 (1H, br s) and 6.24 (1H, J = 1.8 Hz) suggested that 1 possessed one 1,2,3,5-
tetrasubstituted aromatic ring. Additionally, one oxymethine proton at δH 5.56 (1H, dd,
J = 12.0, 3.0 Hz) and one methylene group at δH 3.21 (1H, dd, J = 16.3, 12.2 Hz) and 3.06 (1H,
dd, J = 16.4, 3.2 Hz) were observed in the 1H NMR spectrum, perfectly matching the above
13C NMR data. In addition to the two aromatic rings and one carbonyl, the remaining
1 degree of unsaturation suggested the existence of a one ring structure. All 1H and 13C
chemical shifts for 1 were essentially identical to those observed for montroumarin [15].
Based on the interpretation of the HMBC and 1H-1H COSY spectra (Figure 2) as well as
a comparison with the literature data, the planar structure of 1 was characterized as 6,
8-dihydroxy-3-phenyl-3, 4-dihydroisocoumarin.
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Table 1. 1H-NMR (600 MHz), 13C NMR (150 MHz) data, and HMBC correlations of compound 1 in
CD3OD.

No. δH, mult (J in Hz) δC HMBC (H→C)

1 171.5, C
3 5.56, dd (12.0, 3.0) 81.8, CH C-1, C-4, C-4a, C-1′,

C-2′, C-6′

4
3.21, dd (16.3, 12.2)
3.06, dd (16.4, 3.2) 36.0, CH2 C-3, C-4a, C-5, C-8a,

C-1′

4a 143.4, C
5 6.26, br s 108.0, CH C-4, C-6, C-7, C-8a
6 166.4, C
7 6.24, d (1.8) 102.4, CH C-5, C-6, C-8, C-8a
8 165.7, C
8a 101.7, C
1′ 140.1, C

2′, 6′ 7.48, d (7.5) 127.3, CH C-3, C-3′, C-4′, C-5′

3′, 5′ 7.41, t (7.5) 129.7, CH C-1′, C-3′, C-5′

4′ 7.36, t (7.0) 129.7, CH C-2′, C-6′
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Due to having a single C-3 stereogenic center, 1 might exist in two potential con-
figurations, (3R)-1 and (3S)-1, and only the 3S-form (montroumarin) has been isolated
previously [15]. Subsequent chiral HPLC separation on 1 afforded compounds 1a and 1b,
a pair of enantiomers, in a ratio of 15:85 (Supplementary materials Figure S8), showing
that 1 is a scalemic mixture. The opposite optical rotations and mirror-like electronic
circular dichroism (ECD) spectra confirmed their enantiomeric relationship (Figure 3). The
absolute configuration of 1a and 1b was determined by comparing their ECD spectra and
optical rotations with those of montroumarin [15] and other similar dihydroisocoumarin
derivatives [16]. The absolute configuration of (+)-1 (1b) was established as S on the basis
of the strong positive Cotton effect (CE) at 233 nm in its ECD spectrum (Figure 3), which is
consistent with that of montroumarin. However, (−)-1 (1a) showed a strong negative CE at
233 nm; thus, its absolute configuration was deduced to be R. A comparison of the optical
rotations of 1a and 1b with that of montroumarin also supported the above conclusions.
Thus, the structure of compound 1a was defined and named as (−)-montroumarin, and 1b
was identified as the known compound montroumarin (see Figure 1).
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Compound 2 was purified as a pale-yellow oil. The 1H NMR spectrum (Table 2)
of 2 in CDCl3 showed signals attributable to an ABX-type aromatic ring at δH 7.54 (1H,
d, J = 8.6 Hz, H-6),7.36 (1H, t, J = 2.5 Hz, H-3),and 7.13 (1H, dd, J = 8.6, 2.5 Hz, H-5),
which indicated the presence of a 1,2,4-trisubstituted benzene ring [17,18]. In addition,
two sets of non-equivalent signals each containing three methyl groups at δH 1.33 (9H, s,
H-8/9/10) and 1.28 (9H, s, H-12/13/14) were also observed. The 13C NMR and HSQC
spectra displayed 12 carbon resonances, which were classified as eight olefinic or aromatic
carbons (δC 147.8, 147.8, 147.2, 138.7, 138.6, 124.6, 124.1, and 119.3), two quaternary carbons
(δC 35.0 and 34.7), and two methyl carbons (δC 31.6 and 30.4). The 1H and 13C NMR data in
CDCl3 (Figure S15) for compound 2 were highly consistent with the experimental data for 2,
2′-oxybis (1, 4-di-tert-butylbenzene) (2′), suggesting that 2 was the same substance isolated
by Sun B-N and coworkers [14]. The molecular formula of compound 2′ is C28H42O and the
structure of 2′ was originally identified as a phenyl ether derivative bearing four tert-butyl
substituents located in the aromatic rings at the positions C-1, C-4, C-1′, and C-4′ (Figure 1).
We subsequently performed 2D NMR experiments on 2. Careful examination of the HMBC
spectrum (Figure 2) of 2 revealed a strong HMBC correlation from H-5 (δH 7.13) to C-1
(δC 147.8), which is apparently inconsistent with structure 2′ (from H-2 to C-5 of 2′) but
consistent with 2. This key HMBC correlation indicated that the structure elucidation of 2′

is clearly incorrect. The 13C NMR data (δC 147.8, 147.8, 138.7, and 138.6) and the molecular
formula of 2′ indicated that 2 was a dimer. In the HMBC spectrum, the correlation from
the three equivalent methyl groups signals at δH 1.33 (9H, H-8/9/10) to the quaternary
carbon signal at δC 35.0 (C-7) suggested a direct connection between C-8/9/10 (δC 30.4)
and C-7, forming one tert-butyl substituent, which was further confirmed by the HMBC
correlations from H-8 (δH 1.33, 9H) to C-9/10 (δC 30.4). This tert-butyl substituent attached
to C-2 (δC 138.6) of the aromatic ring was clarified by the correlation from H-8/9/10 to C-2
in the HMBC spectrum. Similar, the HMBC correlations from H-12/13/14 (δH 1.28, 9H)
to C-11 (δC 34.7) and C-4 (δC 147.2) suggested a connection between C-12/13/14 (δC 31.6)
and C-11, forming another tert-butyl substituent attached to C-4 of the aromatic ring. The
1H-1H COSY correlation (Figure 2) of H-5/H-6 (δH 7.54) and the HMBC correlations of
H-5/C-11 and H-6/C-4 elucidated the connectivity of C-4/C-5/C-6. The linkage between
C-2 and C-3 was verified by the HMBC correlation from H-3 (δH 7.36) to C-7. The HMBC
correlations from H-5 to C-3 (δC 124.6) and H-3 to C-5 (δC 124.1), together with the C-3
and C-5 located at the meta-position of the aromatic ring, indicated the connectivity of
C-2/C-3/C-4/C-5/C-6. The established linkage of C-2/C-3/C-4/C-5/C-6 as well as the
HMBC correlations from H-3 and H-5 to C-1 (δC 147.8) constructed the aromatic ring.
Considering the downfield chemical shift of C-1, and the molecular formula required for
2, C-1 and C-1′ should be linked to the remaining one oxygen atom to form a dimer. The
structure of 2, shown in Figure 1, was identified as 1,1′-oxybis(2,4-di-tert-butylbenzene).
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Table 2. 1H-NMR (600 MHz), 13C NMR (150 MHz) data, and HMBC correlations of compound 2
in CDCl3.

No. δH, mult (J in Hz) δC HMBC (H→C)

1 (1′) 147.8 (147.8), C
2 (2′) 138.6 (138.7), C
3 (3′) 7.36, t (2.5) 124.6, CH C-7, C-11, C-5, C-1

(C-7′, C-11′, C-5′, C-1′)
4 (4′) 147.2, C
5 (5′) 7.13, dd (8.6, 2.5) 124.1, CH C-11, C-6, C-3, C-1

(C-11′, C-6′, C-3′, C-1′)
6 (6′) 7.54, d (8.6) 119.3, CH C-2, C-4 (C-2′, C-4′)
7 (7′) 35.0, C

8/9/10 (8′/9′/10′) 1.33, s 30.4, CH3 C-7, C-2 (C-7′, C-2′)
11 (11′) 34.7, C

12/13/14 (12′/13′/14′) 1.28, s 31.6, CH3 C-11, C-4 (C-11′, C-4′)

This explained well the strong HMBC correlation from H-5 (δH 7.13) to C-1 (δC 147.8),
which is apparently inconsistent with structure 2′. In addition, all the HMBC correlations
reported for 2′ [14], including the weak 4JC,H long-range HMBC correlation from H-6 (δH
7.54) to C-7 (δC 35.0) [19,20], were also consistent with structure 2. Moreover, compound
2 might be a naturally occurring dimer of 2,4-Di-tert-butylphenol (2,4-DTBP), which is a
common secondary metabolite produced by various groups of organisms [21]. Therefore,
we compared the chemical shifts of compounds 2, 2′, and 2,4-DTBP and found that the
structure elucidation of 2 was more reasonable than that of 2′ [22,23] (Figure S15). When
running a 13C spectrum prediction for compounds 2,4-DTBP and 2′, it is trivial to see that
the 13C-data of 2,4-DTBP are consistent with structure 2, whereas in the case of 2′ there is a
massive inconsistency. By searching SciFinder, we found that the structure of 2 was not
reported in any literature or patents but only had one commercial source. This was the first
report of its detailed structure elucidation based on 1D and 2D NMR spectroscopy data.

Compound 3 (3a/3b) was obtained as a colorless needle. The results of a comparison
between the 1H, 13C NMR data of 3 and those reported by Guimarães et al. [24] suggested
that the planar structure of 3 was 3′-O-methylviolanone. Compound 3 was optically
inactive, suggesting that it was a racemic mixture. Both of the two configurations (3R)-3
and (3S)-3 have been reported previously [25,26], but the ECD spectra of (3R/3S)-3 and
the specific rotation of (3R)-3 have remained undefined. Subsequent chiral resolution
of 3 (Figure S18) afforded a pair of enantiomers, 3a and 3b, and they displayed almost
mirror-image ECD curves that showed opposite CEs at 193, 210, 230, 272, and 325 nm. The
respective absolute configurations of (−)-3 and (+)-3 (3a and 3b) were defined as (3R) and
(3S) via a comparison of their experimental and calculated ECD spectra (Figure 3).

Compound 4 was also obtained as a colorless needle. A comparison of the 1H and
13C NMR data of 4 with those of compound 3 showed that their structures are closely
related, suggesting that 4 is also a dihydroisoflavone analogue. Through a comparison
of its NMR data with those reported [27], the planar structure of 4 was identified as
sativanone. Similarly to compound 3, 4 was also optically inactive, suggesting that it was a
racemate. Both of the two configurations (3R)-4 and (3S)-4, including their ECD spectra
and the specific rotations, have been reported [28,29]. Thus, compound 4 was identified as
(RS)-sativanone.

2.2. Cytotoxic Activity against NCI-H460 Cell Line

All the isolated compounds 1–4 were further evaluated for their cytotoxicity against
the human lung cancer NCI-H460 cell line (Table 3). The results indicated that compounds
1a and 1b, two dihydroisocoumarins, possess moderate cytotoxic activities, with IC50
values of 33.37 and 32.06 µM, respectively. Compounds 2–4 showed no activity, with an
IC50 > 50 µM.
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Table 3. The IC50 value of compounds on NCI-H460 cells (µM).

Sample IC50 (µM) Sample IC50 (µM)

Compound 1a 33.37 Compound 1b 32.06
Compound 2 >100 Compound 3a 57.83

Compound 3b 59.34 Compound 4 64.01
Cisplatin 1.27

3. Materials and Methods
3.1. General Information

One-dimensional- and two-dimensional-NMR spectra were obtained from a Bruker
Avance III 600 MHz spectrometer (Bruker BioSpin Inc., Zurich, Switzerland). Optical
rotations were measured with an MCP 200 Modular Circular Polarimeter (Anton Paar, Graz,
Austria). HRESIMS spectrum was obtained from a MicrOTOF-Q II ESI mass spectrometer
(Bruker, Bremen, Germany). UV spectrum was obtained from a Hitachi U-3900 UV-visible
spectrophotometer (Hitachi High-Tech Science Corporation, Tokyo, Japan). ECD spectra
were recorded by a MOS-500 Circular Dichroism spectropolarimeter (Bio-Logic, Grenoble,
France). Semi-preparative HPLC was performed on an LC-6A (Shimadzu, Kyoto, Japan)
equipped with preparative YMC Pack ODS-A column (250 × 20 mm, 5 µm, YMC, Kyoto,
Japan). A Daicel Chiralpak AD-H (250 × 4.6 mm, 5 µm, Daicel, Tokyo, Japan) was used
for the chiral separations. Column chromatography (CC) was carried out over silica
gel (100–200 and 200–300 mesh, Qingdao Haiyang Chemical Co., Ltd., Qingdao, China),
Sephadex LH-20 (Amersham Pharmacia Biotech AB, Uppsala, Sweden), and ODS RP-C18
(40–63 µm, YMC, Kyoto, Japan). Thin Layer Chromatography (TLC) was performed on
pre-coated silica gel GF-254 (Qingdao Marine Chemical Factory, Qingdao, China).

3.2. Materials

The rhizomes of D. collettii were collected from Mount Emei, Leshan City, Sichuan
province, China, and authenticated by Prof. Wenyuan Gao (School of Pharmaceutical
Science and Technology, Tianjin University). A voucher specimen (ID: 245020328) was
deposited in the School of Pharmaceutical Science and Technology, Tianjin University,
Tianjin, China.

3.3. Extraction and Isolation

The air-dried rhizomes of D. collettii (16.2 kg) were extracted three times with 90%
aqueous ethanol and three times with 60% aqueous ethanol under reflux (30 L, each
for 2 h). After removal of the solvent under reduced pressure, the residue was combined
and suspended in water to a final volume of 10 L, and then sequentially partitioned with
petroleum ether (PE, 60–90 ◦C), ethyl acetate (EtOAc), and n-butyl alcohol (n-BuOH).

The EtOAc extract (305.0 g) was subjected to silica gel column chromatography (CC)
eluted with CH2Cl2-MeOH gradient (10:0 to 0:10, v/v) to afford 19 fractions (A–S). Fraction
G was purified by Sephadex LH-20 CC eluted with CH2Cl2-MeOH (1:1) to yield 5 frac-
tions (G1–G5). Fraction G2 was exposed to silica gel CC eluted with PE-EtOAc gradient
(1:0 to 7:3, v/v) followed by Sephadex LH-20 CC eluted with CH2Cl2-MeOH (1:1), and
finally purified by semi-preparative HPLC (YMC C18, 250 × 20 mm, 5 µm, 10 mL/min)
eluted with 65% aqueous MeOH to yield compound 1 (15 mg, tR = 8 min). Fraction G4
was isolated by Sephadex LH-20 CC eluted with CH2Cl2-MeOH (1:1) to yield 51 sub-
fractions (Fr.1–Fr.51). Fr.28–Fr.30 were submitted to silica gel CC eluted with PE-EtOAc
(75:25, v/v) and then purified by Sephadex LH-20 CC eluted with CH2Cl2-MeOH (1:1)
to obtain compound 3 (16 mg). Fr.31–Fr.39 was applied on silica gel CC eluted with PE-
EtOAc (8:2, v/v) to obtain compound 4 (7 mg). Fraction L was chromatographed over
silica gel CC with PE-EtOAc solvent system with increasing polarity to afford 3 fractions
(L1–L3). Fraction L1 was isolated by Sephadex LH-20 CC eluted with CH2Cl2-MeOH (1:1)
to obtain compound 2 (9 mg).



Molecules 2021, 26, 5381 7 of 10

Compound 1 was separated using chiral-phase HPLC (AD-H column, n-hexane/ethanol,
70:30, flow rate: 1.0 mL/min) to afford 1b (tR = 10.0 min) and 1a (tR = 11.9 min). Compound
3 was further resolved using chiral-phase HPLC (AD-H column, n-hexane/ethanol, 85:15,
flow rate: 1.0 mL/min) to obtain 3b (tR = 8.2 min) and 3a (tR = 9.2 min).

3.3.1. (−)-Montroumarin (1a)

Colorless solid; [α]20
D − 93.65 (c 0.20, MeOH); UV (MeOH) λmax 195, 217, 271, 303 nm;

1H-NMR (600 MHz, CD3OD) and 13C-NMR (150 MHz, CD3OD) spectroscopic data, see
Table 1; HR ESI-TOF MS m/z 279.0626 [M + Na]+ (calcd. for C15H12O4Na 279.0633).

3.3.2. Montroumarin (1b)

Colorless solid; [α]20
D + 71.72 (c 0.20, MeOH); 1H-NMR (600 MHz, CD3OD) and 13C-

NMR (150 MHz, CD3OD) spectroscopic data, see Table 1; HR ESI-TOF MS data, see
compound 1a.

3.3.3. 1,1′-Oxybis(2,4-di-tert-butylbenzene) (2)

Pale-yellow oil; 1H-NMR (600 MHz, CDCl3) and 13C-NMR (150 MHz, CDCl3) spectro-
scopic data, see Table 2; HR ESI-TOF MS m/z 395.3373 [M + H]+ (calcd. for C28H43O 395.3314).

3.3.4. (3R)-3′-O-Methylviolanone (3a)

Colorless needle; [α]20
D − 39.17 (c 0.20, MeOH); 1H-NMR (600 MHz, C5D5N) δ: 4.79

(1H, t, J = 11.3 Hz, H-2ax), 4.44 (1H, dd, J = 11.7 Hz, 5.4 Hz, H-3ax), 4.60 (1H, dd, J = 10.8 Hz,
5.5 Hz, H-2eq), 8.23 (1H, d, J = 8.6 Hz, H-5), 6.93 (1H, dd, J = 8.6 Hz, 2.2 Hz, H-6), 6.84 (1H,
d, J = 2.2 Hz, H-8), 6.71 (1H, d, J = 8.5 Hz, H-5′), 7.03 (1H, d, J = 8.5 Hz, H-6′), 3.84 (1H, s,
2′-OMe), 3.92 (1H, s, 3′-OMe), 3.72 (1H, s, 4′-OMe). 13C-NMR (150 MHz, C5D5N) δ: 72.1
(C-2), 49.1 (C-3), 191.6 (C-4), 130.4 (C-5), 112.1 (C-6), 166.5 (C-7), 104.2 (C-8), 164.9 (C-8a),
115.6 (C-4a), 123.1 (C-1′), 153.1 (C-2′), 143.4 (C-3′), 154.5 (C-4′), 108.7 (C-5′),125.4 (C-6′), 61.3
(C-2′-OMe), 60.9 (C-4′-OMe), 56.4 (C-3′-OMe); HR ESI-TOF MS m/z 353.0998 [M + Na]+

(calcd. for C18H18O6Na 353.1001).

3.3.5. (3S)-3′-O-Methylviolanone (3b)

Colorless needle; [α]20
D + 28.33 (c 0.20, MeOH); 1H-NMR (600 MHz, C5D5N), 13C-NMR

(600 MHz, C5D5N) spectroscopic data and HR ESI-TOF MS data, see compound 3a.

3.3.6. (RS)-Sativanone (4)

Colorless solid; [α]20
D − 0.06 (c 0.38, MeOH); 1H-NMR (600 MHz, C5D5N) δ: 4.76 (1H,

t, J = 11.1 Hz, H-2ax), 4.50 (1H, dd, J = 11.3 Hz, 5.2 Hz, H-3ax), 4.59 (1H, dd, J = 10.8 Hz,
5.3 Hz, H-2eq), 8.25 (1H, d, J = 8.6 Hz, H-5), 6.92 (1H, dd, J = 8.6 Hz, 2.1 Hz, H-6), 6.84 (1H,
d, J = 2.1 Hz, H-8), 6.67 (1H, d, J = 2.0 Hz, H-3′), 6.58 (1H, dd, J = 8.3 Hz, 2.0 Hz, H-5′), 7.24
(1H, d, J = 8.3 Hz, H-6′), 3.63 (1H, s, 2′-OMe), 3.69 (1H, s, 4′-OMe). 13C-NMR (150 MHz,
C5D5N) δ: 71.8 (C-2), 48.2 (C-3), 191.6 (C-4), 130.4 (C-5), 112.0 (C-6), 166.5 (C-7), 104.0 (C-8),
164.9 (C-8a), 115.7 (C-4a), 117.5 (C-1′), 159.4 (C-2′), 99.8 (C-3′), 161.4 (C-4′), 105.7 (C-5′),
131.7 (C-6′), 55.9 (C-2′-OMe), 55.6 (C-4′-OMe); HR ESI-TOF MS m/z 301.1006 [M + H]+

(calcd. for C17H17O5 301.1076).

3.4. Cytotoxicity Assays

Compounds 1–4 were evaluated for their cytotoxic activities by the MTT method
using NCI-H460 cell line. The NCI-H460 cells were seeded at a density of 1 × 104/well
in a complete growth medium in 96-well plates. The cells were incubated with the test
compounds for 24 h before the MTT assay. Then, a fresh solution of MTT (0.5 mg/mL) was
added to each single well of the 96-well plate. The plate was incubated in a CO2 incubator
for another 4 h. Finally, the cells were dissolved with 100 µL of DMSO and then analyzed
in a multiwall plate reader with a wavelength of 570 nm.
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4. Conclusions

The chemical investigation of D. collettii led to the isolation of six compounds (1–4),
including one new dihydroisocoumarin, (−)-montroumari (1a). The structure of 2,2′-
oxybis(1,4-di-tert-butylbenzene) (2′) was revised to be 1,1′-oxybis(2,4-di-tert-butylbenzene)
(2), assisted by a careful re-examination of the structural elucidation process. All the
compounds 1–4 were isolated from D. collettii for the first time. The isolation of compounds
3a, 3b, and 4 from the Dioscorea species has not been reported yet [30,31]. Notably, to the best
of our knowledge, dihydroisoflavones have not been described from any other species in the
Dioscoreaceae family. Our discovery of these dihydroisoflavones (3a, 3b, and 4) enriches
the structural diversity of the Dioscoreaceae family. Dihydroisocoumarins (1a–1b) exhibited
moderate cytotoxic activities against the NCI-H460 cell line, with IC50 values ranging from
32.06 to 33.37 µM, whereas the other compounds, including the three dihydroisoflavones
(3a–4), did not show any activities at the tested concentrations (IC50 > 50 µM). Mounting
evidence has revealed that steroidal saponins exert strong cytotoxic activities against
human cancer cells, which means they could be considered as promising cytotoxic agents
against human cancer cells. Dihydroisocoumarins and diarylheptanoids showed moderate
cytotoxic activities against the NCI-H460 cell line. However, more selectivity studies are
needed to determine whether these two types of compounds in D. collettii have cytotoxic
activities against human cancer cells.

Supplementary Materials: The following are available online. Figure S1: 1H-NMR (600 MHz,
CD3OD) spectrum of compound 1a/1b, Figure S2: 13C-NMR (150 MHz, CD3OD) spectrum of
compound 1a/1b, Figure S3: HSQC spectrum of compound 1a/1b, Figure S4: 1H-1H COSY spectrum
of compound 1a/1b, Figure S5: HMBC spectrum of compound 1a/1b, Figure S6: HR-ESI-MS
spectrum of compound 1a/1b, Figure S7: UV spectrum of compound 1a/1b, Figure S8: Chiral
HPLC separation chromatogram of compound 1, Figure S9: 1H-NMR (600 MHz, CDCl3) spectrum
of compound 2, Figure S10: 13C-NMR (150 MHz, CDCl3) spectrum of compound 2, Figure S11:
HSQC spectrum of compound 2, Figure S12: 1H-1H COSY spectrum of compound 2, Figure S13:
HMBC spectrum of compound 2, Figure S14: The enlarged HMBC spectrum of compound 2 (I, II,
III, and IV), Figure S15: Structures and comparison of chemical shifts between compounds 2, 2′,
and 2,4-DTBP in CDCl3, Figure S16: 1H-NMR (600 MHz, C5D5N) spectrum of compound 3a/3b,
Figure S17: 13C-NMR (150 MHz, C5D5N) spectrum of compound 3a/3b, Figure S18: Chiral HPLC
separation chromatogram of compound 3, Figure S19: 1H-NMR (600 MHz, C5D5N) spectrum of
compound 4, Figure S20: 13C-NMR (150 MHz, C5D5N) spectrum of compound 4, Figure S21: ECD
spectrum of compound 3, and ECD calculation of compound 3.
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