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Abstract

Flt-3 ligand (FL), a hematopoetic growth factor, increases the number of dendritic cells (DCs),
B cells, and natural killer cells in adult mice but the effect in neonates was unknown. We show
that FL treatment of newborn mice induced a >100-fold increase in the innate resistance
against infection with herpes simplex virus type 1 and Listeria monocytogenes. This resistance re-
quired interferon (IFN)-o/ for viral and interleukin (IL)-12 for bacterial infections. Long-
term survival after viral but not bacterial infection was increased ~100-fold by FL treatment.
After treatment, CD11c*/major histocompatibility complex type II* and CD11¢*/B220*
DC lineage cells were the only cell populations increased in the spleen, liver, peritoneum,
and skin. DC induction was independent of IFNs, IL-2, -4, -7, -9, -15, and mature T and B
cells. The data suggest that FL increases the number of DCs in neonates and possibly in other
immune-compromised individuals, which in turn improves IFN-o/3— and IL-12-associated

immune responses.
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Introduction

Neonates have an immature immune system. Their IFN
production is inefficient in controlling virus replication (1).
The number of T and B cells in the secondary lymphoid
organs are 1,000-10,000 times lower than in adults and
appear too limited in number to mount protective immune
responses, where the number and defense potential of spe-
cific lymphocytes is crucial (2—6). Hence, neonates are
highly susceptible to infection with intracellular pathogens.
In newborn mice, B cells are difficult to activate but T cells
can be primed at a neonatal or even prenatal stage (7).
However, T cell activation requires adequate numbers of
dendritic cells (DCs)* or else tolerance is induced (5, 8—10).

Flt3 ligand (FL) is a growth factor that binds to early hae-
matopoietic precursor cells in fetal liver or bone marrow
(11, 12). Treatment of adults with FL results in an increase
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of the relative and absolute number of biologically active
DCs, B cells, and NK cells in peripheral tissues (13—15).
The adult animals used in these studies had a mature hor-
mone and immune system and cell homing was at equilib-
rium. It was not clear whether exogenous FL could in-
crease the number of such cell populations in neonatal mice
with a developing immune system and whether these cells
would be biologically active.

To address these questions, neonatal mice were treated
for 7 d with FL and tested for susceptibility to infection
with intracellular pathogens. After FL treatment, the nature
and quality of resistance was analyzed for short-term innate
effects and for survival of the animals. We found that the
innate immune system of FL—treated animals was at least
100 times more resistant than controls to infection with
HSV-1 or Listeria monocytogenes. In these neonatal mice DC
lineage cells were the only cell populations increased in the
organs tested. The data suggest that FL induces IFN-a/3—
and IL-12-associated immune responses in neonates by ex-
panding cells of the DC lineage.
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Materials and Methods

Animals.  Wild-type, C57BL/6, BALB/c, 129Sv/Ev, and
congenic mice with gene-targeted disruptions of the IFN recep-
tor type I (A129), the IFN receptor types I and II (AG129), the
RAG-1 (RAG™/7), the IFN receptor type I and RAG (AR 129),
the IFN receptor type II and RAG (GR129), the IFN receptor
types I and II, as well as RAG (AGR129) and RAG mice with an
additional deletion of the common <yc chain (RAG™/~ yc™/7)
were used (16—18). Mice were bred and maintained under spe-
cific pathogen-free conditions in the Labortierkunde or the
Nagerzentrum, University of Zurich.

Treatment of Newborn Mice with FL. Newborn mice were in-
jected subcutaneously within 24 h of birth and consecutively for
6 d with 1 g human FL (Immunex) in 50 wl LPS-free PBS.

Animal Challenge Experiments with HSV-1 and L. monocy-
togenes. HSV-1 F strain was originally obtained from B. Roiz-
man (University of Chicago, Chicago, IL) and propagated on
Vero cells (19). For all experiments, purified virus particles were
used. Purification of infectious particles was performed by ultra
centrifugation on a sucrose density gradient and the virus titer was
determined as previously described (20). L. monocytogenes ob-
tained from R.M. Zinkernagel (University of Zurich, Zurich,
Switzerland) were propagated and titrated using established bacte-
riological procedures.

Mice were challenged subcutaneously with HSV-1 or intra-
peritoneally with L. monocytogenes at 7 d of age. Surviving animals
were scored 21 d after infection with various doses of HSV-1.
Bacterial titer in the spleen was determined 5 d after infection
with L. monocytogenes. The infective dose of L. monocytogenes
used was 50 CFU per animal, which is 20-fold below the lethal
dose required to kill 50% of the 7-d-old C57BL/6 mice (LDs)
within 5 d. 10-50 CFU L. monocytogenes were used for challenge
experiments to evaluate the long-term survival of the 7-d-old
C57BL/6 mice.

To determine the biological significance of IL-12 p75, 10 g
monoclonal antibody (10F6) specific to mIL-12 p40 and able to
neutralize bioactive IL-12 p75 was administered to mice 1 d be-
fore and 1 and 3 d after the infection experiment (21). Recombi-
nant purified human interferon o B/D hybrid (rHulFN-a B/D;
reference 22) was obtained from M.A. Horisberger (Nowvartis,
Basel, Switzerland).

Immunofluorescent Staining and Flow Cytometry. Mice were
killed by an overdose of anesthesia. Spleen and liver cells were
prepared as previously described (20). In some cases DCs
were enriched by depletion and a density centrifugation proce-
dure as previously described (23), except that antibody specific to
B220 (see below) was omitted from the depletion mix to ensure
that plasmacytoid DCs were present and antibody to CD19 was
added instead. To prepare peritoneal lavage cells, the ventral skin
was removed and 1 ml PBS in a 1-ml syringe was slowly injected
in the abdomen with a 22-G (0.7-mm) needle and thereafter
reaspirated. This procedure was repeated twice. A minimum of
3 mice was required for 10 analyses.

Cell analysis was performed using a FACSCalibur® (Becton
Dickinson) and the data were analyzed as previously described
(23, 24). The following monoclonal antibodies were used: FITC-
conjugated hamster IgG group 1, IgG isotype standard anti-trini-
trophenol (Cat. No. 11124), FITC-conjugated hamster anti-mouse
CD11c (Cat. No. 09704), R-PE—conjugated rat anti-mouse
CD86 (B7-2; Cat. No. 553692), PE-conjugated rat anti—
mouse [-A/I-E (Cat. No. 06355), FITC-conjugated rat anti—
mouse CD19 (Cat. No. 553785), FITC-conjugated rat anti-mouse
CD11b (Cat. No. 557396), PE-conjugated rat anti-mouse

CD45R/B220 (Cat. No. 553089), FITC-conjugated rat anti—
mouse NK-1.1 (Cat. No. 553164), PE-conjugated rat anti-mouse
CD3 (Cat. No. 28005B), and R-PE—conjugated rat anti-mouse
pan NK cells DX5 (Cat. No. 553858; all from Becton Dickinson
and BD Biosciences). Staining was performed according to stan-
dard protocols.

Statistics.  Data were compared with a two-site f test. P-values
were indicated as highly significant, <0.0001 (****) and <0.001
(***) and significant, <0.01 (**) and <0.05 (*). Data are given as
mean and * standard deviation where appropriate.

Immunohistochemistry.  Freshly removed organs were im-
mersed in Hank’s balanced salt solution and snap frozen in liquid
nitrogen. For the staining of cell differentiation markers, frozen
tissue sections of 5-pm thickness were cut in a cryostat, placed on
siliconized glass slides, air dried, fixed in acetone for 10 min, and
stored at —70°C. Rehydrated tissue sections were incubated with
primary rat monoclonal antibodies against CD45R/B220 (RA3-
6B2; BD Biosciences) or anti-mouse CD11c (BD Biosciences)
and with primary monoclonal hamster antibodies (IN418; refer-
ence 2). Primary antibodies were revealed by sequential incuba-
tion with goat antibodies against species-specific Igs followed by
alkaline phosphatase—labeled donkey antibodies against goat im-
munoglobulins (Jackson ImmunoResearch Laboratories). Dilu-
tions of anti-Ig reagents were made in Tris-buffered saline con-
taining 5% normal mouse serum. Alkaline phosphatase was
visualized using naphthol AS-BI (6-bromo-2-hydroxy-3-naph-
tholic acid-2-methoxy anilide) phosphate and new fuchsin as sub-
strate, yielding a red color reaction product. Endogenous alkaline
phosphatase was blocked by levamisole. Color reactions were
performed at room temperature for 15 min with reagents from
Sigma-Aldrich. Sections were counterstained with hemalum and
coverslips were mounted with glycerol and gelatin.

Results

Treatment with FL Increases IFN Type I and NK-dependent
Innate Resistance Against Infection with HSV-1.  Newborn
animals are highly susceptible to infection with intracellu-
lar pathogens. Because FL treatment of adult animals leads
to expansion in the number of DCs, NK cells, and B cells,
and thus enhanced resistance to pathogens (25-28), a sim-
ilar approach was tried in newborn mice. To test for resis-
tance against viral infection, 7-d-old FL—treated and con-
trol C57BL/6 or BALB/c mice were challenged with
graded doses of HSV-1. The survival of animals was de-
termined 3 wk after viral infection. All FL—treated
C57BL/6 mice infected with 10* PFU of HSV-1 sur-
vived. By contrast, 75% of the control mice died (Fig. 1
a). 70% of the FL—treated mice challenged with 10° PFU
of HSV-1 survived the viral infection for >21 d whereas
all the control mice died (Fig. 1 b). The LDy, for HSV-1
of naive, 7-d-old C57BL/6 mice was 10> PFU of virus
whereas that of adult mice was 5 X 10° PFU of HSV-1
(29). Hence, treatment of newborn C57BL/6 mice with
FL increases resistance against HSV-1 infection >100-
fold. Furthermore, FL—treated BALB/c mice had a signif-
icantly higher resistance against HSV-1 infection when
compared with PBS controls (Fig. 1 ¢). Thus, FL in-
creased resistance of neonates against HSV-1 infection to
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adult levels and this biological effect was not restricted to
a single mouse strain.

IFN-a/ is crucial for the innate defense against HSV-1
and other viruses (17, 30). To test the effect of IFN-a di-
rectly in 7-d-old mice, a single dose of 10°IU of the cyto-
kine was administered and the mice were challenged with
10* PFU of HSV-1. The majority of rHulFN-a B/D—
treated animals survived the viral challenge whereas all
control mice died (Fig. 1 d). In a similar challenge experi-
ment with 10> PFU of virus, all rIFN-a—treated animals
stayed alive whereas 60% of the control animals died. In
contrast, A129 mice with gene-deleted functional type I
IFN receptor did not survive any viral challenge regardless
of whether the mice were treated with FL or not, and died
within a few days (Fig. 1 e). As expected, AG129 mice
without a functional IFN system at all were not protected
against viral challenge and died within a similar time frame
(not depicted). Thus, in the absence of a functional type I
IFN system (Fig. 1 e), IFN—y had no appreciable eftect
against viral infection in neonates. Mice without functional
IFN-y (G129) were more susceptible to virus infection
than wild-type mice (not depicted), indicating cooperative
effects between type I and II IFN system in the defense
against HSV-1.

Next, the role of specific lymphocytes in the defense
against HSV-1 infection was analyzed. RAG-deleted mice
lacking mature T and B cells died after challenge with 500
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Figure 1. Resistance of FL— or rIFN-a—treated mice
against infection with HSV-1. Groups of 6—12 new-
born C57BL/6 (a and b), BALB/c (c), C57BL/6
treated with 10° IU of r[FN-a at day 7 (d), A129 (e),
RAG17/~ (f), or RAG™~ yc™/~ (g) were used. Mice
in all groups except d were injected daily from day O to
6 with FL (solid line) or PBS (broken line) and challenged
with 10* (a and d), 10° (b), 0.5 X 103 (e-g), or 10?
PFU (c) of HSV-1 at 7 d of age. The survival of mice
after viral infection is shown.

PFU of HSV-1 whereas 30—40% of the FL—treated mice
survived (Fig. 1 f). Only 1 out of 10 RAG-deleted mice
survived a challenge with 100 PFU of virus whereas 90% of
the FL—treated mice remained healthy. RAG-deleted mice
with an additional defect on the common <y chain have no
significant numbers of NK cells. Untreated RAG™/~ yc™/~
rapidly succumbed to 500 PFU of HSV-1. FL treatment
significantly delayed the onset of the disease but all mice
died 2—4 d later (Fig. 1 g). Therefore, the innate resistance
against HSV-1 in neonatal mice depends on IFN type I
that cooperates with IFN type II, NK cells, or other im-
mune elements associated with the biological function of
the (yc) chain.

Increased Innate Resistance of FL—treated Neonatal Mice
Against L. monocytogenes Depends on IL-12 and NK Cells.
The biological effect of FL treatment on responsiveness to
the intracellular pathogen, L. monocytogenes, was also exam-
ined. The innate immune response against L. monocytogenes
is well established in adult mice and requires DCs and NK
cells. IL-12 produced by DCs licenses NK cells to kill bac-
teria-infected cells and secrete IFN-y, which activates mac-
rophages (31, 32). Newborns are very susceptible to infec-
tion with L. monocytogenes. It was therefore of interest to
determine whether FL treatment could increase innate re-
sistance against this pathogen and what immunological pa-
rameters might be involved. FL—treated C57BL/6 mice
and appropriate controls were infected with 50 CFU of L.
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Figure 2. Innate resistance of FL—treated C57BL/6, RAG /7, or
RAG™~ yc¢™/~ mice against infection with L. monocytogenes in the pres-
ence or absence of IL-12. Groups of six newborn C57BL/6 (a), RAG™'~,
or RAG™/~ yc™/~ (b) mice were treated with FL (refer to Fig. 1) or PBS
as control and challenged with 50 CFU of L. monocytogenes at 7 d of age.
Groups of C57BL/6 mice were additionally treated with neutralizing an-
tibodies against IL-12 p70 (anti IL-12). The number of bacteria in spleen
was titrated at day 5 after infection.

monocytogenes and the bacterial load present in the spleen
was evaluated 5 d later. FL—treated mice had ~100 times
fewer bacteria in their spleens than control animals (Fig. 2
a). The increased innate resistance induced by FL was abol-
ished by treating infected mice with neutralizing antibodies
specific for IL-12 p40 (Fig. 2 a). In RAG-deleted mice, FL

treatment had a similar beneficial effect in the reduction of
the bacterial titer as in wild-type mice (Fig. 2 b). In con-
trast, Flt3- L treatment of mice that lack significant num-
bers of functional NK cells as well as mature B and T cells
(RAG™/~yc™/7) had no effect on the bacterial titer (Fig. 2
b). Hence, similar to adult animals, the innate immune re-
sponse against L. monocytogenes depends on IL-12 and im-
mune elements associated with a functional (yc) chain in
particular significant numbers of NK cells.

FL Increases the Number of CD11c*/MHC-II* Cells in
Spleen, Liver, Peritoneum, and CD11c* Cells in Skin. Next,
we determined the effect of FL on the cell number in the
spleen, liver, peritoneum, and skin from 7-d-old mice.
Groups of three to six wild-type C57BL/6 or 129Sv/Ev
mice were treated with FL, PBS, or left untreated and indi-
vidual spleen, liver, and pooled peritoneal lavage cells were
analyzed by flow cytometry. Treatment with FL did not
influence the total cell number in the spleen or liver when
compared with cell numbers in organs from PBS-treated
or untreated control animals (not depicted). However,
CD11c* single positive or CD11¢*/MHC-II* or CD11c¢*/
CD86" double positive cells were increased three- to four-
fold in the spleen and liver (Fig. 3, a—c and Table I). This
points to a selective increase in cells of the DC lineage. An
increase in the number of the CD11c* cells was also ob-
served in peritoneum (Table I) and skin (Fig. 4, a and b). In
the first few experiments, the spleen or liver from individ-
ual animals was analyzed and compared with their pooled
cell populations. Statistical analysis of the data showed no
difference among the individual or pooled cell populations
within the same group of animals. Thus, in subsequent ex-
periments, spleen or liver cells from three to six animals
were pooled and analyzed by flow cytometry.

Figure 3. Flow cytometric analysis of CD11c¢* and
MHC-II* spleen cells from 7-d-old C57BL/6 mice.
DC-enriched spleen cells from PBS-treated (a and b)
or FL—treated (c) mice (refer to Fig.1) were analyzed
by flow cytometry unstained (a) or stained with anti-
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body to CD11¢ and MHC-II (b and c).
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Table I.  FL Increases CD11ct /MHC*/CD86™ Cells in Body Compartments

Cell type Marker Percent Flt3? X10° Percent BPSC X10° Significance®
Spleen
DC CD11c 6.9 (0.6) 5.5 (0.5) 1.7 (0.4) 1.4 (0.3)
CD11¢/CD86 4.0 (0.1) 3.2 (0.08) 1.3 (0.1) 1.0 (0.1) i
CD11¢/MHC-II 53 (0.2) 42(0.2) 1.4 (0.1) 1.1 (0.1)
B B220 28.9 (2.2) 23.1 (1.8) 26.9 (0.4) 21.5 (0.3) NS
T CD3 7.5 (0.5) 6.0 (0.4) 5.5 (1.9) 44(15) NS
NK NK1.1/DX5 2.4 (0.2) 1.9 (0.2) 2.2 (0.25) 1.8 (0.2) NS
Peritoneal fluid
DC CDl11c 17.5 (1.7) 8.9 (2.03) **
CD11¢/CDS86 13.4 (3.6) 7.6 (1.1) *
CD11¢/MHCAII 14.4 (1.6) 6.5 (2.3) *
B B220 ND ND
T CD3 ND ND
NK NK1.1/DX5 ND ND
Liver
DC CD11c 14.2 (0.9) 10 (0.6) 4.8 (0.3) 3.4 (0.2)
CD11¢/CD86 12.3 (0.4) 8.6 (0.3) 4.2 (0.1) 3 (0.7) i
CD11c/MHC-II 13.9 (0.3) 9.7 (0.2) 47 (0.3) 3.3 (0.2)
B B220 51.6 (1.4) 36.1 (0.9) 51 (0.7) 35.7 (0.5) NS
T CD3 8.2 (0.2) 5.7 (0.1) 9.2 (1.3) 6.4 (0.9) NS
NK NK1.1/DX5 41(1.7) 9.(1.2) 3.6 (0.8) 2.5 (0.6) NS

Groups of six newborn C57/BL6 mice were injected daily from day 0 to 6 with FL or PBS alone. At 7 d of age, different cell types of individual
spleen, pooled peritoneal fluid, or liver were identified by flow cytometry with the cell surface markers indicated. Mean and standard deviations
are shown.

“bproportion (%) of marker-positive cells or absolute cell numbers in organs (X 10°) analyzed from FL— or PBS-treated mice.

“Significance(s) as determined in Materials and Methods.

The FL—mediated Increase of CD11c* Cells Is Independent of ~ whether the effect of treatment with FL was dependent on
Mature B and T Cells, IFN, or IL-2, -4, -7, -9, and -135. mature B and T cells or on a functional IFN system, using
In newborn mice, the IFN system and the T and B cell  genetically modified mice lacking these components. Re-
compartment are not fully mature. Therefore, we asked  sults in Table II show that neither mature B nor T cells nor

Figure 4. Immunohistology of skin from 7-d-old
C57BL/6 or RAG™~ mice treated with antibody to
CD11c. Skin sections from C57BL/6 (a and b) or
RAG™/~ mice (c and d) treated with PBS (a and ¢) or
FL (b and d) were stained with antibody to CD11c, a
pan-specific marker for DCs. Note the CD11c* red
cells with dendrites present in dermis as single cells (a
and ¢), clusters (b and d), or occasionally as single cells
in epidermis (arrows).
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the type I or II IFN system were necessary for FL to in-
crease the level of the CD11c* cells (Table II and Fig. 4, ¢
and d). In addition, functional IL-2, -4, -7, -9, and -15
(RAG™/~ yc™/7) were not necessary for this effect. Most
CD11c* cells were double positive for MHC-II (80-90%))
or CD86 (70-80%) in the spleen and liver from all mouse
strains and all compartments analyzed (Fig. 4 and Table II).

FL Increases the Number of CD11c*/B220%* Cells in Spleen,
Liver, Peritoneum, and B220" Cells in Skin. Besides CD11c"/
MHC-II* DCs, treatment of adult mice with FL increases
B cells and NK cells. B cells were detected by the antibody
B220, a typical “pan” B cell marker in wild-type mice
(Fig. 5, a and b). Interestingly, B220* cells were also found
in RAG-deficient mice, which are unable to produce ma-
ture B cells (Fig. 5, ¢ and d and Fig. 6, a—d). Additional
analysis revealed that some of these cells were also
CD11c", a combination resembling the recently discov-
ered plasmacytoid cells, a major producer of IFN type I
and potential precursor of DCs (33). Similar cells were
found in mice deleted of the RAG or (yc) receptor (Fig. 6
and not depicted).

The number of NK cells was not affected by the treat-
ment with FL in newborn wild-type mice (Table I). IL-15,

Table II.  FL Increases DCs Independent of IFN, IL-2, -7, -9,
-15, and Mature B and T Cells

Increase of DC

Mouse strain® Immunological element® FL/PBS¢

IFN IFN Peritoneal
RAG typel type Il ycSpleen?  fluid

C57/BL6 + + + 39 3.1
129Sv/Ev + + + + 33 33
A129 + - + + 26 2.6
AG129 + — — + 25 32
RAG™~ — + + + 2.1 2.4
RAG/~yc™/= — + + - 26 38
AR129 - — + + 37 3.6
GR 129 - + - + 43 2.4
AGR 129 — - - + 29 1.5

1Groups of newborn mice were treated as described in Table 1.
*Immunological elements present as wild-type (+) or gene deleted (—)
are summarized. Wild-type C57BL/6, 129Sv/Ev, and congenic mice
with gene-targeted disruptions of the IFN receptor type I (A129), the
[FN receptor types I and II (AG129), the RAG-1 (RAG /"), the IFN
receptor type I and RAG (AR129), the IFN receptor type I and RAG
(GR129), the IFN receptor types I and II as well as RAG (AGR129),
and RAG ™~ mice with an additional deletion of the common vyc chain
(RAG™~ yc™/7) were used. At day 7, spleen cells of individual organs
or pooled cells collected from peritoneum were analyzed for the pres-
ence of CD11¢*/MHC-II* cells by flow cytometry.

‘Increase of relative cell numbers of CD11c¢*/MHC-II" cell popula-
tions (DC) in spleen and peritoneal fluid of FL— and PBS-treated mice
was calculated as in Table 1.

4The increase of absolute cell numbers in the spleen was highly signifi-
cant.

an IFN-dependent cytokine is crucial for the development
of NK cells. Because newborn mice have an immature
IEN system, IL-15 might be very low and therefore may
restrict NK cell development. This view was supported by
the fact that the number of cells, positive for the NK cell
markers, was similar in wild-type mice and animals that are
unlikely to make IL-15 (AGR129) or those with a deleted
receptor for IL-15 (RAG™/~ yc™/7; reference 34). There-
fore, DCs with the well-known markers CD11c*/MHC-
II" and cells that resemble plasmacytoid cells (CD11¢*/
B220") were found elevated in all organs tested of FL—
treated animals (Figs. 3—6). This was in contrast to FL
treatment of adult mice that resulted in increases of DCs, B
cells, and NK cells.

FL Treatment Increases the Long-Term Survival of Infection
with HSV-1 but Not of L. monocytogenes. Flow cytometry
analysis indicated that in the neonates analyzed only
CD11c* cells were increased in the spleen, liver, perito-
neum, and skin after treatment with FL. This led to a sig-
nificant increase in the innate resistance against HSV-1 and
L. monocytogenes (Figs. 1 and 2). Next, we determined the
effect of FL treatment on the long-term survival of the in-
fected animals. HSV-1-infected animals that resisted the
challenge for 7-10 d survived for >21 d (Fig. 1). Interest-
ingly, >90% of FL—treated RAG mice survived virus doses
that were lethal to untreated mice, suggesting that the in-
nate immunity, in particular IFN type I and most probably
NK cells, were decisive for survival in neonatal animals.
Hence, FL treatment could increase both innate and long-
term resistance against virus infections in neonates in the
presence or absence of specific immunity.

FL—treated and control mice were challenged with 50
PFU of L. monocytogenes and the survival of the animals was

B220 B220

45.1

B220 3

023 183

orte ootte
Figure 5. Flow cytometry analysis of B220* and MHC-II* spleen cells
from 7-d-old C57BL/6 and RAG™~ mice. DC-enriched spleen cells
from C57BL/6 (a and b) or spleen cells from RAG™~ mice (c and d)
treated with PBS (a and c¢) or FL (b and d; refer to Fig. 1) were stained
with antibody to CD11c and BB20 and analyzed by flow cytometry.
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monitored. The control animals rapidly died after bacterial
infection whereas the FL—treated animals survived for a

longer period of time. But only a few animals survived the
challenge (Fig. 7). Challenge experiments with 10-30 PFU
of bacteria led to a somewhat expanded life span but no
significant long-term survival of animals was observed.
Therefore, even though FL treatment resulted in a higher
innate resistance against L. monocytogenes that led to an in-
creased innate immunity, long-term survival was not
achieved as seen in viral infections.

Discussion

In newborns, the biological elements responsible for sus-
ceptibility to infection with intracellular pathogens are ill
defined. The immature IFN system and the relative low
number of immune cells, in particular of DCs (5, 8, 10),
were considered important factors limiting resistance
against infection with intracellular pathogens. FL, a mole-
cule that induces DCs, B cells, and NK cells in adults (11,
15) was thus tested for its effect in newborn mice.

After FL treatment, the innate resistance against both
HSV-1 and L. monocytogenes was increased >100-fold. As
in adults, the innate immune response of neonates against
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Figure 7. Resistance of FL—treated C57BL/6 mice against infection
with L. monocytogenes. Groups of six to eight newborn C57BL/6 mice
were injected daily from day 0 to 6 with FL (solid line) or PBS (broken
line) and challenged with 50 CFU of L. monocytogenes at 7 d of age. The
survival of mice after infection is shown.
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Figure 6. Immunohistology of skin sections from
7-d-old C57BL/6 or RAG™~ mice treated with anti-
body to B220. Skin sections from C57BL/6 (a and b)
or RAG™~ mice (c and d) treated with PBS (a and c)
or FL (b and d) were stained with antibody to B220.
Note that the B220* red cells with dendrites are
present in dermis as single cells (a—d) or occasionally in
epidermis (d, arrow) in both mouse strains.

HSV-1 depends predominantly on type I IFN whereas that
against L. monocytogenes depends on IL-12. This suggested
that FL treatment increased or activated DC lineage cells
able to induce IFN-a/f3 and IL-12.

In contrast to adult animals, cell analysis by flow cytome-
try and immunohistology showed that only DC lineage
cells, but not NK cells or B cells, were increased in the
spleen, liver, peritoneum, or skin after FL treatment. It is
well known that IL-7 is required for the development of T
(35) and B cells (36) whereas IL-15 is necessary for the
maturation of NK cells (37). Both IL-7 and IL-15 might be
regulated by IFN regulatory factors (38). Because of the
immature IFN system that induces IFN regulatory factors
and the rapid development of T and B cells between birth
and day 7 (5), IL-7, IL-15, and possible other factors neces-
sary for the development of B cells and NK cells are limit-
ing. We speculate that the application of external FL to
the developing immune system expands additional Flt3-
receptor® precursors to further developmental stages (13),
but the differentiation to NK cells or B cells may not be
possible in neonates due to limiting IL-15 and IL-7.

Hence, after treatment with FL for 7 d, the only differ-
entiated cells that appeared in increased numbers in the pe-
riphery were DCs and putative plasmacytoid cells. This
suggested that the development of these cells was largely
independent of IFN, IL-7, and IL-15. This was verified by
injection of FL to animals devoid of a functional IFN sys-
tem and RAG™/~ (AGR129; references 16 and 17), as well
as animals devoid of RAG-1"""and yc™/~ (Table II and
reference 39). However, it should be noted that the Flt3-
receptor” cell population of neonates present in the bone
marrow, liver, or spleen may differ from those of adults and
their maturation might be differently regulated (40—42).
Immunohistology, bone marrow cultures, or treatment of
neonatal mice with selected hormones, notably IL-7 and
IL-15 together with FL, should help clarify this issue.

The cells stimulated by FL were biologically functional
in vivo as shown by infection experiments (Figs. 1 and 2).
For the initial control of HSV-1 replication and immune
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stimulation, IFN type I is absolutely essential (17, 30).
Newborn animals devoid of a functional IFN type I system
died very rapidly regardless of treatment with FL and de-
spite the fact that DC lineage cells were up-regulated over-
all. The role of IFN type I in controlling viral replication
was further shown by the enhanced survival of naive wild-
type animals treated with rHulFN-a B/D (Fig. 1). The in-
creased number of FL—induced DCs in RAG1™/~ yc™/~
might be responsible for the increased production of IFN
or induction of this cytokine in other cells and thus for a
longer survival time of these animals (Fig. 1 and Table II).
For the innate defense of L. monocytogenes in adults, and as
shown here for neonates, IL-12, possibly derived from DCs
(32), is required for NK cell activation and IFN-y—depen-
dent killing (31).

B2207 plasmacytoid DCs of adults produce high amounts
of IFN type I (33) whereas more conventional DCs pro-
duce IL-12 (43). Purified populations (23) of splenic DCs
from 7-d-old animals stimulated in vitro with virus or CpG
also produced high amounts of IFN and IL-12, respectively
(unpublished data). Data from flow cytometric analysis and
immunohistology implied that CD11¢*/B2207 cells present
in various organs might be responsible for IFN-a/[3 pro-
duction whereas the CD11¢*/MHC™ cells could be the
source of IL-12 (Figs. 3—6 and Tables I and II). However,
data from preliminary FACS® analysis show that more than
two DC populations were present in the spleen of 7-d-old
mice. Their biological potential awaits analysis in vitro as
well as in vivo.

To control intracellular pathogens over extended periods
of time, the innate response may need specific immunity to
be effective. For survival against lethal infection with HSV-1,
a single dose of rHulFN-a B/D was sufficient for survival
of wild-type mice. Interestingly, significant numbers of
FL—treated RAG-deficient mice survived the infection for
>21 d, indicating that the innate immunity is decisive in
the defense of this virus (Fig. 1). This is in contrast to infec-
tion with L. monocytogenes (Fig. 7). Even though the innate
immunity was effective (Fig. 2), long-term survival was not
significantly boosted by FL treatment. We speculate that
the relatively low number of T cells or their developmental
stage in these animals might be one cause (6, 44). SCID
mice have been shown to cope with chronic L. monocytoge-
nes infection by granuloma formation (45). However, no
granuloma formation was detected in our mice after bacte-
rial infection (unpublished data). Therefore, in contrast to
virus infection, innate immunity to L. monocytogenes may
provide some protection but adequate specific immunity is
essential for long-term survival. Granuloma formation as a
rescue pathway in neonates may have a limited potential
(46).

FL has been used in clinical trials (14) and is well toler-
ated with little if any side effects, even when used at high
concentrations. Newborn mice treated daily with 10 pg FL
rather than 1 wg were healthy and the number of DCs in
various organs was increased four- to fivefold (unpublished
data). Therefore, clinical application of FL might be benefi-
cial for two age categories, the newborn and elderly, which

are two populations at risk for frequent infection with in-
tracellular pathogens, notably viruses.
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