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Objective: Pain assessment based on facial expressions is an essential issue in

critically ill patients, but an automated assessment tool is still lacking. We conducted

this prospective study to establish the deep learning-based pain classifier based on

facial expressions.

Methods: We enrolled critically ill patients during 2020–2021 at a tertiary hospital

in central Taiwan and recorded video clips with labeled pain scores based on facial

expressions, such as relaxed (0), tense (1), and grimacing (2). We established both

image- and video-based pain classifiers through using convolutional neural network

(CNN) models, such as Resnet34, VGG16, and InceptionV1 and bidirectional long

short-termmemory networks (BiLSTM). The performance of classifiers in the test dataset

was determined by accuracy, sensitivity, and F1-score.

Results: A total of 63 participants with 746 video clips were eligible for analysis.

The accuracy of using Resnet34 in the polychromous image-based classifier for pain

scores 0, 1, 2 was merely 0.5589, and the accuracy of dichotomous pain classifiers

between 0 vs. 1/2 and 0 vs. 2 were 0.7668 and 0.8593, respectively. Similar accuracy of

image-based pain classifier was found using VGG16 and InceptionV1. The accuracy

of the video-based pain classifier to classify 0 vs. 1/2 and 0 vs. 2 was approximately

0.81 and 0.88, respectively. We further tested the performance of established classifiers

without reference, mimicking clinical scenarios with a new patient, and found the

performance remained high.

Conclusions: The present study demonstrates the practical application of deep

learning-based automated pain assessment in critically ill patients, and more studies are

warranted to validate our findings.
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BACKGROUND

Pain is an essential medical issue but somehow difficult to
assess in critically ill patients who cannot report their pain (1).
Therefore, the Critical-Care Pain Observation Tool (CPOT) has
been developed to grade the pain through assessing behavior
alternations, such as facial expressions, among critically ill
patients in the past two decades (2). The facial expression is
the fundamental behavior alternation in CPOT and consists
of relaxed, tense, and grimacing (pain score 0, 1, and 2) (3).
Currently, facial expression-based pain assessment is graded by
the nurse, and there is an unmet need to develop an automated
pain assessment tool based on facial expression to relieve the
medical staff from the aforementioned workload (4).

A number of automated recognition of facial expressions
of pain and emotion has been developed through using
distinct approaches (5–9). Pedersen et al. used Support Vector
Machine (SVM) as a facial expression-based pain classifier in
UNBC-McMaster Shoulder Pain Expression Archive Database,
consisting of 200 video sequences obtained from 25 patients
with shoulder pain, and reported that the accuracy of the leave-
one-subject-out 25-fold cross was 0.861 (7). Given that video
sequences contain temporal information with respect to pain,
two studies were used Recurrent Neural Network (RNN) and
hybrid network to extract the time-frame feature among images
and reported an improved performance (8, 9). Furthermore,
recent studies have employed fusion network architectures and
further improved the F1 score to ∼0.94 (10, 11). Therefore,
the recent advancements in deep learning might enable us
to establish a facial expressed-based pain assessment tool in
critically ill patients.

Notably, the application of the aforementioned methods in
critically ill patients might not be straightforward due to real-
world difficulties to obtain standardized and whole unmasked
facial images of patients admitted to the intensive care unit
(ICU) (12). Unlike the high-quality whole facial image in the
UNBC-McMaster Shoulder Pain Expression Archive Database,
critically ill patients may have masks on the face due to needed
medical devices, such as endotracheal tube, nasoesophageal tube,
and oxygen mask. Furthermore, pain-associated facial muscle
movements might hence be subtle due to sedation and tissue
oedema in critically ill patients. Therefore, there is a substantial
need for using facial images obtained in sub-optimal real-world
conditions at ICUs to establish an automated facial expression-
based assessment tool for pain in critically ill patients. In
the present prospective study, we recorded facial video clips
in critically ill patients at the ICUs of Taichung Veterans
General Hospital (TCVGH) and employed an ensemble of three
Convolutional Neural Network (CNN) models as well as RNN to
establish the pain classifier based on facial expressions.

MATERIALS AND METHODS

Ethical Approval
This study was approved by the Institutional Review
Board approval of the Taichung Veterans General Hospital
(CE20325A). Informed consent was obtained from all of the

participants prior to the enrollment in the study and collection
of data.

Study Population
We conducted this prospective study by enrolling patients who
were admitted to medical and surgical ICUs at TCVGH, a referral
hospital with 1,560 beds in central Taiwan, between 2020-Nov
and 2021-Nov. The CPOT is a standard of care in the study
hospital, and grading of the facial expression-based pain score
is in accordance with the guideline (3). In detail, a score of 0
is given if there is no observed muscle tension in the face, and
the score of 1 is composed of a tensed muscle contraction, such
as the presence of frowning, brow lowering, orbit tightening as
well as levator muscle contraction. The score of 2 consists of
grimacing, which is a contraction of facial muscles, particularly
muscles nearby the eyebrow area, plus eyelid tightly closed.

Video Sequences With Labeled Pain Grade
Based on Facial Expression
Figure 1 depicts the protocol of video record, labeling, and
image preprocessing of the present study (Figure 1). Video
record and labeling were performed by three experienced nurses
after training for inter-rater concordance, and the labeling was
further validated by two senior registered nurses. To mitigate
information bias and synchronize the recording and labeling,
we designed a user interface that enables the study nurse to
observe the patient for 10 s, to record a video for 20 s, and then
label the pain score at the end of the video. To further reduce
the potential sampling errors, we recorded three labeled videos
in each observation; therefore, each 90-s video sequence has
three 20-s clips (Figure 1A). Given the nature of observation of
this study, we conducted the recording per day during the ICU
admission of participants, particularly before and after suction,
dressing change as well as invasive procedures, to obtain the
videos with distinct pain grades in individual critically ill patients.
With regards to the hardware, the frame per second of the applied
camera was 30, and the total frames of a 20-s video clip were
nearly 400–600 frames per clip. To standardize the video clips,
we used 50 frames in each 20-s clip; therefore, there were 2.5
representative frames per second for the following experiments.
To avoid any interference with critical care, we designed a
portable camera rack that enables us to take high-quality video
∼1–2m from the patient.

Image Preprocessing
We used a facial landmark tracker to locate the facial area (13).
Due to the face that was masked by the aforementioned medical
devices might not be detected by the facial landmark tracker, we
further used multi-task CNN to locate the facial area if the face
was not located by the facial landmark tracker (14). Given that the
area nearby the eyebrow is the key area to interpret pain score,
we hence cropped the face between hairline and nose not only
to focus on the eyebrow area, but also to avoid the confounding
of the aforementioned medical devices. We further cropped the
central part of the eyebrow area with a fixed ratio of height/width
(3/4) for the following experiments. Given that facial images with
extreme angles may lead to the facial landmark misalignment
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FIGURE 1 | Schematic diagram of image acquisition and preprocessing. (A) Recording of video clips with labeling and (B) Preprocessing of video sequences.

and affect the following experiments, we hence excluded the faces
with yaw or pitch angle over 30 degrees (Figure 1B).

Image-Based Pain Classifiers
Figure 2 illustrates the deep learning-based Siamese network
architectures for image- and video-based pain classifiers in this
study (15) (Figure 2). To reduce the need for an extremely
high number of labeled but unrelated images for learning, we
employed a relation network architecture for the image-based
pain classifier (16). In brief, the aforementioned relation network
is designed for learning to compare the differences among labeled
images of each individual patient; therefore, the essential need
is the images with distinct grades among individual patients,
instead of a high number of unrelated images from patients
with high heterogeneity. Therefore, we used the data of the 63
participants who had images of all of 0, 1, 2 labeled images. In
detail, by feeding grade-0 facial expression image and grade 1/2
images into CNN encoder, two vectors were obtained to represent
the subtle difference between the image of grade-0 and grade-
1/2, instead of calculating the complex distance metric of two
images in high dimensions. Indeed, the application of relation
network should be in line with clinical grading of pain by the
nurse, who had to recognize the baseline facial appearance of an
individual patient prior to grade pain-score based on the facial
expression. In this study, we used three CNN models that have
fewer vanishing gradient issues, such as Resnet34, VGG16, and
inceptionV1, as well as two types of the fully connected layer
set up with one and two layers (17–19). Therefore, there were
a total of six combinations for the image-based pain classifier,
and we applied the voting to optimize the classifier performance
through averaging outputs of different models. With regards to
the main hyperparameters, we used the cross-entropy loss as the
loss function in the image-based pain classifier, and the learning

rate, optimizer, and trained epochs were 1e-4, Adam, and 60
epochs, respectively.

Video-Based Pain Classifiers
With regard to the video-based pain classifier, we employed a
many-to-one sequence model given that the output of this study
is a one pain grade. Similar to the image-based pain classifier, we
used a Siamese network architecture as feature extractors. Given
that multiple CNN encoders were used in the present study,
we hence processed the image through three CNN encoders to
get three vectors and concatenate these vectors to a relatively
low-dimensional space. The concatenated output vectors of each
frame were then fed into the bidirectional long short-term
memory networks (BiLSTM) for the classification of pain (20).
Given that the CNN encoder had been trained in the image-based
pain classifier, we hence reduced the learning rate to 1e-5 on
the video-based pain classifier and froze the weights of the CNN
encoder in the first 10 epochs, and this approach may facilitate
to focus on training BiLSTM in the first 10 epochs. The other
parameters, such as loss function, optimizer, and trained epochs,
were in line with those used in the image-based pain classifier.

Statistical Analyses
Data were expressed in frequency of occurrence (percentages)
for categorical variables and as means ± SD for continuous
variables. Differences between the survivor and non-survivor
groups were analyzed using Student’s t-test for continuous
variables and Fisher’s exact test for categorical variables. The
proportion of train, validation, and test datasets were 60, 20, and
20%, respectively. The performance of the pain classifier in the
test dataset was determined by accuracy, sensitivity, and F1-score.
Python version 3.8, PyTorch 1.9.1, and CUDA 11.1 were used in
this study.
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FIGURE 2 | Schematic diagram of network architectures in the present study. (A) Image-based pain classifiers using relation and siamese network architecture, (B)

Video-base pain classifier using bidirectional long short-term memory networks (BiLSTM).

RESULTS

Patients’ Characteristics
A total of 341 participants were enrolled, and there were 7,813
qualified videos, of which the number of scores 0, 1, and 2
were 5,717, 1,714, and 382, respectively. Given that we employed
relation network architecture in this study, we hence used images
among 63 participants who had all of the pain-score 0, 1, and 2
labeled video clips, and the number of videos with 0, 1, and 2
were 351, 253, and 142, respectively. The mean age of included
patients for analyses was 69.3 ± 14.6 years, and 55.6 (35/63) of
them was male (Table 1). The majority (81.0%, 51/63) of enrolled
participants were critically ill patients who were admitted to
medical ICUs. The ICU severity scores of acute physiology and
chronic health evaluation II (APACHE II), sequential organ
failure assessment (SOFA) day-1, SOFA day-3, and SOFA day-7
were 25.3± 5.7, 9.0± 3.7, 8.5± 4.1, and 8.2± 3.8, respectively.

Performance of Image-Based Pain
Classifiers
In image-based pain classifiers, we attempted to classify with
three pain categories (0, 1, and 2) and dichotomous pain
classifiers (0 vs. 1/2 and 0 vs. 2) given pain score = 2
reflects a clinical warning signaling requiring immediate clinical
evaluation andmanagement (Table 2). In Resnet34 with one fully
connected layer (1024, 3), the performance of the polychromous

classifier for 0, 1, and 2 appeared to be suboptimal, with
the accuracy, sensitivity, and F1 score were merely 0.5589,
0.5589, and 0.5495, respectively. The performance of the two
dichotomous image-based pain classifiers was much higher than
that in polychromous pain classifier. The accuracy, sensitivity,
and F1 score were 0.7668, 0.8422, and 0.8593 to classify 0 vs.
1/2 and were 0.8593, 0.8925, and 0.8638 to classify 0 vs. 2. We
further tested the performance of using VGG16, InceptionV1,
and two fully connected layers. The performances of Resnet34
and VGG16 were slightly higher than that of InceptionV1. For
example, the accuracy of dichotomous pain classifier between 0
vs. 1/2 in Resnet34, VGG16, and Inception were 0.7668, 0.7578,
and 0.7055, respectively. With regard to the efficacy of using
two fully connected layers ([1024, 256] followed by [256, 3]),
the performance tended to improve in a few models, such as
dichotomous pain classifier between 0 vs. 1/2 in InceptionV1
(accuracy increased from 0.7055 to 0.7587).

Performance of Video-Based Pain
Classifiers and the Pain Classifier Without
Reference
We then examined the performance of a video-based pain
classifier through concatenating vectors of the aforementioned
three CNN encoders and BiLSTM with distinct hidden layers
(Table 3). We found that the performance of video-based
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TABLE 1 | Characteristics of the enrolled 63 participants who had videos with all

of three pain-score categories.

Basic data

Age, years 69.3 ± 14.6

Sex (male) 35 (55.6%)

Height (cm) 160.1 ± 8.0

Body weight (kgs) 57.3 ± 10.0

ICU types

Medical ICUs 51 (81.0%)

Surgical ICUs 12 (19.0%)

Laboratory data (Day-1)

White blood cell counts (/ml) 13,670.7 ± 11,259.5

Hematocrit (%) 28.8 ± 8.4

Creatinine (mg/dl) 1.9 ± 1.4

Sodium (mg/dl) 140.3 ± 5.5

Potassium (mg/dl) 4.0 ± 0.7

Severity scores

APACHE II score 25.3 ± 5.7

SOFA score, day-1 9.0 ± 3.7

SOFA score, day-3 8.5 ± 4.1

SOFA score, day-7 8.2 ± 3.8

Data were presented as mean ± standard deviation and number (percentage). ICU,

intensive care unit; APACHE II, acute physiology and chronic health evaluation II; SOFA,

sequential organ failure assessment.

pain classifiers among the polychromous classifier and two
dichotomous classifiers was higher than those in the image-
based pain classifier. The accuracy in classifying 0 vs. 1/2 was
nearly 0.8 and reached ∼0.88 to classify 0 vs. 2. Additionally,
we further tested the performance of the established classifier
without reference, mimicking the clinical scenario in a new
patient without an image score of 0 as the reference (Table 4).
We found that the performance of both image- and video-
based classifiers slightly decreased in classifiers without reference.
Notably, the performance of a video-based classifier without
reference to differentiate 2 from 0 was up to 0.8906, indicating
the established classifier had learned the difference between 0
and 2. Collectively, we established the image and video facial
expression-based pain classifier in critically ill patients, with
the accuracy to classify 0 vs. 1/2 and 0 vs. 2 were ∼0.8 and
0.9, respectively.

DISCUSSION

In this prospective study, we developed a protocol to obtain
video clips of facial expressions in critically ill patients and
employed the deep learning-based approach to establish the
facial expression-based pain classifier. We focused on the area
nearby eyebrow that is less likely to be masked by medical
devices and employed an ensemble of three CNN models, such
as Resnet34, VGG16, and InceptionV1, to learn pain-associated
facial features and BiLSTM for temporal relation between video
frames. The accuracy of the dichotomous classifier to differentiate
tense/grimacing (1/2) from relaxed (0) facial expression was

TABLE 2 | Performance image-based pain classifiers with pain score zero as the

reference in different settings.

CNN

model

Fully

connected

layers

Pain score

0 vs. 1 vs. 2

Pain score

0 vs. 1/2

Pain score

0 vs. 2

Accuracy Resnet34 1 layer

(1024, 3)

0.5589 0.7668 0.8593

Sensitivity 0.5589 0.8422 0.8925

F1-score 0.5495 0.7832 0.8638

Accuracy 2 layers 0.6032 0.7711 0.8568

Sensitivity (1,024, 256) 0.6032 0.8380 0.8514

F1-score (256, 3) 0.5969 0.7855 0.8561

Accuracy VGG16 1 layer

(1024, 3)

0.5914 0.7578 0.8557

Sensitivity 0.5914 0.6665 0.8499

F1-score 0.5867 0.7141 0.8548

Accuracy 2 layers 0.5871 0.7578 0.8276

Sensitivity (1,024, 256) 0.5871 0.6908 0.8064

F1-score (256, 3) 0.5811 0.7405 0.8239

Accuracy InceptionV1 1 layer

(1024, 3)

0.5872 0.7055 0.8302

Sensitivity 0.5872 0.8216 0.8782

F1-score 0.5788 0.7362 0.8380

Accuracy 2 layers 0.5567 0.7587 0.8035

Sensitivity (1,024, 256) 0.5567 0.8159 0.8338

F1-score (256, 3) 0.5556 0.7718 0.8093

CNN, convolutional neural network.

TABLE 3 | Performance of video-based pain classifiers with different numbers of

hidden layers in bidirectional long short-term memory (BiLSTM) networks.

Hidden

layers

Pain score

0 vs. 1 vs. 2

Pain score

0 vs. 1/2

Pain score

0 vs. 2

Accuracy 64 0.6144 0.8145 0.8810

Sensitivity 0.6144 0.7947 0.8755

F1-score 0.6123 0.8107 0.8803

Accuracy 128 0.5941 0.8054 0.8461

Sensitivity 0.5942 0.7858 0.7589

F1-score 0.5902 0.8015 0.8314

Accuracy 256 0.6006 0.8268 0.8367

Sensitivity 0.6006 0.8244 0.7500

F1-score 0.5948 0.8264 0.8212

BiLSTM, bidirectional long short-term memory.

∼80%, and the accuracy to detect grimacing (2) was nearly
90%. The present study demonstrates the practical application
of deep learning-based automated pain assessment in ICU, and
the findings shed light on the application of medical artificial
intelligence (AI) not only to improve patient care, but also to
relieve healthcare workers from the routine workload.

Pain is the fifth vital sign in hospitalized patients but is
somehow difficult to assess in critically ill patients who cannot
self-report the pain (21, 22). Facial expressions of pain consist
of coordinated pain-indicative muscle movements, particularly
the contraction of muscles surrounding the eyes, i.e., orbicularis
oculi muscle (23). Notably, facial pain responses appear to be
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TABLE 4 | Accuracy of proposed image- and video-based pain classifiers with

and without reference.

Reference Pain score

0 vs. 1 vs. 2

Pain score

0 vs. 1/2

Pain score

0 vs. 2

Image-based pain classifiers

Accuracy Pain score 0 0.6347 0.8000 0.8937

Sensitivity 0.6347 0.8022 0.8826

F1-score 0.6321 0.8004 0.8953

Accuracy No reference 0.6421 0.7954 0.8771

Sensitivity 0.6421 0.7974 0.9074

F1-score 0.6371 0.7947 0.8724

Video-based pain classifiers

Accuracy Pain score 0 0.6144 0.8268 0.8810

Sensitivity 0.6144 0.8244 0.8755

F1-score 0.6123 0.8264 0.8803

Accuracy No reference 0.6130 0.7858 0.8906

Sensitivity 0.6130 0.8016 0.8344

F1-score 0.6102 0.7892 0.8841

consistent across distinct types of pain stimulation, such as
pressure, temperature, electrical current, and ischemia (23, 24).
A number of studies have explored the physiological basis of
how pain signaling leads to pain-indicative muscle movement.
Kuramoto et al. recently used facial myogenic potential
topography in 18 healthy adult participants to investigate the
facial myogenic potential and subsequent facial expressions (25).
Furthermore, Kunz used functional MRI (fMRI) to address the
association between brain responses in areas that processed the
sensory dimension of pain and activation of the orbicularis oculi
muscle (26). Although promising, monitoring of facial myogenic
potential might be infeasible in critically ill patients given that
contact device-associated issues regarding infection control and
the potential interference with critical care (27). The possibility
of application of fMRI in ICU appears to be low; therefore, using
a portable camera to take high-quality video ∼1–2m from the
patient as well as AI-based image analyses focusing on eyebrow
area as we have shown in the present study has high applicative
value in critically ill patients.

It is estimated that more than 50% of patients in ICU
experienced experience moderate to severe pain at rest, and
80% of critically ill patients experience pain during procedures
(28, 29). Therefore, CPOT, as well as Behavioral Pain Scale (BPS),
has been introduced for pain assessment in patients at ICUs in
the past two decades, and facial expression is the fundamental
domain in both BPS andCPOT given thatmuscle tension in facial
areas, particularly facial area nearby eyebrow, can be directly
observed by the caring staff without contact (3, 30). Notably,
contactless monitoring in ICU is of increasing importance in the
post-coronavirus disease (COVID) era (27). A number of AI-
based tools, such as the dynamic relationship of facial landmarks
or CNN-learned facial features, have been developed to assess
pain in non-ICU patients (7, 23, 31). Nevertheless, the subtle
pain-associated movement of facial muscles/landmarks in the

non-ICU patient is largely distinct from those in critically
ill patients under sedation. Given that patients in ICU often
received mechanical ventilation, experienced fear were deprived
of normal sleep, felt isolation; therefore, appropriate sedation,
at least light sedation, is recommended as a standard of care in
critically ill patients and hence leads to difficulties to identify
pain based on facial expressions (32). In addition to the impact
of sedation on pain assessment, subtle facial muscle movements
might also be confounded by facial oedema resulting from fluid
overload, which is highly prevalent in critically ill patients who
underwent fluid resuscitation, as we have shown in our previous
studies (33, 34). Collectively, automated pain assessment based
on facial expressions in critically ill patients is currently an
unmet need in the research field of medical AI due to the
aforementioned difficulties.

Intriguingly, we found a suboptimal performance in
the polychromous classifier, whereas the performance in
dichotomous classifiers was high. We postulated that the
relatively little difference between pain grades 1 and 2 may lead
to the reduced performance to differentiate between 1 and 2,
and the performance of dichotomous classifiers was high due to
the apparent difference between 0 and 1/2. We found a higher
performance in video classifiers than those in image classifiers,
and this finding indicates that the temporal relation among
image frames is crucial to classify pain by facial expressions.
A similar finding has been found in pain classifiers using the
UNBC-McMaster shoulder pain database (7–9). The accuracy of
the leave-one-subject-out 25-fold cross in facial expression-based
pain classifier by machine learning approach was ∼0.861 using
the UNBC-McMaster database (7). Similar to our approach,
Rodriguez et al. used VGG to learn basic facial features as
well as LSTM to exploit the temporal relation between video
frames and reported a further increased accuracy (0.933) in
the aforementioned UNBC-McMaster database (8). Similarly,
Huang et al. proposed an end-to-end hybrid network to extract
multidimensional features including time-frame features from
images of the UNBC-McMaster database and also found an
improved performance (9). Recently, Semwal and Londhe
further used distinct fusion network architectures, including
CNN-based fusion network to learn both the spatial appearance
and shape-based descriptors, as well as decision-level fusion
network to learn the domain-specific spatial appearance and
complementary features, to improve the performance of pain
intensity assessment, with the F1 score, was ∼0.94 (10, 11). This
evidence highlights the potential application of automated pain
assessment based on facial expressions in hospital.

The inevitable medical devices and high heterogeneity in
critically ill patients have led to technical difficulties as we
have shown in this study. We choose to crop the facial area
nearby the eyebrow area, and this approach not only keeps the
essential area to detect painful facial expressions but also is
essential to extend the established model to clinical scenarios
with distinct facial masks, such as the increasing prevalence of
wearing a facial mask in the post-COVID era. Moreover, we used
a pain score of 0 to train the pain classifiers in this study and
further tested the performance of established classifiers without
reference (Table 4). Notably, the performance of dichotomous
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classifiers, particularly the 0 vs. 2 classifier, remains high without
reference, indicating that the established model has learned the
pain-associated facial expression in critically ill patients.

Timely detection of severe pain, such as pain score 2, is
crucial in critical care. Frequent pain assessment is substantial
for the identification of the existence of pain and the adjustment
dosage of pharmacological analgesic agents or the intensity
of non-pharmacological management (1). The previous studies
have shown that regular pain assessment is associated with a
better outcome, such as ventilator-day, in critically ill patients
(35, 36). Severe pain may reflect not only inadequate pain
control, but also the potential deterioration of critical illness.
For example, increasing pain has been implicated with anxiety,
delirium, and poor both short-term and long-term outcomes in
critically ill patients (37). Therefore, the automated AI-based pain
assessment, particularly timely identification of severe pain/pain
score 2, should serve as an actionable AI target, i.e., the detection
of pain score 2 indicates the need for immediate evaluation and
management by the healthcare worker. Additionally, we have
established the user interface to guide the user with regard to
quality of the image and the real-time classification of pain based
on facial expressions, and the application of the establishedmodel
should hence reach level 5 of technology readiness level (TRL)
(Supplementary Demonstration Video 1) (38, 39).

There are limitations in this study. First, this study is a single
center study. However, the pain relevant management in the
study hospital is in accordance with the guideline; therefore, the
generalization issue should be at least partly mitigated. Second,
we recorded the video for 90 s in each record, and a longer
duration could further improve the accuracy. Third, we focused
on the facial expression in the present study, and more sensors
for the other domains of CPOT/BPS are warranted in the future.

CONCLUSION

Autonomous facial expression-based pain assessment is an
essential issue in critical care but is somehow difficult in
critically ill patients due to inevitable masked areas by
medical devices and relatively subtle muscle movement resulting
from sedation/oedema. In the present prospective study, we

established the deep learning-based pain classifier based on
facial expression focusing on the area nearby eyebrow, with
the accuracy to detect tense/grimacing and grimacing were
∼80 and 90%, respectively. These findings indicate a real-world
application of AI-based pain assessment based on the facial
expression in ICU, and more studies are warranted to validate
the performance of the automated pain assessment tool.
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