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ABSTRACT
Recently, cloud point extraction (CPE) coupled with back extraction (BE) has been suggested
as a promising alternative to liquid-liquid extraction. In CPE, non-ionic surfactants in aqueous
solutions form micelles and the solution becomes turbid when heated to the cloud point
temperature. Microwave- or ultrasonic-assisted BE can be performed after CPE and before
injection of the sample for instrumental analysis by ultraviolet-visible spectroscopy, high-per-
formance liquid chromatography, gas chromatography, gas chromatography-mass spectrom-
etry, or liquid chromatography-mass spectrometry. This article reviews selected published
scientific research on the application of CPE-BE to the determination of alkaloids, drugs and
organophosphorus compounds from several complex matrices. This method could be
scaled-up for use in forensic science.

ARTICLE HISTORY
Received 20 December 2018
Accepted 13 May 2019

KEYWORDS
Forensic sciences; forensic
toxicology; surfactant; cloud
point extraction; alkaloid;
drug; organophos-
phorus compound

Introduction

In forensics, novel surfactant chemistry using surfac-
tant aggregates can be applied to extract various
polar and non-polar components [1]. Within the
framework of detection and identification, extraction
of the analyte in question is of paramount impor-
tance. The efficiency of extraction depends upon a
number of factors, including analytical requirements
and the nature of solvents and toxicants [2]. The
sample matrix is also important, and matrices can be
solids (e.g. soil, plant tissue, vegetable, fruit and tablet
samples), semi-solids (e.g. cream, gel, suspension and
colloid samples), or liquids (e.g. serum, plasma,
whole blood, milk, water and fruit juice samples).
The physicochemical composition of the sample
matrix from which the target analyte is extracted
affects the extraction efficiency. Consequently, sam-
ple preparation can play a key role in identification
and quantification of target analytes. It is well-known
that sample preparation has a direct impact on accur-
acy, precision and quantification limits. The principle
motivations behind sample pre-treatment are: (i)
extraction of the target analyte from the matrix, (ii)
removal of proteins and other compounds that could
interfere with the analysis, and (iii) modification of
the pH, ionic strength and concentration of the sam-
ple to optimize the extraction. For most matrices,
some form of sample pre-treatment (e.g. dilution) is
required before analysis. The most frequently used

pre-treatment techniques are protein precipitation,
liquid-liquid extraction and solid-phase extraction.
For instance, lipophilic drugs are associated with fats
and glycerol molecules in biological samples.
Analysis of highly hydrophilic molecules in biological
matrices creates challenges because of low recovery
of analytes. However, it is very difficult to separate
these drugs from these complex biological matrices.
Consequently, a highly selective and sensitive meth-
odology is required for sample preparation.

The extraction and identification of drugs of
abuse in biological matrices, such as plasma, whole
blood and serum, is a common requirement in
forensic laboratories [3]. In toxicological examina-
tions, a coordinated search is performed first with a
constrained number of substances. Then, an undi-
rected inquiry is performed in a systematic toxico-
logical examination, which looks for possibly toxic
substances whose presence is suspicious and whose
quantities are unknown. Systematic toxicological
examination is required if almost no data are avail-
able in cases involving an unknown. The drug
screening process can be generally categorized into
two phases: (i) sample preparation and (ii) analysis
of the drugs. The samples available for investigation
are typically complicated biological matrices, in
which the toxicological substances of interest are
present in trace amounts compared with endogenous
compounds. The extraction of analytes such as
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alkaloids, drugs and organophosphorus (OP) com-
pounds from biological matrices is a challenging and
time-consuming task in forensic science laboratories
[4]. Therefore, it is imperative that work-up proce-
dures retain as much as possible of the target sub-
stance and remove other substances and potential
interferences. An array of surfactant assemblies in
aqueous or non-aqueous media can be used for effi-
cient recovery of target analytes in such cases.

General considerations

Surfactants

A surfactant is a material that, when present in a
low concentration, adsorbs onto an interface or sur-
face and alters the interface free energy [5]. In other
words, surfactants display interfacial associations by
means of enhanced assimilation at the interface.
Surfactants are amphiphilic molecules with both
hydrophobic and hydrophilic components and are
important in chemical technology.

Surfactants have characteristic chemical structures
with a part that has affinity for the bulk solvent and
a part that has a strong affinity for a hydrophilic or
lipophilic group. The hydrophobic group or tail of
the surfactant contains at least one hydrocarbon
chain of 6–20 carbon atoms. The tail can be
branched or linear; aliphatic, alkyl or aryl; and short
or long. The surfactant head group can be ionic or
non-ionic. When a low concentration of a surfactant
is dispersed in an aqueous solution, the surfactant is
generally found in a monomeric or dimeric state.
When the surfactant concentration is increased
above a certain threshold, called the critical micellar
concentration (CMC), these monomers or dimers
spontaneously aggregate to form colloidal-sized clus-
ters known as micelles. When dispersed in water,
the micelles have a hydrophilic surface and hydro-
phobic core. This structure means the micelles can
interact chemically or physically with either hydro-
philic or lipophilic analytes to enhance their solubi-
lities. This makes surfactants excellent vectors for
extraction and isolation of drugs and polyphenolic
compounds [6]. For solubilization of an analyte in a
micellar system, the maximum quantity of analyte
that can be incorporated into a given surfactant for-
mulation is termed the maximum additive concen-
tration. Solubility data are expressed in a solubility
versus concentration curve or a three-component
phase diagram, which describes the effects of vary-
ing all three components of the system (i.e. analyte,
surfactant and solvent). The site of solubilization
within the micelle is closely related to the chemical
nature of the analyte (Figure 1).

Surfactants can be categorized depending on the
nature of their hydrophilic head group [5]. An

anionic surfactant has a negatively charged moiety
as its polar head group, such as a sodium alkylsul-
fate (e.g. sodium dodecyl sulfate, sodium decyl
sulfate or sodium tetradecyl sulfate) or sodium
alkylcarboxylate. Cationic surfactants have a
positively charged head group such as an alkyl pyri-
dinium halide or alkyl ammonium halide (e.g. hexa-
decyl (or cetyl) trimethylammonium bromide or
cetyltrimethylammonium chloride) or a quaternary
ammonium salt (e.g. hexadecyl pyridinium bromide,
carbethopendecinium bromide (Septonex)). Non-
ionic surfactants generally have a polar, uncharged
head group, and include surfactants such as poly-
oxyethylene glycol octylphenol ethers or polyoxy-
ethylene glycol tert-octylphenol ethers, which vary
in their number of ethylene oxide repeating units.
Some well-known surfactants are the Triton, Tween
and Brij series. Finally, zwitterionic (amphoteric)
surfactants have both a cationic and anionic polar
head group (e.g. alkyl ammonium ethyl sulfates,
phosphobetaines, lecithins or sulfobetaines).

The degree of hydrophilicity or lipophilicity of a
surfactant can be decided according to Griffin’s
arbitrary scale [7,8], which is derived from the ratio
of hydrophilic-hydrophobic character. Because of its
amphiphilic nature, a surfactant can function as a
solubilizer, wetting agent, emulsifier, and permeabi-
lity enhancer. Its adsorption behaviour depends
upon the solvent and chemical structure of the sur-
factant. Surfactants are particularly varied in terms
of their nature and physical properties, ability to
radically alter surface and interfacial properties, and
tendency to self-associate and solubilize themselves
in micelles (Table 1). Because of these properties,
surfactants are useful for the solubilization and
extraction of analytes [9].

Analytes of forensic interest

Alkaloids
Many plants produce alkaloids that can have dele-
terious effects on human body and can even lead to
death [14]. Poisoning with these compounds via
ingestion of the whole or part of a plant is chiefly
classified into one of three major categories:
(i) accidental, (ii) intentional and (iii) abuse. Plant
poisoning is frequently encountered in homicide

Figure 1. Locus of solubilization of an analyte in a micelle.

20 S. KORI



and suicide cases and has been identified as the
cause of death in many cases. Toxic plant use is
encountered in criminal cases, and alkaloids from
whole plants and their parts have been abused for
their psychoactive effects [15]. Toxicological investi-
gations of these alkaloids could aid in identification
of poisoning or abuse cases. From a forensic per-
spective, it is imperative that accurate methods are
available for unambiguously identifying these alka-
loids [16]. These methods can also be used for
extraction of beneficial plant extracts.

Drugs
Illicit drug use has an immense social impact. At
the individual level, drug abuse has been connected
to psychological disorders, violent behaviour and
involvement in criminal activity and traffic acci-
dents. Drug abuse is strongly correlated with acci-
dental injuries from traffic accidents, drowning,
poisoning, burns and pre-meditated injuries.
Recently, new psychoactive compounds that are nei-
ther officially registered for therapeutic use nor
scheduled as controlled substances, at least not
when they first appear on the recreational/illicit
drug market, have become popular. These compounds
are often sold as so-called “legal highs” and/or
labelled as harmless products, such as incense, bath
salts or plant food. Testing for drugs in biological
samples can provide important information on drug
use or abuse by individuals and is a key task in
forensic toxicology and allied fields. Testing can
confirm a suspected acute drug influence or intoxi-
cation/poisoning (e.g. driving under the influence of
drugs or postmortem toxicology). It can also be
used for monitoring abstinence from drug abuse, for
example, in workplace drug testing, drug withdrawal
or substitution treatment, or a drug-abstinence pro-
gramme for re-granting of a driver’s license.

OP compounds
OP compounds are widely utilized in pest preven-
tion and treatment. They have a number of advan-
tages but also disadvantages, for example, their
potential toxicity to humans and other animals.
Because of their potential toxicity, OP compounds

are often encountered as toxins in homicide and
suicide cases. In forensic laboratories, the suspect
poisoned food or beverage is analysed to determine
the presence of any potentially toxic substances in
the sample. These investigations can confirm the
connection between a toxic substance and cause of
death. This is of utmost significance and demon-
strates the relationship between toxicology and
forensic medicine, which is facilitated by highly sen-
sitive techniques and specific extraction protocols.
The wide array of matrices and OP compounds that
can be encountered in criminal cases requires the
development of detection and quantification strate-
gies with adequate precision and accuracy for OP
residues in a variety of samples (e.g. foods, bever-
ages and biological matrices).

Surfactant systems compared with
conventional solvents

Liquid–liquid separation has been used for non-
ionic or zwitterionic surfactant micelles but has
been limited for charged surfactant species.
Surfactant-mediated extraction has the follow-
ing advantages:

i. Surfactants have characteristic properties that
make them promising extraction vectors.

ii. The small volume of the surfactant-rich phase
obtained with this methodology permits the
design of extraction schemes that are simple,
cheap, highly efficient, user friendly, do not use
flammable solvents, result in no loss of analyte
during the evaporation of solvents and avoid
absorption of non-polar analytes [17–19].

iii. The operating conditions applied in cloud
point extraction (CPE) techniques allow for
pre-concentration of thermally sensitive analy-
tes, such as molecules of biological and envi-
ronmental interest. The pre-concentration
factors are comparable or superior to those of
other methods, and can be adjusted by varying
the amount of surfactant.

Table 1. Physiochemical characteristics of the surfactants.
Surfactants Avg mol wt. CMC (mmol/L) CP (�C) HLB Agg.# Reference

SDS (C12H25ONaO4S) 288.4 8 >100 40 60 [10]
Tween 80 (C64H124O26) 1 310 0.015 65 15 60 [11]
Span 40 (C22H42O6) 402.57 – – 6.7 – [9]
Brij-35 (C58H118O24) 1 225 0.09 >100 16.9 40 [12]
Brij-58 (C56H114O21) 1 122 0.077 >100 15.7 70 [13]
Triton X-45 (C8H17C6H4O(CH2CH2O)5H) 427 136a Dispersible 9.8 140 [12]
Triton X-100 (C8H17C6H4(OC2H4)10OH) �625 0.2–0.9 65 13.5 65 [12]
Triton X-114 (C8H17C6H4O(CH2CH2O)7.5H) 537 �0.2 25 12.4 60 [12]

Avg mol wt.: average molecular weight; CMC: critical micellar concentration; CP: cloud point; HLB: hydrophilic–lipophilic balance; Agg.#: aggrega-
tion number.
appm.
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iv. CPE coupled with back extraction (BE) can be
used to extract and pre-concentrate analytes
from complex matrices [2,20].

v. Surfactant-mediated extraction and pre-concen-
tration is a green chemistry technique.

Principles of surfactant-mediated extraction
and CPE

In CPE, the role of extraction solvent is played by
the micellar (surfactant-rich) phase originating from
a homogenous surfactant solution that is added to
the sample. In aqueous dispersion media, the surfac-
tant aggregate orientates its hydrocarbon tail
towards the centre to create a non-polar core.
Hydrophobic compounds, which include many bio-
active compounds, present in the aqueous solution
are isolated and partitioned in the hydrophobic core
of the micelles [21–23]. With a decrease in the
number of polyethoxylate groups (Ethylene Oxide
number) or an increase in the alkyl carbon number,
intermicellar attractive forces increase and the cloud
point decreases [24]. CPE consists of eight simple
steps: (i) addition of surfactants; (ii) addition of salt
and pH maintenance for solubilization of the analy-
tes in the micellar aggregates by providing favour-
able pH environment; (iii) incubation for clouding;
(iv) centrifugation; (v) cooling; (vi) phase separation
for analysis; (vii) pre-treatment of the surfactant-
rich phase and (viii) instrumental analysis (Figure 2).
In the aqueous solution, the unique structure of the
surfactant allows for sparingly soluble or water-
insoluble substances to be solubilized because they
can associate and bind to the micellar assembly. The
interactions between the surfactant and analyte may
be electrostatic, hydrophobic or a combination of
both. When a surfactant solution is heated over a

critical temperature, the solution easily separates
into two distinct phases: one contains the surfactant
at a concentration below or equal to the CMC, and
the other is a surfactant-rich phase. The hydropho-
bic compounds initially present in the solution and
bound to the micelles are extracted into the surfac-
tant-rich phase. This phenomenon is particularly
obvious for polyoxyethylene surfactants and can be
attributed to the two ethylene oxide segments in the
micelle, which repel each other at low temperature
when they are hydrated and attract each other when
the temperature increases because of dehydration.
The theory and relevant applications of this impres-
sive separation method are discussed in various
reviews [18,25–27]. CPE mainly depends on solubili-
zation of the surfactant solution and phase separa-
tion for the extraction and pre-concentration of
analytes. The use of micellar systems as an alterna-
tive to other separation techniques offers several
advantages, including low cost, safety and high
capacity to concentrate a wide range of analytes
with widely varying natures with high recoveries
and very high concentration factors. The extraction
efficiency for the target analyte by CPE is influenced
by many factors, such as the pH of the sample, solu-
tion, surfactant type and concentration, temperature
and time to reach equilibrium and ionic strength.
The effects of these factors on the extraction of ana-
lytes need to be established.

Influencing parameters

There are many factors that affect CPE efficiency,
such as the type of surfactant, surfactant concentra-
tion, pH, ionic strength, centrifugation, incubation
and saturation and the Krafft temperature. When

Figure 2. Schematic diagram of the cloud point extraction system for analytes from complex matrices.

22 S. KORI



developing a CPE method, several parameters need
to be taken into account.

Type of surfactant
The solubilization/partitioning of non-polar organic
molecules in a hydrophobic micellar core is an
inherent property of all surfactant systems. The effi-
ciency of this step is dependent on the magnitude of
analyte solubilization in the micelle (i.e. non-polar
core and polar micelle-water interface), analyte
polarity and solution composition. Several non-ionic
surfactants (e.g. TX-100 (polyoxyethylene(9.5)-t-
octylphenol), Brij-97, PONPE 7.5) have been tested
and compared as extractants for analytes. For TX-100,
significant spectral interference was observed in the
analysis of terazosin hydrochloride because of peak
overlap between the analyte and surfactant [28]. For
Brij-97, the extraction was non-quantitative and a
high temperature was necessary to produce clouding
[28]. Generally, extraction is more efficient if phase
separation is easy. When a highly hydrophobic sur-
factant is used, the extraction efficiency will be
higher and analytical signal will be easier to detect
than with a less hydrophobic surfactant. A number
of non-ionic surfactants such as Triton X-45, Triton
X-100, Triton X-114, Tween 20, Tween 80 and
Genapol X-080 have been trialled as extraction sol-
vents [29], and the Triton series was found to be
superior to the Tween series. Triton X-114 and
Triton X-45 have convenient CPE temperatures but
the CPE temperatures for other surfactants, such as
Triton X-100 and Tween-80, are too high [30,31].
The peak for Triton X-114 in the chromatogram
was small, whereas that for Triton X-45 was large.
Triton X-100 gave higher coacervate phase volumes,
which made the BE process difficult. To achieve
quantitative extraction of the analytes in the BE, it
is necessary to minimize the coacervate phase
volume to avoid forming a stable emulsion. Triton
X-114 has been used in many studies [32–34].
Genapol X-080 is a polyoxyethylene glycol
mono ether-type surfactant that contains eight
oxyethylene units and tridecyl alkyl moieties
[HO(CH2CH2O)8(CH2)13H]. It has a molecular
weight of 553, CMC of 0.05mmol/L (0.028 g/L),
ratio of hydrophilic-hydrophobic character of 13,
and cloud point temperature of 42 �C in pure water
[35,36]. Because it possesses no aromatic moiety,
Genapol X-080 does not absorb above 210 nm and
it does not interfere with the determination of ana-
lytes such as atrazine, daidzein, aesculin and aescu-
letin [35–37]. Tergitol 15-S-7 has been used for
extraction of polycyclic aromatic hydrocarbons
(PAHs) because it does not interfere with their
fluorescence detection [25]. Finally, I conclude that
non-ionic surfactants are far better than

conventional solvents (such as ethanol, methanol,
hexane, benzene, etc.) for extraction purpose.

Effect of the surfactant concentration
Above the optimum surfactant concentration, the
analytical signal deteriorates because of the increase
in surfactant volume; however, if the surfactant con-
centration is decreased below the recommended
level, the accuracy and reproducibility of the ana-
lysis suffer [30]. As the temperature increases, dehy-
dration decreases the volume of the surfactant-rich
phase. Studies have indicated that CPE should be
performed at a temperature higher than the cloud
point for the two phases (i.e. water-micelle phase
and micelle-rich phase) to be maintained. However,
at low surfactant concentrations, the surfactant-rich
phase is not sufficient for reproducible extraction
and separation [37–39]. The Genapol X-080 concen-
tration has been studied in the range of 0.4%–2.0%
(w/v). When the concentration of surfactant was
below 1.2%, it was suspended in the bulk solution
and difficult to separate into two phases. When the
surfactant concentration was increased to 2.0%,
although the extraction recovery of analytes
increased, the solution becomes too viscous to han-
dle. According to the experimental results, selection
of the surfactant concentration is very important for
maximizing the extraction recovery [37].
Optimization of the surfactant concentration is
important for obtaining the best analytical signals
and highest extraction efficiencies [40].

Effect of the pH
In CPE, the pH of the sample solution is a critical
factor that controls the degree of partitioning of the
analytes in the surfactant-rich phase. In ionizable
species, the maximum extraction efficiency is
achieved at pH values where the non-ionized form
of the analytes exists. The pH plays an important
role in improving the extraction efficiency in CPE
of metals without the addition of a chelating agent.
It affects the overall charges of the analytes, and this
affects the formation of a complex between the ana-
lyte and the surfactant [41]. The role of pH is inline
with that in traditional pH-selective fractional pre-
cipitation, where the separation of several analytes is
made possible by adjusting the pH [16,18]. In the
case of ionizable organic analytes, partitioning of
the analytes in two immiscible phases depends on
the solution pH. The pH affects the extraction of
analytes through the formation of ion pairs between
the analytes and surfactant assemblies [37].
Maximum extraction efficiency is achieved at pH
values where the non-ionized form of the target
analytes prevails [42].
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Effect of ionic strength
The addition of salt (e.g. NaCl, KCl, Na2SO4,
Na3PO4, KNO3, CaCl2 or NaClO4) to the solution
may influence the extraction process. For most non-
ionic surfactants, the presence of a salt may facilitate
phase separation because it increases the density of
the aqueous phase. Two types of electrolytes are
added to formulations because the cation (i.e. Naþ)
may decrease the cloud point from dehydration of
the polyoxyethylene chain and the anions (i.e. Cl�

and SO4
2�) are likely to decrease self-association of

water molecules [43]. Electrolytes fulfil two impor-
tant purposes: assisting demulsification and decreas-
ing the cloud point temperature. When the mass is
less than the optimum amount, the effect of demul-
sification is incomplete, which means the final sur-
factant-rich phase contains many impurities.
Addition of a quantity of Na2SO4 above the opti-
mum may result in coagulation and formation of a
precipitate, which would make the solution difficult
to dilute to scale. The most frequently used salts are
Na2SO4 and NaCl [29]. However, the addition of
salts depends on the type and nature of analytes and
surfactants [42]. Increasing the ionic strength
enhances phase separation through salting out phe-
nomena that also apply to conventional extractions,
yielding higher recoveries without deteriorating the
analytical performance.

Effect of centrifugation
Generally, the centrifugation time hardly affects
micelle formation, but it does accelerate phase sepa-
ration in the same sense as conventional separation
of a precipitate from its original aqueous environ-
ment. Centrifugation times of around 5–10min are
usually efficient for most CPE procedures [30,44].
The centrifugation time plays an important role in
phase separation after formation of the cloud. A
shorter centrifugation time is considered advanta-
geous for CPE.

Effect of incubation and saturation
With increases in the temperature up to the cloud
point, there is an increase in micellar size and a cor-
responding decrease in the CMC. The maximum
analyte pre-concentration factor is reached when the
CPE process is conducted with an equilibration tem-
perature well above the cloud point temperature of
the system. The use of elevated temperatures could
result in decreased recovery because of decomposi-
tion. In the same way as other parameters, tempera-
ture and the duration of the CPE procedure seem to
affect the extraction, especially when dealing with
inert inorganic species. This reaction time coincides
with the incubation time reported for the optimum

extraction of organic species into micellar forma-
tions [18].

Effect of the Krafft temperature
The Krafft point of a surfactant is the temperature
above which the solubility of the surfactant increases
dramatically in an aqueous solution, and it is inter-
preted as the melting point of a hydrated solid sur-
factant [45]. The concept of the Krafft point has
been applied extensively to ionic surfactants, but has
rarely been observed for non-ionic surfactants. At
the Krafft point, the solubility of the surfactant is
equal to its CMC. Above the Krafft point, the total
solubility of the surfactant increases dramatically
because of micelle formation, resulting in efficient
extraction [12].

CPE coupled with microwave- or ultrasonic-
assisted BE

CPE of non-ionic and anionic surfactants has been
applied as a pre-concentration step before instru-
mental analysis. Because of the low volatility and
high viscosity of the surfactant-rich phase, it can-
not be injected directly for instrumental analyses
such as high-performance liquid chromatography
(HPLC), liquid chromatography-mass spectrometry,
or gas chromatography (GC). Therefore, after CPE
and before analysis, a supplemental stage is
required to avoid injector blockages and column
deterioration [32]. Microwave- or ultrasoni-
cassisted BE is suitable for coupling CPE to instru-
mental analysis. A clean-up step is needed before
injection for chromatographic analysis. In the BE
procedure, the extracted surfactant-rich phase is
treated with water or an immiscible solvent such
as hexane, acetonitrile, ethyl acetate, iso-octane or
chloroform. The target analytes are back extracted
from the surfactant-rich phase to the organic sol-
vent phase. In BE, the following three factors
should be considered:

i. Effect of organic solvents: among tested water-
immiscible solvents for microwave-assisted BE,
iso-octane was selected as the optimum solvent
because it was the least volatile, and gave good
reproducibility. The volume of iso-octane was
optimized for good recovery of analytes from
the surfactant-rich phase, a high pre-concentra-
tion factor, an appropriate volume for auto-
mated injection, and a relatively high analytical
response [32]. In ultrasonic-assisted BE, hexane
and ethyl acetate showed good results for pre-
concentration of OP pesticides [2,32].

ii. Effect of microwave irradiation or ultrasonica-
tion: one of the most important tasks of this
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study was to evaluate the effects of microwave
irradiation and ultrasonication on quantitative
BE of pre-concentrated analytes from a surfac-
tant-rich phase into an organic solvent. The
time taken for BE depends on the microwave or
ultrasonication power. Studies have shown that
a microwave power of 700 W is effective for
pre-concentration of OP pesticides (diazinon,
quinalphos, fenthion, parathion-methyl and
phorate) in urine [20], PAHs (naphthalene, ace-
naphthylene, fluorine, anthracene, fluoranthene
and pyrene) in aqueous solutions [46], and
diethylhexyladipate and acetyltributylcitrate in
aqueous solutions [47]. Good pre-concentration
of OP compounds (methidathion, chlorpyrifos,
parathion and fenitrothion) in honey was
achieved by ultrasonic-assisted BE under
optimized conditions with 60 mL of hexane and
an ultrasonication time of 20min [32].
Dichlorovos, methamidophos, acephate, diazi-
non, dimethoate, chlorpyrifos, parathion-
methyl, malathion and parathion-ethyl were
effectively pre-concentrated from fruits using
optimized BE with 200 mL of ethyl acetate and
an ultrasonic time of 20min [2].

Reported literature

In any extraction technique, pre-concentration and
separation are important for enhancing the analyti-
cal signals and lowering the limits of quantification
and detection [48]. Several different compounds of
forensic interest such as alkaloids, drugs of abuse
and OP pesticides have been detected using various
extraction techniques [49]. The literature presents a
comprehensive account of recent CPE applications
to alkaloids, drugs, and OP pesticides.

Qin et al. [17] developed and validated a CPE
procedure using reversed-phase HPLC-with fluores-
cence detection for the determination and pre-con-
centration of the antidepressant drug venlafaxine in
human plasma. Their proposed method had a high
extraction efficiency (>90%), and a competitive
analysis of the chromatograms obtained from
plasma samples (blank, spiked and oral administra-
tion of the drug) showed that CPE successfully
extracted the model analytes with no interference
from the sample matrix or metabolic products of
venlafaxine.

Abdollahi and Bagheri [50] utilized CPE for pre-
concentration of a binary mixture of vitamin K3 and
1,4-napthoquinone. Both the model analytes were
allowed to react with aniline in an initial phase, and
this was followed by extraction under optimized
conditions for aniline (0.033mol/L), Triton X-114
(0.22% w/v), the equilibration time (15min), and

the cloud point temperature (25 �C). The study also
showed the potential of the developed methodology
for quantitative extraction and pre-concentration of
intermediate reaction mixtures.

In a novel approach, Rukhadze et al. [33] deve-
loped an HPLC quantitative method for the deter-
mination of the free fractions of the anti-epileptic
drugs carbamazepine and phenobarbital in complex
biological matrices (e.g. plasma and saliva). In this
study, CPE was used to remove the free and bound
drug forms from plasma and serum, respectively.
The CPE method gave high percentage recoveries
(�48% and 66%) for the carbamazepine and pheno-
barbital free fractions. This study also showed the
superiority of CPE over conventional methodologies
and highlighted several points of interest such as the
ease of sample preparation, minimal sample require-
ments (�200lL of plasma), low cost, simple proto-
col and innate potential to concentrate varied
analytes with enhanced pre-concentration factors.
Consequently, it can be used for routine analysis,
aid in envisaging the factors that influence drug-
protein binding in vivo and in vitro, help with estab-
lishment of complex relationships among the total
drug and free fractions and assessment of pharma-
cokinetics, and be used for direct determination of
plasma- and serum-bound drugs (i.e. free and frac-
tional forms).

Madej and Persona [51] developed an analytical
methodology using reversed-phase HPLC—with
diode array detection and CPE for the determin-
ation of six basic drugs (i.e. paracetamol, promazine,
amitriptyline, nortriptyline, clomipramine and chlor-
promazine) in human plasma. CPE gave efficient
recoveries of drugs from complex biological matri-
ces. The developed methodology was capable of
detecting the model drugs at low (<22%) plasma
concentrations. The proposed CPE methodology
also exhibited good selectivity and specificity for
slightly hydrophobic drugs such as paracetamol at
very high concentrations.

Shen and Shao [16] pre-concentrated and simul-
taneously determined seven tobacco alkaloids (i.e.
nicotine, nor-nicotine, myosmine, anabasine, nico-
tyrine, anatabine and 2,3-dipyridyl) from flue-cured
leaves using CPE coupled with ultrasonic assisted
back extraction (UABE). Screening of the extracted
alkaloids was accomplished by gas chromatography-
mass spectrometer (GC-MS). The outcomes of the
study highlighted the advantages of this protocol,
which required no pre-cleaning step before injection
of the samples into the GC column for analysis. The
developed CPE procedure resulted in efficient
recoveries of the model analytes and the relative
standard deviation range for the individual alkaloids
was 2.77%–9.97% which is well within the
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prescribed range of International Conference on
Harmonisation (ICH) guidelines [52].

Fontana et al. [32] proposed a coacervative CPE
coupled with UABE (CCPE-UABE) for pre-concen-
tration of OP pesticides from honey samples before
quantification via GC-MS. The efficacy and potential
applicability of the proposed CCPE-UABE-GC-MS
method was tested by quantifying the amounts of
OP pesticides in spiked and blank honey samples.
The analysis showed that the proposed methodology
had very high extraction efficiency (�90%) and
could extract methidathion at ultratrace levels
(1.2–2.3 ng/g) from two honey samples.

Faria et al. [53] developed a CPE method for pre-
concentration of the systemic insecticide and acari-
cide Disulfoton (Di-Syton) from water samples
before quantification using GC. The developed
methodology had very high extraction efficiencies of
approximately 94% and 96% for the target
from spiked water and river water samples, respec-
tively. In contrast to liquid-liquid extraction proce-
dures, the developed method showed enhanced
efficiency, detectability, and reproducibility and was
eco-friendly.

Tables 2–4 summarize the literature reports over
the last few years on CPE applications to alkaloids,
drugs and OP pesticides, respectively.

Analytical applications

Methods for analysis of alkaloids, organic dyes,
drugs and OP pesticides have been established using
ultraviolet-visible spectrophotometry, spectroflorom-
etry, HPLC and GC [54]. However, in some situa-
tions, the sample needs separation and pre-
concentration steps before analytical measurement.
CPE has been used for the extraction and pre-con-
centration of many analytes, such as drugs, pesti-
cides, alkaloids and metal ions. Tables 2–4
summarize the available literature from the last few
years on applications of CPE to analysis of alkaloids,
drugs, and OP pesticides. It includes the type of
analyte, matrix, micellar system, optimized parame-
ters for the extraction, detection method, detection
limit and recovery data.

Forensic prospects

Many extraction methods are used in forensic sci-
ence laboratories to extract analytes from complex
matrices such as blood, urine, viscera, hair, soil,
saliva and milk into organic solvents. Surfactant-
based extraction is simple, reliable and compatible
with micellar chromatography or micellar electro-
kinetic chromatography. Non-ionic surfactants such
as Triton X-114 [69], Triton X-45, Triton X-100,

Dowfax 20B102 [56], polyoxyethylene (5.0) nonyl-
phenol (PONPE 5.0) [70], and PONPE 5 are good
for extraction because the micellar system contain-
ing the complex was thermostated at 30 �C in
order to promote phase separation. Tergitol 15-S-9,
Neodol 25-7, Tergitol 15-S-7 [71], Brij-35, and
Brij-97 [72] have been used as extractants for me-
tals ions, alkaloids, pesticides, drugs, dyes, PAHs
and other analytes. CPE coupled with BE can be
scaled-up in forensic toxicology and chemical ana-
lysis via modification of the surfactant solutions
according to the extraction target to exploit the
research area and meet green chemistry principles.
Several aqueous surfactant solutions have been
used instead of organic solvents in classical extrac-
tion protocols. It is important to compare classical
extraction methods with CPE and to investigate
the application of CPE to solid samples (e.g. post-
mortem human tissues and viscera), which are fre-
quently encountered in forensic chemical and
toxicological analyses. Studies should evaluate the
extraction time, solvent, and reproducibility in CPE
for solid biological samples. Eszopiclone can be
extracted from complex matrices and mouse blood
in vivo using CPE-BE [73]. This area of analysis is
especially attractive for the development of CPE
methodologies. Hair, viscera, teeth, saliva, nails,
and other solid materials are frequently encoun-
tered in forensic investigations, and the sample
preparation and extraction methods can be time-
consuming [74,75]. CPE may shorten and simplify
the analysis, especially for hair samples. This is a
promising method for development of effective
techniques for extraction of analytes from various
complex matrices.

Conclusion

This review shows that CPE-BE is an analytical tool
that has great potential for improving detection
limits and other analytical characteristics. It is a
valid alternative to separation and pre-concentration
procedures because of its high recoveries and
concentration factors. In addition, the surfactants
used in CPE-BE make the micellar-based extraction
procedure simple, practical, safe and economical.
Micellar extraction is a promising field for the
development of new and effective analytical methods
for different matrices. Surfactant assemblies/
solutions and surfactant-mediated CPE should be
improved because of their important roles in the
extraction of various analytes. This method could
be scaled-up for forensic science, toxicology and
pharmaceutical applications.
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