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Abstract: Remote passive sonar detection and classification are challenging problems that require
the user to extract signatures under low signal-to-noise (SNR) ratio conditions. Adaptive line
enhancers (ALEs) have been widely utilized in passive sonars for enhancing narrowband discrete
components, but the performance is limited. In this paper, we propose an adaptive intrawell matched
stochastic resonance (AIMSR) method, aiming to break through the limitation of the conventional
ALE by nonlinear filtering effects. To make it practically applicable, we addressed two problems:
(1) the parameterized implementation of stochastic resonance (SR) under the low sampling rate
condition and (2) the feasibility of realization in an embedded system with low computational
complexity. For the first problem, the framework of intrawell matched stochastic resonance with
potential constraint is implemented with three distinct merits: (a) it can ease the insufficient time-scale
matching constraint so as to weaken the uncertain affect on potential parameter tuning; (b) the
inaccurate noise intensity estimation can be eased; (c) it can release the limitation on system response
which allows a higher input frequency in breaking through the large sampling rate limitation.
For the second problem, we assumed a particular case to ease the potential parameter aopt = 1.
As a result, the computation complexity is greatly reduced, and the extremely large parameter
limitation is relaxed simultaneously. Simulation analyses are conducted with a discrete line signature
and harmonic related line signature that reflect the superior filtering performance with limited
sampling rate conditions; without loss of generality of detection, we considered two circumstances
corresponding to H1 (periodic signal with noise) and H0 (pure noise) hypotheses, respectively,
which indicates the detection performance fairly well. Application verification was experimentally
conducted in a reservoir with an autonomous underwater vehicle (AUV) to validate the feasibility
and efficiency of the proposed method. The results indicate that the proposed method surpasses the
conventional ALE method in lower frequency contexts, where there is about 10 dB improvement for
the fundamental frequency in the sense of power spectrum density (PSD).
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1. Introduction

Passive sonars have been proven to have practical efficiency in detecting and recognising
selfemitting underwater targets such as ships, submarines, and autonomous underwater vehicle
(AUVs), etc. [1–3]. Generally, narrowband discrete components of ship-radiated noise, known simply
as lines or tonals, have largely prevailed so far [4–6]. From the view of rotatory machinery, ship-radiated
line signatures that are relevant to the engine and shaft/propeller rotation attract lots of attention,
of which the long-term challenging problem is to address the weak signatures from heavy noise
background in the far field scenario [3,7,8]. In this way, increasing the signal-to-noise ratio (SNR) is
expected as a tenet to detection performance for applications. To enhance the narrowband discrete
components, passive sonars usually employ an adaptive line enhancer (ALE) as a pre-processing
step [9–12]. However, performance of the conventional ALE is limited, and advanced signal processing
techniques dedicated to better denoising performance are of highly practical importance.

In general, more noise in the system often leads to worse detection performance and degrades the
estimation accuracy. However, despite its disruptive character in nature, noise does play an important
constructive role under certain conditions [13]. This phenomenon so called stochastic resonance (SR),
in which the output periodic signals can be enhanced by the cooperative effect between “signal”,
“noise” and certain “nonlinear systems” [14]. Since proposed by Benzi et al. in 1981 [15], it has become
a hot research topic in the field of nonlinear science. Previous studies have addressed a lot of research
progress, both theoretical and experimental, in achieving some noteworthy contributions in practical
applications [8,16–21]. As a result, taking SR for weak signal detection is regarded as a potential novel
technique for weak signal detection, especially under low SNR conditions.

Classical SR theories generally refer to a noise enhanced phenomenon by means of adding an
appropriate amount of noise [14]. This is restricted to applications of how to remove proper noise,
especially under low SNR circumstances. Rather than adjusting the input noise levels, Xu et al. [22]
proposed a parameter-induced stochastic resonance (PSR) which highlighted the effect of the nonlinear
systems and promoted the flexibility of SR utilization in designing systems to deal with the noise.
In view of this, utilizing SR in weak signal processing could be considered as a special nonlinear
filter, which can achieve superior performance compared with the traditional noise-suppression-based
filters [8,23–25]. Among the publications on this point, the simplest first-order overdamped Langevin
equation (LE) model is largely adopted, while the filtering performance is limited [8,26,27]. To get
a cleaner filtered signal with higher signal-to-noise ratio (SNR), the second order Duffing equation
with an underdamped system is used for a secondary filtering effect, which reflects a superior filtering
performance compared with the traditional state-of-the-art methods [23,24,28]. For the purpose of
better improvements, some authors reported cascaded SR systems [29,30], coupled SR system [31,32],
etc. with bistable or multi-stable potentials. As a matter of fact, superior performance generally
required a high sampling frequency condition to fully take advantage of the nonlinear property
by concentrating most of the noise energy into the low-frequency region [33]. Several efforts have
addressed the problem of large parameter stochastic resonance (LPSR) by tuning the signal structure
and (or) the system parameters [24,27,34]. However, all the methods of LPSR are based on the classical
SR part, and the classical SR generally requires a large sampling frequency that is more than 50 times
the driving frequency. All these processing approaches are essential to deal with the periodic signal
individually, and hence, flexible limited and lack of computation efficiency. An open problem for
practical applications is “Can the SR be realized under limited sampling rate?”

To address this problem, limited studies on intrawell SR can give us inspirations. Actually,
intrawell SR can exist for a periodically driven noisy signal in terms of underdamped bistable nonlinear
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dynamic systems [14]. Alfonsi et al. [35] gave a phemonological nonadiabatic description of intrawell
SR by adding Lorentz’ colored noise. On the basis of this, Li et al. [36] further demonstrate that the
intrawell SR phenomenon usually occurs in a system with optimal system parameters. Since the
system response speed of intrawell motion is much larger than that of interwell, it can release the
limitation on system response speed which allows a higher input frequency. In this way, the large
sampling condition can be eased in properly controlling the escape time scale (characterizing interwell
jumps) together with the relaxation time of the particle. Back to the view of potential parameter
tuning, the adjustable potential parameters can be equivalent to tuning potential depth and well
separation [28]. There is lack of flexibility in matching the escape time scale and the relaxation time
only with the damping effect. In our previous work [37], the nonlinear filtering effects of intrawell
matched stochastic resonance is analyzed, which have shown a superior filtering performance as
well as a wider range of frequency response. This can give us a guidance to ease the large sampling
frequency limitation.

On the basis of the aforementioned analyses, this paper proposes a novel parameterized filter
implementation on adaptive intrawell matched stochastic resonance (AIMSR) with a potential
constrained Duffing system. As can be seen in [24,37] matching a high frequency signal requires
extremely large system parameters. This refers to a large range of parameter searching interval to
limit the computational efficiency and parameterized realization, especially in an embedded system.
In this regard, we further eased the potential parameter a = 1 which makes it practically realizable.
The nonlinear filtering effects are analyzed and evaluated, reflecting a superior performance in
enhancing the lines especially under a limited sampling rate. Application verification is further conducted
with a set of low sampled data fragment of autonomous underwater vehicles (AUVs). The output
performance is further compared with the conventional ALE method, which shows an excellent filtering
performance in enhancing the lines, especially for the lower frequency fundamental signature.

The rest of the paper is arranged as follows. After introducing the signal model and measurement
in Section 2, in Section 3, the theory and implementation of the AIMSR method are detailed and
described with a potential constraint Duffing system. Section 4 verifies the validity of utilizing AIMSR
in dealing with the single and muli-harmonic line signature signals. Section 5 verifies the practicability
of the proposed method by analyzing a set of low sampled AUVs data fragments. Besides, intensive
discussions are made to give an insight into the principal results and inspired future investigations.
Finally, concluding remarks are drawn in Section 6.

2. Signal Model and Measurement

Ship radiated noise have been studied for years. Ross and Urick have given an excellent
description of the mechanisms of sound generation by large surface ships and submarines [4,5].
They have shown that the radiated noise from a ship is a combination of broadband noise and
sinusoidal tonal signals that are generated by many sources. Theoreitical and experimental results
have shown signatures related to the rotation of engines, shaft-line dynamics, propeller cavitations
are mostly efficient for the purpose of passive detection, tracking, and classification [1,6,38,39].
From the view of rotatory machinery of the shaft and propeller, the harmonic signature is typically
connected to the running state and can be measured by vibrational and acoustic approaches. For an
underwater surveillance system, to address the shaft and propeller signatures, algorithms such
as the Detection of Envelope Modulation on Noise (DEMON) [40], cyclic modulation coherence
(CMC) [7], etc. are employed to check for the presence of periodic components to the broadband
cavitation noise. This generally requires acoustic measurement of broadband noise in a high-frequency
range of thousands of Hertz. Additional studies in recent years have shown that the harmonic
signature as a propeller rotates can be observed by low frequency acoustic/vibrational measurement
as well, which may propagate for a very long distance [41]. Such measurement techniques have been
ubiquitously seen in sonobuoys, ocean bottom seismometers (OBS), acoustic vector hydrophone and
other small-scale equipment [41–43].
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As a matter of fact, these sinusoidal tonals are commonly considered to be the “acoustic fingerprint”
of a moving vessel. Table 1 shows the major contributions and relations to the sinusoidal tonal signals
from ship engine and propeller. In the situation of practical applications, these sinusoidal components
can be modeled as follows,

(i) Discrete line signature

r(t) = s(t) + n(t)

= A0cos(2π f0t + ϕ0) + n(t)
(1)

where f0 represent the character frequency, A0 and ϕ0 are the corresponding amplitude and phase,
respectively. n(t) represent the combination of radiated broadband noise and ambient noise.

(ii) Harmonic related line signature

r(t) = s(t) + n(t)

=
M

∑
h=1

Ahcos(2πh f0t + ϕi) + n(t)
(2)

in which h is the harmonic number, Ah and ϕh are the amplitude and phase of the hth harmonic
component, and f0 is the fundamental frequency of shaft rotation, n(t) represent the combination of
radiated broadband noise and ambient noise.

Table 1. Character frequencies of ship engine and propeller.

Engine Rates Propeller Rates

Cylinder Firing Rate Shaft Rotation Rate
fCF = fCR/2 fSR = fCR/λg

λg: Gear Ratio

Crankshaft Rotation Rate Blade Rotation Rate
fCR = RPM/60 fBR = Nb fSR
RPM: Engine Speed Nb: Number of Blades

Engine Firing Rate
fEF = Nc fCF
Nc: Number of Cylinders

For small targets such as AUVs, speedboats, etc. with rotation marine engine and propeller,
the signatures are in a periodic pattern as well. Their acoustic characteristics have been
comprehensively studied by measurement tests and modeling [2,39,44], which indicate that the model
of radiated noise can be the same with large ships. Since an AUV’s prop does not rotate sufficiently
fast to cause cavitation, it is hard to be detected with broadband noise in the high-frequency range.
As is known, the low frequency harmonics are quite important for remote passive detection, and the
experimental study in this work is set up with a very low frequency measurement by ocean bottom
seismometer (samapling frequency fs =200 Hz).

3. Adaptive Intrawell Matched Stochastic Resonance

3.1. Generalized Matched Stochastic Resonance with Duffing Oscillator

The bistable SR phenomenon can be described as a particle driven by periodic force and random
force in a quartic double-well system, where the periodic motion can be heightened with the assistance
of moderate noise. This can be governed by a two-dimensional Duffing oscillator as below [24],

d2x
dt2 + γ

dx
dt

= −dV(x)
dx

+ s(t) + ξ(t) (3)
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where γ is the damping factor, s(t) represents the input periodic signal, and n(t) stands for the noise
item with noise intensity D. In particular, Equation (3) describes the movement of a particle in a quartic
double well potential V(x),

V(x) = − a
2

x2 +
b
4

x4, a, b > 0 (4)

in which a and b are barrier parameters of bistable SR system, and the potential barrier can be calculated
by ∆V = a2/(4b). As the analytic form of the SR output cannot be easily obtained, it is generally
numerically calculated through the discrete fourth-order Runge-Kutta method [23]. Mathematically,

let
dx
dt

= y, then Equation (3) can be separated into two first-order differential equations as,

dx
dt

= y

dy
dt

= ax− bx3 − γy + s(t) + ξ(t)
(5)

and then the output discrete time series x[n] corresponding to Equation (3) can be calculated by,

y1 = y[n]
x1 = −V′(x[n])− γy1 + s[n] + ξ[n]
y2 = y[n] + x1h/2
x2 = −V′ (x[n] + y1h/2)− γy2 + s[n] + ξ[n]
y3 = y[n] + x2h/2
x3 = −V′ (x[n] + y2h/2)− γy3 + s[n + 1] + ξ[n + 1]
y4 = y[n] + x3h
x4 = −V′ (x[n] + y3h)− γy4 + s[n + 1] + ξ[n + 1]
x[n + 1] = x[n] + (y1 + 2y2 + 2y3 + y4) h/6
y[n + 1] = y[n] + (x1 + 2x2 + 2x3 + x4) h/6



(6)

where h is the calculation step of the Runge-Kutta method.
From the perspective of parameter tuning, it can be considered as a special nonlinear filter, and the

main issue is to achieve an “matched filter” output [24]. In general, a bistable system response is
optimized by maximizing the signal-to-noise ratio improvement (SNRI) on system potential parameters
a and b, time scaling parameter h, and damping factor γ. In this way, the nonlinear matched SR filter
can be generally modeled with a generalized time-scale matching constraint as,

max
a,b,γ,h

SNRI

s.t. rK =
Ω
π

γ ∈ (0, 1], h ∈ (0, 1]

(7)

in which rK =
a√

2πγ
exp(− a2

4bD
) is the famous Kramers rate, Ω = 2π f0 represents the angular

frequency of periodic forcing. The constraint of rK = Ω/π is the time-scale matching condition
that represent the statistical synchronization of interwell transition [14]. It is necessary to point out
that this generalized condition is not sufficient as other optimized factors are required to judge the
occurance of SR.

For sinusoidal signals with additive noise, the SNRI corresponding to Equation (3) could have
a maximum at DSR = ∆V, and can be equivalent to D̂ = aopt/4bopt in according to [24]. And as a
consequence, the mathematic model of SR based nonlinear matched filter can be rewritten as,
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(
γ∗opt, h∗opt

)
= argmax

γ,h
SNRI

s.t. aopt = 2
√

2π f0γe
bopt = a4

opt/4D̂

γ ∈
(

0, 16
√

2π f0e
]

, h ∈ (0, 1]

(8)

where e is the base of natural logarithms, and the optimal potential parameters aopt and bopt can be
obtained with matched relationship that related to the frequency of periodic signal f0, damping factor
γ and the noise intensity estimator D̂.

To adaptively adjust these system parameters, the measurement index of input-output SNR
improvement (SNRI) is extensively utilized and can be estimated by measuring the power spectral of a
time series. This can be further limited with a bandwidth ∆B for the local SNR ( SNRlocal) calculation as
it is generally connected to the performance of signal detection [45]. Besides, evaluation indexes
such as power spectrum kurtosis (PSK), peak SNR (PSNR), spectral correlation coefficient (SC),
structural similarity index (SSI), etc. can be well adopted and fused [20].

3.2. Framework of Intrawell Matched Stochastic Resonance with Potential Constraint

The “classical” description of the SR phenomenon in a bistable system is that a particle can jump
across the potential barrier back and forth in the assistance of proper noise. This is called interwell
jumping behavior as the random-switching frequency rK (Kramers rate) is made to agree closely with
the periodic forcing angular frequency [14,35]. From the view of parameter tuning, the adjustable
potential parameters can be equivalent to tuning the potential depth ∆V and well location (stable
focus) ±xm [28], where Equation (4) can be transformed into the function of well location and potential
depth parameter as,

V(x) = −∆V

[
2
(

x
xm

)2
−
(

x
xm

)4
]

(9)

In this way, changing the potential parameters a and b is essential to adjust the potential depth
∆V and the separation 2xm. A demonstration of particles in a bistable model with different potential
parameters is given in Figure 1. It can be seen that a large potential depth can lead to longer system
response time for transition, and even intrawell response [35,36].

As is known, the time-scale matching constraint is directly connected to the system response
time. The nonlinear filtering effect of matched stochastic resonance can be essentially regarded as a
proper control of the particle’s response. From this view, it is easy to know that the more the degrees
of freedom for parameter tuning, the better the output response. Such results can be found in plenty
of SR-related publications with multi-parameter optimization. The classical Duffing equation model
with bistable potential utilizes parameter a, b, and γ are used to characterize the system response.
It is intuitive to add new degrees of freedom for better characterizing and controlling of the particle’s
response. Hence, a potential constraint is further adopted here to ease the insufficient time-scale
matching constraint [37]. By this means, the mathematical framework of matched stochastic resonance
can be further generalized by intuitively adding a constraint of barrier factor K as below,(

γ∗opt, h∗opt, K∗opt

)
= argmax

γ,h,K
SNRI

s.t. aopt = 2
√

2π f0γe
bopt = a4

opt/4KD̂

γ ∈
(

0, 16
√

2π f0e
]

, h ∈ (0, 1], K ∈ (1, Kmax]

(10)

in which K should be a postive real number to adjust the particle motion, and can be optimized from a
proper searching interval.
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Figure 1. A demonstration of bistable stochastic resonance with interwell and intrawell motion.

The merits of this potential constraint model can be summarized as follows: (1) it can ease the
insufficient time-scale matching constraint so as to weaken the uncertain effect on potential parameter
tuning; (2) the inaccurate noise intensity estimation can be eased as well; (3) it can release the limitation
on a system response which allows us a higher input frequency in breaking through the large sampling
rate limitation. All in all, the potential constraint model is anticipated to be superior in nonlinear
filtering performance, especially under a low sampled circumstance that is highly concerned for
engineering applications.

3.3. Adaptive Strategy for Optimized Implementation

As mentioned in Equation (10), it is a multi-parameter optimization problem, where the constraint
of the matched potential relationship is a nonlinearity that can properly be solved by intelligent
optimization algorithms such as genetic algorithm (GA), particle swarm optimization (PSO), ant colony
optimization (ACO), grey wolf optimization (GWO), et al. The main problem is to determine the
proper searching interval of each parameter.

To address this problem, it can be known from [24,37] that in matching high frequency, signals
require extremely large system parameters. As for practical engineering fields, the frequency of
received signals generally varies from tens to thousands of Hertz, and hence, the order of magnitude
for a matched potential parameter should be extremely large, especially for parameter b as there is a
relationship with b ∝ a4. This problem is the same to the barrier factor K as there is an experimental
guidance that K∗opt approximate to f 4

0 [37]. This refers to a large range of parameter searching interval
to limit the computational efficiency and parameterized realization. Such a problem will limit the
utilization in a real-time online embedded system in confronting data overflow problem (such as
commonly utilized 32 bits digital signal processor (DSP)). From this view, the frequency shift to low
frequency should be a kind of efficient solution for this problem, while lack of flexibility in dealing
with unknown frequency signal or multi-frequency signal. In the consideration of the degree of
freedom, the potential constraint of a matched relationship can be relaxed by the new freedom of
the barrier factor K. As a consequence, the matched potential relationship can be eased. From the
aforementioned analysis, for this problem, one can use the biquadrate relationship between the
potential parameter a and b. In this regard, we can assume a particular case here by easing the potential
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parameter aopt = 1. As a result, the computation complexity is greatly deduced, and the extremely
large parameter limitation is relaxed simultaneously. The simplified model can be expressed as,(

h∗opt, K∗opt

)
= argmax

γ,h,K
SNRI

s.t. aopt = 1
bopt = 1/(4KD̂)

γopt = (2
√

2π f0e)−1

h ∈ (0, 1], K ∈ (0, Kmax]

(11)

where the Kmax can be further limitted, and the optimal damping factor γopt is underdamped as
well. Here, we need to point out that in this simplification process, the insufficient time-scale
matching constraint result in an insufficient relation of γopt = (2

√
2π f0e)−1. Therefore, this constraint

should be eased by a generalized underdamped condition to keep the degrees of freedom. Hence,
the optimization model can be further expressed as(

γ∗opt, h∗opt, K∗opt

)
= argmax

γ,h,K
SNRI

s.t. aopt = 1
bopt = 1/(4KD̂)

γ ∈ (0, 1], h ∈ (0, 1], K ∈ (0, Kmax]

(12)

3.4. Implementation of Adaptive Intrawell Matched Stochastic Resonance

In the last subsection, we have the adaptive strategy as an optimization problem with nonlinear
constraints. Here, a signal processing strategy is proposed by jointly optimizing the parameters with a
classical genetic algorithm (GA) method for the sake of global optimality. Consequently, the detailed
implementation steps are summarized as follows,

(1) Signal pretreament. Data normalization and prewhitening are executed on the actual received
noisy signals.

(2) Searching range initialization. Initialize the optimization searching range of parameters
γ ∈ [0, 1], h ∈ [0.001, 1] and K ∈ [0.001, 200], respectively.

(3) Parameter optimization. Obtain the optimal parameters γopt, hopt, and Kopt according to the
following objective function, (

γ∗opt, h∗opt, K∗opt

)
= argmax

γ,h,K
SNRI (13)

where SNRI corresponds to the fitness criteria of GA method. Here, the input–output SNR
improvement (SNRI) is constructed by the superposition of global SNRI (SNRIglobal) and local SNRI
(SNRIlocal) to better characterize the filtering performance both in the view of global and local
conditions. The SNR calculation for the input and output time series can be defined as,

SNR = 10log10
Ps − Pn

Pn
(14)

in which Ps = ∑
f+∆Bs/2
i= f−∆Bs/2 Si represent the total power around the characteristic frequency f0 within a

small bandwidth of ∆Bs, and Pn = 1
∆B (∑

f+∆B/2
i= f−∆B/2 Si − Ps) represent the average power of background

noise within ∆B bandwidth around the characteristic frequency f0. For the global SNR and the local
SNR calculation, ∆B is setted by the full bandwidth and fs/100, respectively.
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For a multi-harmonic signal circumstance, a modified measurement index of average SNRI is
utlized, which can be defined as,

SNRI =
1
M

M

∑
h=1

SNRI(h) (15)

where M is the harmonic number of the received signal. The parameter optimization algorithm is
summarized in Algorithm 1.

(4) Signal post-treatment. Output optimal waveform and the coresponding optimal fittest value.

Algorithm 1 Parameter Optimization Algorithm.
Parameter Initialization:

Cr = [γstart = 0, hstart = 0.001, Kstart = 0.001; γend = 1, hend = 1, Kend = 200]: the searching intervals;

Nc = 3: number of chromosome;

Np = 100: Number of individuals in the population;

χ = 0.95: The fraction to be replaced by crossover in each iteration;

µ = 0.01: The mutation rate;

M = 10: The maximal iteration times;

λstop = 0: The threshold of stop condition.

Initialize generation 0:

k:=0;

Pk:=a population of Np randomly-generated individuals;

Evaluate Pk:

Compute fitness criteria SNRI for each i ∈ Pk;

{

1: Compute the corresponded MSR output by fourth order Runge–Kutta (RK4) method according to

Equation (6) and obtain x[n](n = 1, 2, ..., N), where N is the length of the time series;
2: Compute the SNRI according to Equation (14) and Equation (15);

} Create generation k+1:

do

{

1: Copy: Select (1− χ) ∗ n members of Pk and insert into Pk+1;
2: Crossover: Select χ ∗ n members, pair them up to produce offspring and insert the offspring into

Pk+1;
3: Mutate: Select µ ∗ n members of Pk+1, and invert a randomly selected bit;
4: Evaluate Pk+1;
5: if Pk+1 − Pk ≤ λstop then break;
6: else
7: Increment: k:=k+1;
8: end if

}

while k 6 M;

return the optimal fittest individual from PM;
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4. Filtering Performance Analysis and Evaluation

SR can be regarded as a specific kind of nonlinear filter, while generally requires a high sampling
rate condition. As is noticed in the Section 3.2, the proposed method can release the limitation on
system response so as to allow us a higher input frequency in breaking through the large sampling
rate limitation. Hence, here we intuitively exhibit the filtering performance referred to the discrete line
signature and harmonic related line signature under a low sampling rate condition.

4.1. Discrete Line Signature Signal Analysis

Without loss of generality of detection, we consider two circumstances corresponding to H1

and H0 hypotheses, respectively. The sampling frequency is set to fs = 100 Hz, and the data length
N = 2048.

For H1 hypothesis circumstance, the input is composed of a narrowband component with the
frequency f0 = 10 Hz, and the ambient noise that simulated by the Gaussian noise. The input
SNR is set as −15 dB, and the normalized waveform and power spectrum are shown in Figure 2a.
First, we employed the lofargram to qualitatively evaluate the performance. A 2.56 s short-time
Fourier transformation (STFT) with the overlapping length of 0.1 s was used to generate the lofargrams.
The lofargrams of the original input is illustrated in Figure 2b, where we can see that the narrowband
component is not easy to be identified. By utilizing the proposed AIMSR method, the optimal output
waveform can be seen in Figure 2c, where it reflects an intrawell response with large amplitude. After a
response delay, it is stable and periodic at 10 Hz. The lofargram of the AIMSR output is demonstrated
in Figure 2d. It clearly identifies the narrowband component f0. It is worth noting that there is a
second-order harmonic with periodic driving. This can be attribiuted to the resonance phenomenon
and anticipate benefiting harmonic signature extraction. A comparison of normalized power spectrum
density (PSD) of input and output (Note a highpass filter is adopted with passband frequency 1 Hz to
deal with the DC bias, and this is the same in the rest of the paper) with the Welch method is given
in Figure 2f, where we can see the superior filtering performance. The frequency response of the
AIMSR background noise has the form of Lorentzian distribution by concentrating most of the noise
energy into the low-frequency region. This refers to the special property of nonlinear SR phenomenon.
The optimal SNRI obtained at each iteration is shown in Figure 2e. It can be seen after three iterations
that an optimal result is obtained, which reflects a convergence of the proposed algorithm.

For H0 hypothesis circumstance, the input is simulated by the pure white Gaussian noise. As is
assumed by prior unknown, we conduct the optimization with f0 = 10 Hz for parameters initialization
as well. The corresponding results are demonstrated in Figure 3a–f. By utilizing the proposed AIMSR
method, the optimal output waveform is shown in Figure 3c, where it reflects an intrawell response
as well. After a response delay, the amplitude looks more fluctuant compared with H1 hypothesis
circumstance as illustrated in Figure 2c. The lofargram of the AIMSR output is demonstrated in
Figure 3d, where there seems to be a narrowband component near 10 Hz. To further compare the
normalized power spectrum density (PSD) of the input and output in Figure 3f, we can see a frequency
bias with ∆ f that does not match the initialized frequency f0. Such a circumstance does not have a
high-order harmonic that is regarded as a non-SR occurrence. The optimal SNRI obtained at each
iteration is shown in Figure 3e, where the optimal result is obtained after two iterations. The optimal
fitness value is larger than H1 hypothesis circumstance. This should be affected by the calculation
result of input as the input SNR is extremely smaller.

In summary, it is clear to see the superior filtering performance of AIMSR with a limited sampling
rate condition. The difference in response between the H1 and H0 hypotheses can be identified, which
indicates the detection performance fairly well.
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Figure 2. A simulation of discrete line signature signal on H1 assumption: (a) the input waveform
and its normalized power spectrum; (b) lofargram obtained with the input; (c) the adaptive intrawell
matched stochastic resonance (AIMSR) output waveform (γopt = 0.0322, Kopt = 79.05, hopt = 0.4413);
(d) lofargram obtained with the AIMSR output; (e) the optimal fitness at each iteration with genetic
algorithm (GA) method; (f) filtering performance comparison with normalized power spectrum density
(PSD, Welch method).



Sensors 2020, 20, 3269 12 of 19

0 5 10 15 20

Time (s)

-1.5

0

1.5
A

m
p

li
tu

d
e
 (

V
)

White Gaussian noise

0 10 20 30 40 50

Frequency (Hz)

-200

-100

0

A
m

p
li
tu

d
e
 (

d
B

)

Normalized power

(a) (b)

0 5 10 15 20

Time (s)

0

2

4

6

8

10

12

14

A
m

p
li
tu

d
e
 (

V
)

AIMSR output

5 6 7 8 9 10

Time (s)

-2

0

2

A
m

p
li
tu

d
e
 (

V
)

stable response

(c) (d)

1 2 3 4 5 6 7 8 9 10

Iteration

15

20

25

30

35

40

45

S
N

R
I 
(d

B
)

Optimal fitness

0 10 20 30 40 50
-70

-60

-50

-40

-30

-20

-10

0

 N
o

rm
a
li
z
e
d

 P
S

D
 (

d
B

)

White noise

AIMSR

 f

(e) (f)

Figure 3. A simulation of discrete line signature signal on H0 assumption: (a) the input waveform
and its normalized power spectrum; (b) lofargram obtained with the input; (c) the AIMSR output
waveform (γopt = 0.2875, Kopt = 109.4507, hopt = 0.4465); (d) lofargram obtained with the AIMSR
output; (e) the optimal fitness at each iteration with GA; (f) filtering performance comparison with
normalized PSD (Welch method).

4.2. Harmonic Related Line Signature Signal Analysis

Harmonic vibration is a typical vibration generated by rotatory machinery. As is mentioned
in Section 2, the harmonic-related signature is commonly referred to in a ship engine and propeller.
The sampling frequency is set to be fs = 100 Hz, and the data length N = 2048. We consider two
circumstances corresponding to H1 and H0 hypotheses as well.



Sensors 2020, 20, 3269 13 of 19

For H1 hypothesis circumstance, the tested harmonic signal is a combination of a fundamental
sinusoid and its two high-order harmonics, whose frequencies are all harmonically related to two
times and four times the integer multiples of the fundamental frequency f0. These three sinusoidal
signals have the same amplitude of 0.1, and the same Gaussian noise background. The input SNR is
set as −15 dB. The lofargram of the original input is illustrated in Figure 4b, where we can see the three
harmonic-related narrowband components. By utilizing the proposed AIMSR method, the optimal
output waveform still responds well with a response delay as shown in Figure 4c. In comparing
with the single periodic driving, the amplitude of stable response is smaller. The corresponding
lofargram of the AIMSR output is demonstrated in Figure 4d, where the three harmonic-related
narrowband components can be identified. To further evaluate the filtering performance with
normalized power spectrum density (PSD) of input and output in Figure 4f, we see the great local
denoising performance with the fundamental frequency f0, which is gradually lost with the 4th order
harmonic (4 f0). The optimal SNRI obtained after two iterations as shown in Figure 4e, where we can
find the optimal value is so small compared with the discrete line signature signal circumstance. There
is a negative improvement of global SNRI for the high order harmonics. In this way, the local SNRI is
recommended to be the evaluation index of high-order harmonics.

For the H0 hypothesis, the input is simulated by the pure white Gaussian noise. As is assumed,
we conducted the optimization with f0 = 10 Hz for parameter initialization as well. The corresponding
results are demonstrated in Figure 5a–f. By utilizing the proposed AIMSR method, the optimal output
waveform is shown in Figure 3c. The output is an intrawell response with a larger response delay,
and the amplitude of stable response reflects larger effects. The lofargram of the AIMSR output is
demonstrated in Figure 5d, where we can see a broadband harmonic energy in the first 5 seconds,
and then the energy is focused to a periodic mode with a frequency bias ∆ f that does not match the
initialized frequency f0 as shown in Figure 5f. This means no SR occurs as the noisy input can not be
matched to the nonlinear system. The optimal fitness value is extremely large which is consistent with
the H0 hypothesis of the discrete line signature signal case. This indicates the detectability as well.

In summary, the proposed AIMSR method can be utilized to enhance the harmonic-related
signature, especially for the fundamental frequency. Since the fundamental frequency estimation is a
topic that spans many disciplines including passive sonars [39], speech recognition [46], biomedical
signal processing [47], musical pitch estimation [48], and etc., this method is anticipated to be a
potential new technique for the future. The difference in responses between the H1 and H0 hypotheses
can be identified with proper measurement index to establish a detector. The computation is efficient
and generally converges to an optimum within five iterations, which can be realized in the embedded
system. This work will be a topic for further study in the future.
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Figure 4. A simulation of harmonic-related line signature signals on H1 assumption: (a) the input
waveform and its normalized power spectrum; (b) lofargram obtained with the input; (c) the AIMSR
output waveform (γopt = 0.1132, Kopt = 70.4507, hopt = 0.4429); (d) lofargram obtained with the
AIMSR output; (e) the optimal fitness at each iteration with GA; (f) filtering performance comparison
with normalized PSD (Welch method).
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Figure 5. A simulation of a harmonic-related line signature signal on H1 assumption: (a) the input
waveform and its normalized power spectrum; (b) lofargram obtained with the input; (c) the AIMSR
output waveform (γopt = 0.0462, Kopt = 159.2903, hopt = 0.5763); (d) lofargram obtained with the
AIMSR output; (e) the optimal fitness at each iteration with GA; (f) filtering performance comparison
with normalized PSD (Welch method).

5. Application Verification and Discussion

5.1. Verfication on AUV’s Low Frequency Propeller Harmonic Tonals

To validate the feasibility and efficiency of the proposed method, an experiment was conducted
with an AUV in the Zhanghe reservoir. The AUV moved away in a trajectory of straight line, and
the radiated noise was measured by a low frequency seismometer with the sampling frequency
fs = 200 Hz. Figure 6a shows the lofargram of the received signal, where we can see three harmonic
lines. The conventional ALE that employs the least mean square (LMS) algorithm is conducted
to enhance the line signatures as shown in Figure 6b, where the harmonic lines are more clearly
identified. By utilizing the proposed AIMSR method, the optimal output is the intrawell as well.
The corresponding lofagrams of the AIMSR output and the direct current (DC) offset filtered output
are illustrated in Figure 6c,d, respectively. It can be seen that the background noise of the AIMSR
output is much lower than that of the conventional ALE. A comparison of normalized power spectrum
denisity (PSD) is shown in Figure 6f, where there is about 10 dB improvement for the fundamental
frequency compared to that of the conventional ALE. For high order harmonics, the conventional ALE
should be better. This indicates that a combination of the two methods gives a better output.
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Figure 6. Filtering performance verification: (a) lofagram of the original received signal of an
autonomous underwater vehicle (AUV); (b) lofagram of the adaptive line enhancer (ALE)output
(LMS); (c) lofagram of the AMSR output (γopt = 0.1227, Kopt = 85.6350, hopt = 0.4707); (d) lofagram of
the AMSR output with direct current (DC) offset filter; (e) the optimal fitness at each iteration with GA;
(f) normalized power spectrum denisty (PSD) comparison.

5.2. Discussion

(1) From the aforementioned numerical and practical analyses on AIMSR with potential
constrainted bistable model, the SR is implemented under a low sampling rate condition. Essentially,
it is to add a new degree of freedom to the bistable potential which can have an effect on the limitation
of the system response. As we consider the system parameter tuning SR as a special nonlinear filter,
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it is a tenet that the more the tuning parameters (system complexity), the better output response.
Similar results can also be found like multi-parameters tuning [49], improved potentials [30,50,51],
coupled systems [31,32], etc. Hence, one of the contribution of this paper is to explain and lead the
further explore of nonlinear filter. In addition, from the view of system nonlinearity, there seems to be
a connection to deep neural networks for the system complexity. This might lead to an inspiration
and possibility in training the deep SR network for applications, and gives us a guidance to better
understand the innate character of deep learning from the view of nonlinearity as well.

(2) The evaluation index of SNRI in this paper generally requires a prior knowledge of signal
frequency. However, for engineering applications, it is commonly unknown. As is known, the SR will
always force the energy focus to a periodic mode. It is hard to distinguish whether the correctness
of output response is simply achieved by frequency searching. Although the difference of response
between the H1 and H0 hypotheses can be fairily well identified, the problem of proper selection of the
measurement index in the sense of detection is still a problem for further studies.

(3) The superior filtering performance is validated in this paper, which means the advantage of
AIMSR is a potential. However, its intrinsic Lorentzian property leads to a preference in enhancing
the low-frequency signals, and as a result, to a loss of the performance for higher frequencies. As is
mentioned in the last subsection, a conventional ALE should be better in dealing with the high-order
harmonics. Proper combination on these two methods is needed for better outputs. This work will
probably be studied in the future.

(4) The proposed AIMSR method is of low computational complexity which enables
implementation in an embedded system. This is an interesting and highly important engineering
problem. However, related work can rarely be found. To further improve the applicablity of the SR in
the engineering fields, we think this work is necessary for future studies.

6. Conclusions

In this paper, we proposed an adaptive intrawell matched stochastic resonance (AIMSR) method
to break through the limitation of the conventional ALE by a nonlinear filtering effect. The problem
of parameterized implementation of SR under a low sampling rate condition is firstly addressed
by implementing a framework of intrawell matched stochastic resonance with potential constraint.
To further promote its practicality in an embedded system, the large parameter limitation of matched
relationship is eased to deduce the computation complexity. Simulation analyses are conducted
with a discrete line signature and harmonic-related line signature that reflect the superior filtering
performance as well as the computational efficiency fairy well. Besides, two hypotheses corresponding
to H1 (periodic signal with noise) and H0 (pure noise) circumstances are further considered to reveal
the feasibility of detection. Application verification was experimentally conducted in a reservoir
with an AUV to validate the proposed AIMSR method compared with the conventional ALE method.
Additional intensive discussions have been made to give an insight into the principal results and
inspire future investigations. In the end, we anticipate that the proposed method can be a potential
new technique for passive sonar detection in the future.
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