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Abstract Chronic kidney disease (CKD) in children is
irreversible. It is associated with renal failure progression
and atherosclerotic cardiovascular (CV) abnormalities.
Nearly 60% of children with CKD are affected since birth
with congenital or inherited kidney disorders. Preliminary
evidence primarily from adult CKD studies indicates
common genetic risk factors for CKD and atherosclerotic
CV disease. Although multiple physiologic pathways share
common genes for CKD and CV disease, substantial
evidence supports our attention to the renin angiotensin
system (RAS) and the interlinked inflammatory cascade
because they modulate the progressions of renal and CV
disease. Gene polymorphisms in the RAS-cytokine path-
way, through altered gene expression of inflammatory
cytokines, are potential factors that modulate the rate of
CKD progression and CV abnormalities in patients with
CKD. For studying such hypotheses, the cooperative efforts
among scientific groups and the availability of robust and

affordable technologies to genotype thousands of single
nucleotide polymorphisms (SNPs) across the genome make
genome-wide association studies an attractive paradigm for
studying polygenic diseases such as CKD. Although
attractive, such studies should be interpreted carefully, with
a fundamental understanding of their potential weaknesses.
Nevertheless, whole-genome association studies for diabet-
ic nephropathy and future studies pertaining to other types
of CKD will offer further insight for the development of
targeted interventions to treat CKD and associated athero-
sclerotic CV abnormalities in the pediatric CKD population.
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Introduction

Chronic kidney disease (CKD) is irreversible and progres-
sive [1]. In children, CKD is underappreciated, under-
studied, and an important cause of morbidity and mortality
[1, 2]. Furthermore, adjusted mortality rates since 1991
among the pediatric end-stage renal disease (ESRD)
population increased by 5% to 26.6 per million general
population in 2005; and cardiovascular (CV) mortality
among pediatric ESRD patients has increased from 17.7
deaths per 1,000 patient years at risk in 1991 to 23.4 in
2005 [3]. Children with CKD live with the consequences of
abnormal renal function for their entire lives, with nearly
60% affected since birth with congenital or inherited kidney
disorders [2]. Diabetic nephropathy and hypertension,
which are the dominant causes of CKD in adults, are rare
causes of CKD in childhood. CKD in children is the result
of heterogeneous diseases of the kidney and urinary tract
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that range from common congenital malformations of the
urinary tract to rare inborn errors of metabolism. Although
some patients have stable kidney function for years, others
have a rapid decline in function. The factors associated with
an accelerated decline in kidney function include: the cause
of CKD, proteinuria, hypertension, anemia, hyperphospha-
temia, and metabolic acidosis [4–9]. In common with
children and adults with CKD, progression to kidney
failure occurs via a final common pathway characterized
by progressive interstitial fibrosis, peritubular capillary loss
with hypoxia, and destruction of functioning nephrons
because of tubular atrophy [10]. Despite the diverse
initiating and secondary factors noted above, CKD pro-
gression is strongly influenced by common inflammatory
mechanisms [11].

CKD is a well-known risk factor for atherosclerotic CV
disease [12–16]. Children with kidney failure receiving
chronic dialysis have a cardiac death rate 1,000-fold higher
compared with children in the general population [15].
Children with mild to moderate CKD have a high preva-
lence of traditional risk factors for atherosclerotic CV
disease, including hypertension, hyperlipidemia, and ele-
vated homocysteine levels [17–19]. Left ventricular hyper-
trophy (LVH), a pathophysiologic adaptation of the
myocardium, is viewed as a marker for early CV disease
in pediatric patients with CKD [20, 21]. The long-standing
and progressive atherosclerotic CV abnormalities that begin
in childhood CKD contribute to the increased CV morbidi-
ty in adulthood [22]. CKD promotes maladaptive inter-
actions between the heart and kidneys, which in turn
amplifies the progressive failure of these organs [23]. The
emerging evidence suggests that cytokines may play a vital
regulatory role in initiation and progression of both renal
and CV disease in patients with CKD [24].

Preliminary evidence primarily from adult CKD studies
[24] indicates common genetic risk factors for CKD and
atherosclerotic CV disease. Although multiple physiologic
pathways share common genes for CKD and CV disease,
substantial evidence [10, 25–28] supports our attention to
the renin angiotensin system (RAS) and the interlinked
inflammatory cascade because they modulate the progres-
sion of renal and CV disease. Current research suggests that
the natural variations of the genes involving the RAS-
cytokine pathway influence the rate of progressions for
renal and CV disease in CKD patients [24]. Insights
gained by understanding how variations in this pathway
influence the progressions of renal and CV disease will
lead to hypotheses for targeted interventions to treat CKD
and associated atherosclerotic CV abnormalities in the
pediatric CKD population. This article reviews clinically
relevant candidate genes of the RAS-cytokine pathway
and the fundamentals of genotype–phenotype association
studies.

CKD–CV disease link: RAS-cytokine pathway

Intervention trials in adults with CKD have demonstrated
that blockade of the RAS slow progression of renal disease
via antihypertensive and anti-inflammatory mechanisms
[26–28]. The RAS generates circulating angiotensin II
(AT2), which regulates blood pressure and intravascular
volume. In contrast to its endocrine function, tissue RAS
produces AT2 that is involved in autocrine and paracrine
signaling within all bodily organs, including the heart,
blood vessels, and kidneys [29]. Tissue RAS exerts a
pivotal role in the regulation of cytokine signaling,
potentially modulating the inflammatory response associat-
ed with renal disease progression and susceptibility for CV
dysfunction.

Tissue RAS via AT2 regulates the cytokine pathway
responsible for progressive injury in the kidney and heart
[25, 30–32]. As depicted in Fig. 1, activation of tissue RAS
increases the local production of AT2. After AT2 stimulates
the AT2 receptor, a number of signaling systems are
triggered, including that of nuclear factor kappa B (NF-
κB), which is responsible for upregulation of proinflamma-
tory cytokines [33]. The cytokine signaling modulates
endothelial dysfunction, adhesion and migration of circu-
lating immune cells (monocyte, leukocytes, or neutrophils)
into the interstitium, and activation of resident fibroblasts
[10, 11]. Cytokines are soluble polypeptides that act as
important humoral modulators in immunoregulation, hema-
topoiesis, and inflammation. Cytokines act in a highly
complex coordinated network with considerable overlap
and redundancy between the function of individual cyto-
kines. Being pleiotropic in their actions, these molecules
can induce or repress their own synthesis as well as that of
other cytokines and cytokine receptors [24, 34].

In the kidney, the inflammatory host response leads to
renal interstitial fibrosis and progression [10]. These actions
within the kidney are mediated by proinflammatory [tumor
necrosis factor (TNF)-α, interleukin (IL)-1, IL-6] and
profibrotic cytokines [TGF-β and plasminogen activator
inhibitor (PAI)-1] [10, 35]. Proteinuria stimulates interstitial
inflammation and fibrosis in the kidney; it also is a risk
factor for future decline in kidney function [36]. NF-κB
activity is stimulated by albumin [37] and is the pathway
that links proteinuria and tubulointerstitial inflammation
and fibrosis in the kidney [38, 39]. In the heart, the AT2-
stimulated inflammatory response leads to LVH [40, 41].
The myocardial hypertrophy is caused by an increase in cell
size and accompanied by changes in gene expression in
response to AT2 [42, 43]. In addition to AT2, proinflam-
matory cytokines IL-1, IL-6, TNF-α, and TGF-β are
responsible for myocyte hypertrophy and interstitial fibrosis
[44, 45]. In the blood vessel, the AT2 pathway is the
molecular mechanism leading to atherosclerosis [25, 32].
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There is preliminary evidence indicating impaired flow-
mediated dilation among hypertensive patients with muta-
tions in the promoter region of the NF-κB gene [46]. Hence
the upregulation of RAS-cytokine pathway activity is
associated with renal progression, LVH, and atherosclero-
sis. The magnitude of this response may depend on genetic
polymorphisms, which may either increase or decrease
expression of these genes [24, 47].

Genetic polymorphisms

Different versions of a gene at a specific chromosomal
location, or loci, that encode a trait are called alleles (see
Table 1 for a glossary of common terms). Complementary
alleles are inherited from each parent. A change in one
nucleotide (base pair) within a gene is called a single
nucleotide polymorphism (SNP). About 11 million SNPs
with minor allele frequencies (MAF) of at least 1% are
estimated to exist in the human genome. SNPs that affect
native protein function, i.e. functional SNPs, can occur in
gene promoter regions, coding regions, splice junctions,
and 3’-untranslated regions (UTR) and may be causally
involved in the etiology of human disease. Other types of
polymorphisms include insertion/deletion (indel) polymor-
phisms and mini- and microsatellites (di-, tri-, and
tetranucleotide repeats) [48]. Variation in phenotypic
expression of a gene may be affected by epigenetic factors,

where gene expression is affected by mechanisms other
than alterations in the nucleotide sequence, but this is
beyond the scope of this review.

The study of individual SNPs has yielded exciting
insight into the factors involved in CKD progression.
Although candidate-gene-based approaches are a logical
first step, they are unlikely to provide a complete answer.
The progressions to renal and CV disease are complex traits
involving multiple genes. As discussed later, the coopera-
tive efforts among scientific groups and the availability of
robust and affordable technologies that can identify
thousands of SNPs across the genome make genome-wide
association studies an attractive paradigm for studying
polygenic diseases such as CKD. Whole-genome associa-
tion studies are being used to identify the genetic basis for
CKD, with large consortiums investigating the genetic
predisposition to diabetic nephropathy in Europe and North
America [49, 50].

Although a complete overview of all known genetic
polymorphisms of the RAS-cytokine pathway is beyond the
scope of this review, a complete listing can be found at the
National Center for Biotechnology Information (NCBI)
SNP database (dbSNP) (www.ncbi.nlm.nih.gove/projects/
SNP/). There are polymorphisms of the RAS-cytokine
genes that have been reported to be associated with renal
progression and/or CV morbidity and are summarized
below (Table 2). Despite some of the potential weaknesses
of the studies included, these candidate-gene association
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Fig. 1 Activation of the renin
angiotensin system (RAS) and
an increase in the local produc-
tion of angiotensin II (AT2)
triggers the inflammatory host
response
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studies offer some preliminary information worthy of
further investigation.

The renin-angiotensin system

Polymorphisms in the RAS system are associated with
clinically significant renal and CV disease morbidity and
thought to occur through a proinflammatory mechanism.
The inflammatory response is activated by the RAS through
the recruitment of proinflammatory cells to the site of injury
[51, 52] and the upregulation of adhesion molecules on
vascular endothelial cells and smooth muscle cells [30].

A naturally occurring variant in the angiotensin-converting
enzyme (ACE) gene, located on 17q23, is a 250-base pair
deletion in intron 16. The D/D genotype is associated with a
high ACE level, whereas the I/I genotype is associated with
a low ACE level. In subjects with type 1 and type 2
diabetes, the haplotype insertion allele of the ACE gene
has been associated with lower risk of diabetic nephrop-
athy compared with the haplotypes including the deletion
allele [49, 53, 54]. The D/D genotype has been associated
with renal progression in children and adults with CKD [55–
58]. The D/D polymorphism has been associated with LVH
and QTc interval prolongation in patients with ESRD [59,
60].

Polymorphisms in angiotensinogen (AGT), located on
1q42-q43, are associated with increase in risk for renal
progression and CV disease. Reported frequently in the

literature, the M235T SNP is a methionine (Met) to
threonine (Thr) amino acid substitution at codon 235. The
Thr/Thr genotype is associated with an increased risk for
hypertension in the general population [61, 62] and in
kidney transplant patients with chronic allograft dysfunc-
tion. Investigators have recently recommended a name
change of the SNP M268T for the substitution at amino
acid 268, to be consistent with accepted human gene
mutation nomenclature [63]. Another SNP is the AGT-6
G/A promoter variant, which is associated with a higher
risk for renal progression in the African American CKD
population [64].

A polymorphism in the AT2 type 1 receptor (AT1R)
gene polymorphism, located on chromosome 3 (3q21-q25)
[65], has also been associated with risk of renal progression
and CV disease. The polymorphism of interest is a
nucleotide change from an adenine (A) to cytosine (C) in
the 3′-UTR at nucleotide 1166. The C/C genotype has been
associated with a more rapid onset of renal failure
compared with those with the A/A genotype [66]. Further-
more, the C/C genotype also is associated with the
development of hypertension and coronary artery disease
[67, 68].

Interleukin-1 and IL-1 receptor antagonist (IL-1Ra)

The IL-1 family consists of two proinflammatory cytokines,
IL-1α and IL-1β, and a naturally occurring anti-inflammatory

Table 1 Glossary of common genetic terms

Alleles: Alternate sequences of the same gene, one inherited from each parent.
Biological pathway: A set of proteins that interact to produce normal and abnormal physiology.
Candidate gene: A gene in which variants could plausibly explain a given phenotype, such as severity of disease or variable response to drug.
Methods to identify candidate genes include basic science studies, identifying DNA sequences conserved across species, human genetics,
epidemiologic association studies, or genome-wide analyses.
Epigenetics: Heritable change in the pattern of gene expression mediated by mechanism other than alterations in the primary nucleotide sequence
of gene.
Genome: The collection of all DNA in an organism. Only a small proportion (probably <3%) of human genomes encodes proteins.
Genotype: The genetic makeup of an individual, which may refer to the whole genome or to specific genes or regions of genes.
Haplotype: A set of genetic variants that are inherited together. Polymorphisms that are coinherited more often than by chance alone are in
linkage disequilibrium (LD). Haplotype blocks may include many individual polymorphisms in high LD; as a result, establishing genotype at
any single polymorphic site with such a block may establish genotypes at linked sites within the block. Individual single-nucleotide
polymorphisms (SNPs) that can be used to establish genotype within a haplotype block are termed tag SNPs.
Heterozygous: Having different alleles in a specific region of DNA.
Homozygous: Having the same alleles in a specific region of DNA
Phenotype: Measurable characteristics of an organism. These may derive from genotype, environment, or the combination. Organisms with the
same phenotype can have different genotypes.
Polymorphisms: DNA variants that are common, often defined as >1% in a given population. Polymorphisms can be in coding regions (where
they may be synonymous or nonsynonymous) or, more commonly, in noncoding regions, and often vary by ethnicity. The most common type of
polymorphism is a change in one nucleotide (base pair) in a DNA sequence, referred to as an SNP. Other polymorphisms are insertion and
deletion of multiple sequential nucleotides (indels); variable numbers of repeats, such as doublets or triplets; or large-scale duplications or
deletions. Although some genetic variants are known to alter protein abundance or function, the functional consequences of most polymorphisms
are unknown.
Tag SNPs: These are maximally informative SNPs that characterize common haplotypes.
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agent, the IL-1Ra. The balance between IL-1 and IL-1Ra in
local tissues plays an important role in the susceptibility to and
severity of many diseases [69, 70]. Plasma IL-1 and IL-1Ra
have been shown to predict cardiovascular outcome [71] and
mortality in ESRD [72]. The genes of the IL-1 complex map
to the 430-kb region on the long arm of chromosome 2. The
IL-1α gene has an SNP g.-889C>T, which is a base pair
change from a cytosine to a thymine (C→T) [73]. The IL-1β
gene has an SNP g.-511C>T, which has a base pair change
exchange (C→T) [73] and g.+3953 [74]. The IL-1Ra gene
contains a variable number of tandem repeat (VNTR)
polymorphisms in intron 2 (IL-1RN) [75]. The IL-1RN
allele 2 is related to increased production of IL-1β [76].
Polymorphisms in IL-1α have been associated with ESRD
[73]. Gene polymorphisms of IL-1β and IL-1RN have been
associated with hypertension [77], atherosclerosis [78–80],
CAD [78–80], and progression of renal disease [81–83].

Interleukin-6 (IL-6)

IL-6 is a proinflammatory cytokine that stimulates the
production of C-reactive protein (CRP) and fibrinogen.
There is a promoter polymorphism at position –174 of the
IL-6 gene (g.-174G>C). Carriage of the C allele is
associated with higher levels of IL-6 production in response
to pathologic stimuli [84]. The polymorphism is associated
with a higher risk of CV disease in the general population
[84, 85]. In dialysis patients, the carriage of the C allele is
associated with high blood pressure, LVH, and decrease in
functional status [47, 86]; in kidney transplant recipients, it
is associated with decreased graft survival [87].

Interleukin-10 (IL-10)

IL-10 attenuates the inflammatory response [47]. Decreased
production of IL-10 is associated with increased CRP and
higher cardiovascular mortality [88]. The IL-10 gene is
located on 1q31-32 and is composed of five exons and has
SNPs at positions g.-592 C>A, g.-819 C>T, and g.-1082
G>A [89, 90]. The low producer genotype A/A of the
g.-1082G>A SNP is associated with increased CV mortality
in ESRD patients [88].

Tumor necrosis factor-α (TNF-α)

TNF-α production is stimulated by AT2 and associated
with tubulointerstitial fibrosis [91]. Furthermore, elevated
TNF-α levels are associated with CV disease comor-
bidities: coronary artery disease [92], LVH [93], and
congestive heart failure [94]. The TNF-α gene is located
on chromosome 6 and is highly polymorphic. Numerous
promoter-region SNPs exist and are located at the upstream
positions -1031, -863, -857, -851, -419, -376, -308, -238,

-163, and -49 relative to the transcription start site;
another SNP is at +488 in the intron [95, 96]. In
hemodialysis patients, the polymorphism g.-308 G>A in
the promoter region of the TNF-α gene has been associated
with significant comorbidity; the carriage of the A allele is
associated with a low serum albumin, higher burden of
comorbid conditions, and a low Karnofsky score [47].

Transforming growth factor-β (TGF-β)

TGF-β is a cytokine that regulates cell growth, differen-
tiation, and extracellular matrix production [97]. TGF-β
transmits the profibrotic signaling of AT2 that promotes
interstitial fibrosis in the kidney [98]. Blockade of AT2 by
ACE inhibitors and AT2 receptor blocker (ARB) drugs
reduces intrarenal TGF-β [99]. Furthermore, TGF-β is
responsible for the production of additional fibrosis-
promoting molecules such as connective tissue growth
factor (CTGF) and PAI-1 [10]. Overproduction of TGF-β1
is associated with renal progression [10, 100], hypertension
[101], and LVH [102]. Several polymorphisms have been
identified in the TGF-β gene [103]. There are two
polymorphisms in the signal peptide sequence Leu10->Pro
(g.+869T>C), Arg25→Pro (g.+915G>C) associated with
higher production of TGF-β1 [104, 105]. Gene poly-
morphisms in TGF-β1 have been associated with an
increase in proteinuria and mesangial cell hypertrophy in
patient with IgA nephropathy [106]. Furthermore, the
+915G/C genotype at codon 25 (Arg/Pro) may be a genetic
susceptibility factor for the development of atherosclerosis
due to the genotype’s association with an increased risk for
cardiac morbidity and cardiac-specific mortality in hemo-
dialysis (HD) patients [107].

Plasminogen activator inhibitor-1 (PAI-1)

Upregulation of PAI-1 favors extracellular matrix accumu-
lation and fibrosis by inhibiting fibrinolysis [108]. AT2
signaling via the type 1 receptor increases the production of
PAI-1 [108]. Furthermore, regression of sclerosis is associ-
ated with blockade AT2 and a reduction in PAI-1 [109].
The gene polymorphism of interest is a 4G/5G insertion/
deletion 675 base pairs from the start of the promoter. The
polymorphism affects the binding of nuclear proteins
involved in the regulation of PAI-1 gene transcription,
leading to higher rate of synthesis with the 4G/4G genotype
[110]. The genotype is associated with chronic kidney
allograft nephropathy [111] and increased activity of lupus
nephritis [112], The PAI-1 4G/5G polymorphism is associ-
ated with fatal and nonfatal myocardial infarction in
dialysis patients [113]. In summary, much of the data
supporting the link between RAS-cytokine gene poly-
morphisms and the progression of renal and CV disease
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stem from adult studies that involve a significantly larger
prevalent population. However, there are preliminary data
supporting efforts for genotype–phenotype association
studies in children [55–57]. Although there is heterogeneity
for the causes of CKD between the adult and pediatric
populations, progression for renal and CV abnormalities
shares the same final common pathway, as discussed above.

Finding the link between genotype and phenotype

As stated previously, the natural variations of the genes
involving the RAS–cytokine pathway potentially influence
the rate of progressions for renal and CV disease in CKD
patients. For example, a study by Balakrishnan et al.
demonstrates the relationship between cytokine gene
polymorphism and cytokine secretion from peripheral
blood monocytes (PBMC) in hemodialysis patients [47].
Genotyping was performed for SNPs in the promoter region
of IL-6 (-174 G>C), TNF-α (-308G>A), and IL-10 (-1082
G>A) in 183 ESRD patients. Plasma cytokine levels by
endotoxin-stimulated PBMCs were measured by enzyme-
linked immunosorbent assay (ELISA). Plasma IL-6 levels
were higher in the circulating blood from patients having
-174G/C or C/C genotype; and IL-10 secretion was
increased in -1082 G/G genotype (Table 3). The inflamma-
tory response to the uremic milieu is variable and
associated with cytokine gene polymorphisms in CKD
patients.

By analyzing differences in DNA sequences in large
cohort studies, the disease phenotype can be mapped
according to known genetic markers (i.e. known locations
of SNPs) by linkage analysis. Unlike monogenic disorders,
polygenic disorders as in CKD and CV abnormalities are
the result of complex interactions of intra- and intercellular
systems that are governed by multiple gene loci (polygen-
ic), often modified by gene–environment and gene–gene
interactions (epistasis) [24]. The genetic determinants of
renal and CV disease progression are cumulative variations
of gene transcription and function in these interdependent
pathways.

A consistent picture of genotype–phenotype relation-
ships in CKD and CV disease are lacking, probably
because: (1) other unknown functional loci may be present;
(2) polymorphisms that are known but which have not yet
been recognized to be functional may exist; (3) inconsistent
definitions of CKD; (4) heterogeneity of diseases that cause
CKD; (5) limitations due to sample size, especially in the
pediatric CKD population. Polymorphisms do not exist in
isolation, and it may be the combination of base changes at
several proximal sites along the allele, i.e. the haplotype
that influences the function. Haplotype methods may
capture a large proportion of the genetic variation across
sizable regions using a minimal number of tag SNPs [114,
115], as discussed further below.

Haplotype and HapMap

Alleles that are in close proximity along a DNA strand tend
to cross over together during recombination and comprise a
haplotype. In a population, common haplotypes can be
inherited among many individuals from a common ances-
tor, with complementary haplotypes being given by each
parent. The characterization haplotype variants among
human populations (http://www.hapmap.org) offers new
opportunities in the genetic analysis of CKD through
whole-genome association studies.

At this time, the International Haplotype Map (HapMap)
Consortium is characterizing where and how frequently
sequence variants occur in the human genome in four
different ethnic groups worldwide [116]. Here, SNPs along
a chromosome that tend to be inherited together can define
a haplotype. Although a chromosomal region may contain
many SNPs, there only a few tag SNPs that offer the most
information about genetic variation in that region. Within
candidate genes, the number of common polymorphisms is
finite [117], but direct assay of all existing common poly-
morphism is inefficient, because genotypes at many of these
sites are strongly correlated. Selection of the maximally
informative set of a common tag SNP set can comprehen-
sively interrogate for main effects of the haplotype [118, 119].

Table 3 Relationship between
genotype and plasma cytokine
levels [72]

a Levene’s test for unequal
variance, p=0.05, b Kruskall–
Wallis test, p=0.01

Cytokine Genotype Transcription/secretion
level (expected)

Plasma level in pg/ml
mean ± SD

Interleukin (IL)-6 -174 C/C Low 12.2±5.1
-174 G/G, G/C High 15.01±17.4a

Tumor necrosis factor (TNF)-α -308 G/G Low 998.8±1156.2
-308 G/A, A/A High 1131±1616.2

IL-10 -1082 A/A Low 344.8±356.3
-1082 G/A Intermediate 391.0±440.5
-1082 G/G High 627.4±506.2b

1044 Pediatr Nephrol (2008) 23:1037–1051
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The HapMap project has opened the way for whole-
genome association studies. Association refers to the
statistical dependence between two variables, which is a
measure of the degree to which the frequency of a risk
factor, in this case a genetic marker, is different between
persons with disease compared with those without disease.
Hence, studies to determine the genes that influence CKD
progression will compare CKD patients with a more rapid
decline in glomerular filtration rate (GFR) to those with
slower progression. Regions where the two groups differ in
their haplotype frequencies might contain genes associated
with renal progression. However, the dawning of new
technology for rapid sequencing of DNA has implications
of advancing this field of research beyond the HapMap
[120].

Potential limitations of gene association studies

The presence of an association does not imply that the
observed relationship is one of cause and effect. A
judgment of causation from epidemiologic data relies on
assessing the validity of the observed statistical association
and the cumulative evidence from a variety of sources in
order to support a causal inference regarding the genetic
marker of interest. An association between a gene and
disease may be indicative of a true relationship between the
gene and the disease; however, the association may not be
valid due to chance (type I error), limited sample size (type
II error), bias, or confounding. Ideally, a gene association
study will have sufficient cases and controls (on the order
of thousands) to identify a gene locus or region that is truly
associated with the disease given a threshold of significance
on the order of P value <10−6 [121]. However, an
investigation of this nature is not likely to be achieved
immediately in the pediatric CKD population without
preliminary evidence from studies of modest sizes varying
in degrees of quality. Furthermore, no single center alone
will have a sufficient number of pediatric CKD subjects to
power such an analysis and would likely need a cooperative
effort among a number of pediatric CKD centers.

Type I and type II error

Typically, investigators may submit their data sets for
genotyping with a standard, very large, set of SNPs, which
will include markers located in the candidate gene along
with a few thousand which are not. Spurious associations
where the genetic marker of interest is correlated with the
disease by chance may occur, especially in the presence of
multiple comparisons [122]. To illustrate the multiple
comparisons problem, we use a hypothetical case-control
study of 10,000 unrelated SNPs to be tested for association

with the disease of interest, with the threshold for statistical
significance set to a P value of 0.01. If 10,000 statistical
tests are performed to assess the association between each
of the SNPs and the disease, by chance alone, we would
expect 100 SNPs at random to be statistically associated
with the disease, even though there is no true relationship;
this is a type I error. With increasing number of genetic
markers being typed and multiple intermediate phenotypes
being tested, strict guidelines for publication of gene
association studies have been proposed [123–125].

In studies of modest size, SNP markers in the candidate
gene may produce relatively modest evidence in favor of
association with a level of P<0.01, even with hundreds of
subjects [126]. Thus, a marker having a real but modest
effect is not expected to produce an odds ratio (OR) with a
smaller P value than markers producing apparently signifi-
cant results by chance [126]. In addressing this limitation,
setting a stringent P value (P<10−6) is a generally accepted
convention for large studies with markers of low prior
probability of true association [121]. Applicable to studies
of smaller magnitude, alternative methods relying on
Bayesian strategies have been proposed [126, 127]. Under
these approaches, the prior probability of association based
on preliminary evidence is used to weight the P value
obtained. This supports the general recommendation for
having biologic plausibility of the observed association
such that the genetic variant of interest is involved the
pathogenesis of disease [122, 124, 128]. It is worth
considering whether the known function of the gene is
linked to the observed phenotype. Furthermore, the associa-
tion between gene and disease is less likely to be spurious if
the relationship is observed in other independent studies.
Although mildly controversial [129], there is general
agreement that the initial findings of a gene–disease
association study be replicated by other studies [130, 131].

Many gene association studies are not replicated for a
number of reasons. A small sample size may limit a study’s
ability to detect an association if one truly exists.
Concluding that there is no association when one truly
exists defines a type II error. The magnitude of the
contribution of single gene variants to polygenic disorders
is small, with a typical effect sizes corresponding to ORs of
1.2–1.6 [132]. Compared with the smaller sample sizes
needed to detect a larger effect (e.g. OR ≥ 2.0), detecting
associations of smaller magnitude requires a much larger
sample size, which may dramatically increase the recruit-
ment costs and make some studies unfeasible [132].

Furthermore, the lack of consistency in proposed gene–
disease association across studies may also be reflective in
the inherent complexity and heterogeneity of common
diseases, including CKD [131], which are beyond the
scope of this review. A proposed solution for studies with
insufficient power are to: (1) emphasize replication and
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obtain data to determine biologic plausibility; (2) synthesize
results of individual studies for meta-analysis; or (3) obtain
data on individual subjects from several studies to perform
a pooled analysis [125].

Limitations in study design

Biased estimates for an observed association between
genotype and phenotype may originate from a flaw in the
design or conduct of the study that has introduced
systematic error or bias into the result. There are numerous
considerations to this point, but a few topics deserve some
mention in this general overview. A more complete
discussion of these considerations can be found elsewhere
[122, 125, 133, 134]. The adequacy of any epidemiologic
study design depends on the scientific question [135]. A
study that is designed to detect an association may “over-
select” cases in order to detect an association. However, the
measures of the association from studies designed to detect
genotype–phenotype associations are not valid or generaliz-
able measures of association for the population [125].

The case–control study is a common study paradigm for
genome association studies because it is economically
efficient, allows for the evaluation of diseases with long
latent periods, and can examine multiple etiologic factors
for one disease; however compared with other study
paradigms, case–control studies are particularly prone to
bias if controls are not properly selected [136]. Genetic
association studies may be biased or confounded by
population stratification [133] and genotyping errors
[134]. Population stratification can create the appearance
of a SNP–disease association and arises when race and/or
ethnicity is related both to the SNP under investigation (e.g.
differences in allele frequencies within distinct ethnic
groups) and to the disease of interest. Similar to epidemio-
logic studies needing to address race and ethnicity as
potential confounders, gene polymorphism studies should
assess the potential for bias and confounding due to
population stratification [137].

Of additional concern, genotyping errors can be signifi-
cant, leading to null results or erroneous conclusions [134].
Genotyping errors can stem from a number of causes,
including: (1) inadequate sample quality; (2) artifacts due to
biochemical or equipment problems; (3) errors from the
DNA amplification process; (4) human factors. Genotyping
errors in phenotype–genotype association studies will tend
to bias estimates of association toward the null assuming
that errors occur at equal frequency across case status [134].
However, if cases and controls are genotyped using
different assays or run separately in distinct batches,
differential errors may occur resulting in either over- or
underestimation of the true association [134].

Conclusions

Genetic association studies have the potential to provide
new insights into the factors responsible for CKD renal and
CV progression. These investigations provide hope for new
drug targets to treat or modify individual disease risk. In the
case of CKD, genetic polymorphisms in the RAS–cytokine
pathway may be responsible for the intraindividual varia-
tion in renal and cardiac progression in patients with CKD
and may offer new targets for drug therapy.

The Human Genome and HapMap projects have made it
possible to evaluate a multitude of candidate genes that
might be linked to CKD progression. The enthusiasm for
these investigations must be tempered by acknowledging
the limitations of gene association studies. Attention to
biologic plausibility and appropriate study design will help
the interpretability of published results. Independent inves-
tigations replicating initial findings are needed to support
an inference of a causal association between the gene
polymorphism of interest and the disease phenotype.

Whole-genome association studies are becoming widely
available and are being performed to investigate the genetic
predisposition to diabetic nephropathy [49, 50]. In an effort
to understand the risk factors for progression of CKD and
CV disease, the ongoing CKD cohort studies in adult and
pediatric patients [138, 139] are evaluating known risk
factors for CKD progression, including etiology of CKD,
proteinuria, and hypertension. These cohort studies are
collecting biologic and genetic samples for future studies of
cytokines or their genetic polymorphisms, which may yield
scientific insight into the pathophysiologic mechanisms of
CKD progression in both adults and children.

Questions

(Answers appear following the reference list)

1. Which of the statements below is not a characteristic of
angiotensin II (AT2)?

A AT2 is important for regulating blood pressure.
B AT2 is produced locally in the vascular beds of the

kidney and the heart.
C AT2 is involved in myocardial hypertrophy.
D AT2 is not involved in cytokine signaling.
E AT2 is a factor regulating progressive kidney injury.

2. Where do functional single nucleotide polymorphisms
(SNPs) occur?

A Gene promoter regions.
B Splice junctions.
C 3′-untranslated regions.
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D All the above.
E A and C only.

3. A consistent picture of genotype–phenotype relation-
ships in CKD and CV disease are lacking because:

A Other unknown functional loci may be present.
B The studies investigating such relationships have

been performed in one ethnic population.
C There are known polymorphisms but they are not

recognized to be functional.
D All the above.
E A and C only.

4. A reported genotype–phenotype association may not be
valid due to the following except:

A Type II error
B Type III error
C There is no biologic plausibility for the finding.
D There might be a spurious statistical association due

to chance.
E Investigators did not account for population

stratification.

5. For a hypothetical case–control study to evaluate gene
cytokine polymorphisms in patients with chronic
kidney disease, genotyping errors in a may occur in
the following circumstances:

A Whereas patients with CKD have DNA extracted
from white blood cells, the control population has
DNA extracted from buccal cells.

B DNA amplification for cases and controls are
analyzed in the same lab, by the same amplification
process, and by the same technician.

C The technician performing the DNA amplification
is inexperienced and has little supervision from the
principal investigator.

D All the above.
E A and C only.
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