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Replacement therapy with coagulation factor VIII (FVIII) represents the current clinical

treatment for patients affected by hemophilia A (HA). This treatment while effective is,

however, hampered by the formation of antibodies which inhibit the activity of infused

FVIII in up to 30% of treated patients. Immune tolerance induction (ITI) protocols, which

envisage frequent infusions of high doses of FVIII to confront this side effect, dramatically

increase the already high costs associated to a patient’s therapy and are not always

effective in all treated patients. Therefore, there are clear unmet needs that must be

addressed in order to improve the outcome of these treatments for HA patients. Taking

advantage of preclinical mouse models of hemophilia, several strategies have been

proposed in recent years to prevent inhibitor formation and eradicate the pre-existing

immunity to FVIII inhibitor positive patients. Herein, we will review some of the most

promising strategies developed to avoid and eradicate inhibitors, including the use of

immunomodulatory drugs or molecules, oral or transplacental delivery as well as cell and

gene therapy approaches. The goal is to improve and potentiate the current ITI protocols

and eventually make them obsolete.
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INTRODUCTION

The major complication of replacement therapies in hemophilia A (HA) is the formation of
inhibitors, anti-FVIII antibodies directed against and inhibiting the function of infused FVIII. The
formation of inhibitors occurs in∼30% of HA patients as a severe form, and in∼5% of patients as
mild/moderate forms (1, 2). Should inhibitor formation occur, it will do so within 75 exposure days
in patients with severe HA (3).

To date the only clinical option for inhibitor eradication is immune tolerance induction (ITI)
protocols, which consist of frequent infusions of FVIII. According to the current protocols, high
doses of FVIII are administered daily (Bonn protocol: 100–150 IU/kg FVIII twice a day) (4) or
every other day (Creveld protocol: 25 IU/kg FVIII every 2 days) (5). Depending on the patient’s
response, the period of treatment will vary from months to over 1 year, with a successful outcome
seen in ∼70% of treated patients (6). Despite the high success rate and safety reported, the long
treatment period using a central venous catheter for frequent infusions, as well as the high costs,
are the major drawbacks of this treatment.

The recent introduction of emicizumab, a bispecific antibody directed against FIXa and FX
which mimics the FVIII function, has offered a new approach to the management of ITI. This
approach allows the use of lower doses of FVIII and reduces the frequency of administration (7, 8).
There remains, however, a need for effective options to treat ITI refractory patients. As such, novel
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strategies to prevent or eradicate inhibitor formation are
required. Different approaches have been proposed in recent
years aimed at avoiding the formation of or eradicating existing
inhibitors, including the use of immunomodulatory drugs or
molecules, oral or transplacental delivery as well as cell and gene
therapy approaches, taking advantage of preclinical models of
HA (Figure 1).

TOLERANCE INDUCTION BY IMMUNE
SUPPRESSION

A possible approach to induce tolerance toward FVIII is
guiding the immune system toward a FVIII-specific regulatory
T cell (Treg) response, thus suppressing T and B cells reacting
against FVIII. Some of these approaches are represented by
immunomodulatory drugs or molecules that favor the activation
of Treg and inhibit the activation of effector T cells in vivo.

FIGURE 1 | Schematic representation of strategies adopted to avoid inhibitor formation and to induce tolerance toward FVIII. Strategies include immune modulatory

drugs and molecules acting on T and B cells (e.g., rapamycin, dexamethasone, anti-CD20, IL-2/IL-2mAb complexes); interaction with the GALT and tolerance

induction through oral administration of FVIII peptides bioencapsulated in plant cells; tolerization at fetal stage through transplacental delivery of FVIII to the pregnant

mother; adoptive transfer of FVIII-sensitized Tregs and/or expression specific chimeric antigen receptors (CAR) and engineered B-cell antibody receptors (BAR)

expression on T cells; targeted gene therapy for FVIII expression in organs or cell types able to modulate immune reactions and induce tolerance to the transgene,

e.g., hepatocytes and liver sinusoidal endothelial cells (LSEC). According to the adopted strategy, the treatment can result in a short-term effect, requiring more

administrations and time to achieve tolerance, or in a long-term effect, with virtually life-long tolerance to FVIII with a single administration.

Rapamycin, also known as sirolimus, is an antibiotic able
to inhibit the mammalian target of rapamycin (mTOR),
which reduces cell cycle progression and suppresses effector
T cell proliferation, thus rendering this molecule a useful
immunosuppressor for allograft transplantation. Moreover,
administration of rapamycin results in Tregs expansion,
depending on the treatment time and dosage (9–12). In a
previous study by Moghimi and colleagues, the daily oral
administration of rapamycin for 1 month with the concurrent
administration of FVIII, both B-domain deleted-FVIII (BDD-
FVIII) or full length FVIII, was able in HA mice to prevent
inhibitor formation following weekly FVIII infusions over a 3.5
months period. In control HA mice lacking the administration
of rapamycin, the same treatment with FVIII resulted in a high
titer inhibitor formation. In this case, a tolerization protocol
stimulated Tregs which were able to, upon adoptive transfer from
treated mice in naïve HA mice, avoid inhibitor development
following immunization. Further, co-administration of FVIII
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during rapamycin treatment was found to be essential for FVIII
tolerization since mice receiving only rapamycin developed high-
titer inhibitors within 1 month after weekly FVIII administration
following the rapamycin regimen (13).

Since differentiation of naïve CD4T cells into regulatory or
effector T cells is associated with the type and activation status of
dendritic cells (DC) (14), administration of determined cytokines
in association with rapamycin can further shift the balance
toward Treg differentiation. For example, FMS-like receptor
tyrosine kinase 3 ligand (Flt3L) administration results in DC
expansion and induction of Tregs in both humans and mice (15).
According to this observation, rapamycin in combination with
Flt3L and low doses (0.3 IU) of FVIII and subsequent treatment
for FVIII therapy (1 IU weekly) in a HA mouse model, was able
to significantly reduce inhibitor formation by promoting Treg
induction (16).

Suppression of pro-inflammatory signals during initial
exposures to FVIII has been shown to reduce the incidence
of inhibitor development in a number of studies (17–19).
Transient treatment with dexamethasone, an anti-inflammatory
and immunosuppressive corticosteroid, in conjunction with
FVIII, was able to significantly reduce the development of anti-
FVIII antibodies in HA mice as well as in a mouse model of HA
with humanized major histocompatibility complex (MHC) type
II transgene. Additionally, among mice negative for anti-FVIII
antibodies after initial FVIII exposure, dexamethasone-treated
mice were less prone to develop anti-FVIII immune response
following a re-challenge at 6 and 16 weeks (20, 21). This antigen-
specific tolerance induced by transient dexamethasone treatment
was associated with an increase in thymic Tregs (21).

The use of short term/transient treatments of HA mice with
other safe and well-tolerated immunomodulatory agents (22–24),
such as anti-CD20 (25, 26), anti-CD3 (27, 28) or IL-2/IL-2mAb
complexes (29), have shown significant effects in the prevention
of inhibitor formation.

Other than T cells, B cells represent an additional target for
FVIII tolerance induction. It was observed that B cell depletion
with a single dose of IgG1 anti-CD20 in mice previously
immunized with FVIII, avoided an increase of inhibitor titers for
FVIII, thus resembling the high dosage protocols for ITI. IgG1
anti-CD20 treatment resulted in increased splenic Tregs and was
efficacious for up to 3 months after a partial B cell depletion
(26). In a more recent study in mice, the combined treatment of
rapamycin and IgG2a anti-CD20was able to reduce the inhibitors
from a high titer (∼10 BU/ml) to a low titer (≤5 BU/ml), with a
minimal increase in inhibitor titers following a FVIII re-challenge
after B cell repopulation (25).

In other studies which examined the administration of
interleukin 2 (IL-2) bound to a particular anti-IL-2 monoclonal
antibody (mAb; JES6), known as IL-2/IL-2-mAb complexes, it
was observed that these complexes were able to selectively expand
Tregs in vivo (30, 31). When administered concomitantly with
low doses of FVIII, IL-2/IL-2-mAb complexes were shown to be
effective in abrogating the development of anti-FVIII antibodies,
as well as inducing the long term tolerance to FVIII in HA
mice without affecting the immune reactivity of T cells to other
antigens (29).

Overall, each of the pre-clinical studies described herein,
highlight the importance of inducing tolerance to FVIII in
a preventive manner and that with additional studies, these
strategies have the potential to be adopted in clinical trials for
the management of HA patients. Even though these treatments
are able to induce tolerance to FVIII for long term, they are not
able to guarantee a lifelong tolerance for the replacement therapy.
Therefore, there is a need of new strategies aiming to induce a
definitive tolerance to FVIII.

TRANSPLACENTAL DELIVERY OF Fc
FUSION PROTEIN

Since the highest risk of inhibitor development occurs within
the first 15–20 exposure days in HA patients and there is
the need to start early with FVIII infusions, Lacroix-Desmazes
and colleagues proposed to induce tolerance prior to beginning
the FVIII replacement therapy (32). This approach relies on
maternal IgG crossing the placental barrier through a transcytosis
mechanism, which is based on the binding of IgG to the neonatal
Fc receptor (33). This mechanism allows the IgG passage from
the maternal to the fetal circulation and occurs during the third
trimester of fetal development, the period in which the fetal
immune system develops and acquires tolerance to self (34–36).
Being an ideal timing for tolerance induction to FVIII, Lacroix-
Desmazes’ group generated immunodominant FVIII domains,
A2 and C2, fused to mouse Fcγ1 (A2Fc and C2Fc) and co-
injected them into pregnant HA mice at 16, 17, and 18 days
of gestation. Starting at 6 weeks of age, offspring treated with
A2Fc and/or C2Fc with FVIII, showed lower anti-A2 and anti-C2
antibody titers (∼10 fold) along with a significant reduction (7–
8-fold) in inhibitor development, when compared to the control
group. Moreover, they observed a significant reduction in the
proliferation of splenic cells (isolated from A2+C2-tolerized
mice) in the presence of FVIII. This suggests that there is an
induction of FVIII-specific Tregs that are able to significantly
reduce in vitro the proliferation of effector T cells from mice
immunized with FVIII and in vivo the antibody response to FVIII
upon adoptive transfer of CD4+CD25+ from FVIII-tolerized
mice into naïve HA mice (32).

Overall, the use of the FVIII-Fc fusion protein already present
in the market (37) could be a potential prenatal treatment of
HA patients to induce FVIII tolerance which lasts a sufficient
amount of time to reduce/avoid inhibitor formation. Issues
remain, however, which must be addressed including treatment
timing and dosage and in particular the ability of FVIII-Fc to bind
vWF in which is a larger complex to transfer (38).

ORAL TOLERANCE INDUCTION

Protocols able to induce tolerance toward FVIII in HA patients
while avoiding immune suppression and/or toxicity would
be ideal and would improve patient compliance. Within the
body, the small intestine is exposed to a massive number
of antigens of both intestinal bacteria and dietary origin. In
order to avoid potentially damaging pro-inflammatory immune

Frontiers in Immunology | www.frontiersin.org 3 March 2020 | Volume 11 | Article 476

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Merlin and Follenzi Inhibitors in Hemophilia A

responses, the gut-associated immune system (GALT) favors an
environment promoting tolerance, especially to food antigens
(39). Taking advantage of this naturally occurring immune
tolerant environment, tolerance induction toward a determined
antigen, including FVIII, is possible. Previous studies from
Rawle and colleagues, showed that mucosal administration of
purified FVIII C2 domain (FVIII-C2) followed by immunization
with FVIII-C2 or full length FVIII, significantly reduced
titers of anti-FVIII-C2 antibodies in HA mice, thus obtaining
a tolerance to FVIII-C2 that was transferred to naïve HA
mice upon CD4+ splenocyte adoptive transfer. The effect,
however, of this induced tolerance was temporary since the
re-challenge with FVIII-C2 4 weeks later, resulted in inhibitor
development in tolerized mice (40). The issues related to this
approach for clinical use are the costs related to the antigen
production and purification, as well as the requirement of
protecting the antigen from degradation within the stomach
following oral administration while efficiently reaching the
GALT. From this point of view, the production of bioactive
proteins in plants presents several advantages, such as low
cost, a high scale production, maintenance of post-translational
modifications (e.g., N-glycosylation) and absence of endotoxins
(41). Furthermore, taking advantage of their cell walls, plant cells
offer a natural encapsulation for antigens that need to be released
in the intestine (38, 41). In 1999, Hooker and colleagues were able
to express active full length FVIII in a transgenic tobacco line
(41). While in 2014, FVIII heavy chain (HC) and C2 domains
were produced in the tobacco chloroplast as a fusion protein
with the subunit B of cholera toxin, a transmucosal carrier, and
with the antigens encapsulated in plant cells for their protection
during an oral delivery. Mice fed with plant material containing
FVIII antigens and subsequently immunized with weekly FVIII
intravenous injections showed significantly lower inhibitor titers
(∼7-fold) compared to control mice. Moreover, oral delivery
of FVIII antigens was able to revert a pre-existing immunity
to FVIII by significantly reducing inhibitor titers during 2–3
months of feeding, with a subsequent analysis suggesting the
activation of Tregs in tolerized mice when compared to control
animals (42). More recently, full length FVIII was expressed at
optimal levels in lettuce chloroplasts and the oral delivery of
FVIII produced in lettuce was shown to be able to significantly
reduce inhibitor formation and induce Tregs (43). In both
systems, tobacco and lettuce chloroplasts, exogenous proteins
were produced at high levels and were correctly folded, although
N-glycosylation was absent. Despite this, FVIII production and
bioencapsulation in different plant systems offers advantages,
including a reduction in costs associated to cell culture systems
and the possibility of a long-term storage of plant cells (freeze-
dried) for oral delivery without affecting the structure or the
activity of the exogenously produced protein (43).

T CELL THERAPY

Even though the cell mechanisms leading to inhibitor
development are not completely clear, it has been identified that
it is a mechanism involving T helper cells (44, 45), with Tregs

playing a pivotal role in tolerance to FVIII replacement therapy
(46, 47). As described above, simultaneous administration of
FVIII and immunomodulatory drugs/molecules results in the
deletion of T effector cells (Teff) and the induction and/or
expansion of Tregs (26–29). For these reasons a possible
strategy for FVIII tolerance induction may consider the use of
FVIII-specific Tregs.

There are two main distinct subsets of Tregs: naturally
occurring, or thymic, Tregs (nTregs), which are specific mainly
for self-antigens, and peripherally induced Tregs (iTregs),
presenting specificity for exogenous antigens (46, 48). While
the use of nTregs is restricted by the antigen non-specificity
and the low recurrence, the use of iTregs represents a more
realistic strategy to achieve tolerance to FVIII (46). A previous
study using HA mice showed that the adoptive transfer of
autologous polyclonal Tregs expanded ex vivo was able to
strongly decrease and even suppress inhibitor development in a
dose-dependent manner (49). On the contrary, the use of FVIII-
specific Tregs is more efficient at lower frequencies. Recently,
Smith and colleagues showed that FVIII-specific Tregs, isolated
from FVIII-sensitized mice and expanded in vitro in presence of
FVIII, have a superior ability in suppressing anti-FVIII immune
response in FVIII plasmid-treated HA mice, even following a
second treatment with FVIII plasmid, and promoting long term
tolerance to FVIII (50). As an alternative approach, Herzog and
colleagues isolated CD4+ T cells from FVIII immunized HA
mice, engineered them with a retroviral vector for the expression
of Foxp3 and finally adoptively transferred into naïve HA mice
followed by weekly injections of FVIII for 2 months. Foxp3-
transduced cells from FVIII immunized mice (Foxp3FVIII) were
able to induce tolerance during the FVIII infusion time, avoiding
inhibitor formation. Even though this approach was not able
to revert pre-existing immunity to FVIII, the combination of
Foxp3FVIII adoptive transfer and treatment with anti-mCD20was
able to reduce pre-existing inhibitor titers (51).

These studies highlight the need of FVIII-specific cells in
order to reach a more reliable and long lasting FVIII tolerance.
From this point of view a finer tuning can be achieved taking
advantage of specific chimeric antigen receptors (CAR) and
engineered B-cell antibody receptors (BAR) expression on T cells.
In a recent study, Yoon and colleagues described the generation
of an engineered FVIII A2 domain-specific CAR (ASN8 CAR)
and transduction of Tregs with ASN8 CAR sequence using
a retroviral vector. ASN8 CAR-transduced Tregs were able to
proliferate in the presence of FVIII and suppress the proliferation
of FVIII-specific T effector cells in vitro. When injected in mice
immediately after immunization with FVIII, in vitro expanded
ASN8 CAR-transduced Tregs were able to effectively suppress
anti-FVIII antibody development for up to 8 weeks, even
though transplanted cells were already undetectable after 2
weeks. However, 8 weeks after adoptive transfer a re-challenge
with FVIII resulted in anti-FVIII antibody development, thus
meaning a loss of tolerance (52). More recently, the same group
generated cytotoxic T cells expressing a CAR containing the
immunodominant A2 and C2 domains of FVIII able to target
FVIII-specific B cells (BAR T cells). A2 and C2 BAR T cells
alone showed the ability to partially reduce anti-FVIII antibodies
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secreting cells in vitro, while when used in combination A2/C2
BAR T cells reduced anti-FVIII antibodies secreting cells almost
completely. In vivo administration of A2/C2 BAR T cells in
HA mice followed by immunization with FVIII resulted in
prevention of anti-FVIII antibody formation even after a re-
challenge with FVIII 10 weeks later. Moreover, analysis of
splenocytes from mice 12 weeks after injection of A2/C2 BAR
T cells showed the absence of FVIII-specific memory B cells,
confirming that A2/C2 BAR T cells were able to prevent anti-
FVIII antibody formation probably by eliminating FVIII-specific
memory B cell precursors (53).

This data suggests that adoptive transfer of FVIII-specific
Tregs, possibly in combination with specific chimeric antigen
receptors leads to FVIII tolerance. This data is encouraging and
offers a feasible approach for the prevention/management of
inhibitors in HA patients.

GENE THERAPY

Hemophilia A is an X-linked bleeding disease caused by reduced
or absent activity of coagulation factor (F) VIII which is a
consequence of mutations or deletions within the F8 gene. Since
it is a monogenic disease, HA represents an ideal candidate
for gene therapy, which relies on the use of a gene transfer
vector, typically viral, for the introduction of the corrected copy
of the mutated gene. Several studies using different preclinical
animal models and new data from recent clinical trials have
demonstrated that these approaches are promising for the
treatment of hemophilia patients (54). During the years, several
efforts have been focused on viral vector designs in order
to improve gene delivery and, at the same time, reduce or
avoid immune reaction against the transgene (55). Strategies
applied include targeted gene transfer, by transcriptional and
post-transcriptional regulation, and shielding of the vector or
transgene (55–58).

Several preclinical animalmodels of HA are presently available
which can be used for the development of new gene therapy
strategies to treat HA, to evaluate safety, as well as for dosage
and long-term follow-up studies. These models include HA
animals with spontaneous mutations, such as dogs, sheep and
rats, and genetically engineered animals, like mice and pigs
(59). Moreover, the generation of a HA mouse model carrying
the human HLA class II antigen, associated in humans with
higher inhibitor development risk, has given us the possibility to
better understand/characterize mechanisms involved in immune
reaction against FVIII (20, 60).

The liver is the major source of FVIII within the body (61,
62). Additionally, this organ is constantly balancing pro- and
anti-inflammatory responses due to the continuous exposure to
external antigens through the blood coming from the gut, thus
creating a tolerant environment (63, 64). Several studies and
results from clinical trials have demonstrated that liver-directed
gene therapy for hemophilia is effective in correcting the HA
bleeding phenotype (56, 65–69) taking advantage of the liver’s
tolerogenic ability (70–72). Moreover, targeted FVIII expression
following gene therapy have been demonstrated to be successful
even in presence of pre-existing inhibitors (69, 73, 74).

When considering gene delivery, recombinant adeno-
associated viral (AAV) vectors have been used extensively
in preclinical and clinical studies for FVIII expression in
hepatocytes (65, 75, 76), as they are not integrating viral vectors,
they can be produced with high yields and they are capable
of long-term stable transgene expression in developed liver,
while transgene expression results unstable and eventually lost
in developing liver due to the non-integrating nature of AAV
(77). Using AAV, Sabatino and colleagues have shown that
liver-directed canine (c) FVIII gene therapy resulted in tolerance
in HA dogs, with only 1 animal showing transitory development
of low-titer inhibitors (2.5 BU) which was resolved at 7 weeks.
This strategy resulted in detectable cFVIII activity and antigen
levels as well as a reduction in whole blood clotting time (WBCT)
in treated dogs. Further, tolerance to cFVIII in these HA dogs
was maintained even following challenges with plasma-derived
or recombinant cFVIII (68). The same group showed that the
AAV liver-directed gene transfer is able to eradicate pre-existing
high-titer inhibitors in HA dogs (69) and immune tolerance
was still present in these animals several years after the first
report (56).

Likewise, in HAmice, hepatocyte-directed FVIII gene therapy
using AAV resulted in sustained therapeutic transgene expression
avoiding inhibitor formation. The induction of tolerance was,
however, directly correlated with the transgene expression levels,
showing that high levels of FVIII expression are required in
hepatocyte-directed gene therapy in order to avoid immune
responses (78, 79). On the other hand, despite the initial
high-level FVIII expression in hepatocyte-targeted FVIII gene
therapy, a strong immune response is observed and inhibitors
are developed following naked DNA transfer in HA mice
(80). Moreover, it has been demonstrated that high levels of
FVIII expression in hepatocytes are associated with transient
endoplasmic reticulum stress and the consequent activation of
unfolded protein response, with a correlation between FVIII
expression and inhibitor formation (81, 82).

The liver is the main FVIII-producing organ and historically
hepatocytes considered the principal site of FVIII synthesis. In
more recent studies, however, it has been shown that the main
FVIII-producing cells are the endothelial cells, particularly liver
sinusoidal endothelial cells (LSEC) (83–85), and, to a lesser
extent, hematopoietic cells (85, 86). Within the liver, LSEC
were shown to be able to interact with T cells and modulate
immune responses by preventing antigen-specific activation of
CD8+ T cells, inhibiting the effector function of activate T
cells and inducing Tregs (87, 88). Carambia and colleagues
previously showed that LSECs are able to inhibit the pro-
inflammatory activity of CD4T cells through a IL-10- and PD-
1-dependent mechanism (89). Moreover, these cells are able to
retain TGF-β on their membrane and to induce antigen-specific
CD4+CD25+Foxp3+ hepatic Tregs (88, 90). Our group recently
demonstrated that targeting FVIII expression in endothelial
cells, mainly LSEC, using a lentiviral vector (LV) containing
the endothelial-specific vascular endothelial cadherin (VEC)
promoter, results in sustained expression of therapeutic levels
of FVIII in HA mice without inhibitor formation, even after
immunization. This approach was demonstrated to be effective
even in presence of and was able to revert pre-existing immunity
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to FVIII, suggesting a mechanism of Treg induction, since
temporary depletion of Tregs resulted in a loss of FVIII activity
and inhibitor formation. When Treg levels were returned to
normal, inhibitor titers decreased and FVIII activity was restored
to levels observed prior to Treg depletion (73). In the same
study, targeting myeloid cells using the CD11b (integrin αM,
ITGAM) promoter, long term FVIII expression was achieved
but 30% of treated mice developed inhibitors, which were only
avoided by de-targeting transgene expression in plasmacytoid
dendritic cells using target sequence for microRNA-126 (73). In
a more recent study, our group targeted FVIII expression in
naturally FVIII-producing cells by generating a LV containing the
transgene under the transcriptional control of the F8 promoter
(pF8). Gene therapy in HA mice using this LV resulted in
sustained production of therapeutic levels of FVIII. The levels
of HA correction obtained with this strategy were higher when
compared to those observed in our previous study targeting
specifically endothelial cells with a typical endothelial promoter
such as VEC. pF8 demonstrated to be active in an organ-
dependent manner allowing transgene expression in hepatic
endothelial cells as well as in splenic hematopoietic cells. Once
again, with this strategy no inhibitors were observed and stable
tolerance was reached via a mechanism involving Treg induction,
even following FVIII challenges. Overall, this strategy was able to
provide sustained FVIII therapeutic levels in HAmice with FVIII
pre-existing immunity (74).

These data suggest that targeting FVIII transgene expression
in cell types naturally producing FVIII represent a more effective
strategy to avoid immune reaction and achieve tolerance to
the transgene.

Direct intraosseous infusion of LV for the delivery of FVIII
transgene in bone marrow (BM) and platelet-specific FVIII
expression has been reported to be efficacious for the long-term
treatment of the bleeding phenotype in hemophilia Amice. Using
this strategy, Wang and colleagues designed a LV containing a
FVIII transgene under the control of a platelet-specific promoter,
the glycoprotein-1bα (GP1bα) promoter. Upon LV injection,
no FVIII activity was detected in plasma of mice treated,
while FVIII was present in ∼2% of platelets by day 160 after
LV delivery. On the contrary, after injection of the control
vector, containing the FVIII sequence under the control of
the ubiquitous human elongation factor 1α (EF-1α) promoter,
they detected FVIII activity in circulation that subsequently
decreased to undetectable levels due to inhibitors formation.
Since FVIII is stored in α-granules (91), platelet-restricted FVIII
expression shielded the presence of FVIII in circulation and
resulted in long-term FVIII expression even in presence of high
titer inhibitors (92).

An alternative approach to prevent immune responses to
delivered transgene is delivering them during the neonatal
period, allowing a tolerance induction to the transgene. Hu et al.
showed sustained long-term FVIII expression (>5% for more
than 1.5 year) following AAV-FVIII gene therapy in newborn
(48 h/2 days old) HA mice. Tolerance to FVIII was reached
with this strategy since immunization with FVIII in presence
of an adjuvant at 8 weeks of life did not result in inhibitor
formation. This study demonstrated the presence of the vector
genome for more than 1 year, even though the vector copies

drastically decreased after 8 weeks (>100-fold) and at the final
time point, 1.5 years, were more than 400-fold lower (93). This is
not surprising due to the non-integrating nature of AAV. For this
reason, as an alternative strategy for the gene transfer in neonates
avoiding vector genome “dilution” during the growth, the use
of LV could be advantageous. In fact, LV has been shown to be
effective in gene therapy approaches for other genetic diseases,
such as Mucopolysaccharidosis type 1 (MPS 1) (94) and Pompe
disease (95), without immune reactions against the transgene
reported. Thus, LV-mediated FVIII gene therapy in HA neonates
could represent a valid approach for the life-long treatment of
the disease avoiding immune response and possibly inducing
tolerance to FVIII.

An alternative and effective approach to obtain therapeutic
levels of FVIII, while avoiding anti-FVIII immune responses,
is represented by ex vivo gene therapy using hematopoietic
stem cells (HSC). This strategy was shown to be able to
provide a life-long transgene expression (96), in combination
with transcriptional and post-transcriptional sequences to obtain
lineage- or cell-type-specific transgene expression. HSC gene
therapy is generally performed by transducing ex vivo HSC
and transplanting them into conditioned recipients. Taking
advantage of cell-type-specific transgene expression in HSC
it is possible to obtain therapeutic FVIII expression avoiding
immune reactions. For example, megakaryocyte-restricted FVIII
expression using a lentiviral vector containing the integrin
subunit αIIb (ITGA2B) promoter (2bF8) was able to ensure
sustained long-term correction of the bleeding phenotype in
HA mice (58, 97, 98) and dogs (99) without formation of anti-
FVIII antibodies. This strategy was effective even in presence
of inhibitors, since the synthesized FVIII was confined to the
platelets, thus shielding the presence of FVIII in circulation and
allowing its release following platelet activation to the injury
site (58, 97, 98). Additional experiments following platelet-
specific ovalbumin (OVA) expression (2bOVA) demonstrated
that exists a natural peripheral tolerance to content of platelet
granules, able to eliminate antigen-specific CD4T effector cells
and induce/expand antigen-specific Tregs (100), in agreement
with a previous study by Chen et al. showing that transplantation
of 2bF8-transduced HSC is able to induce immune tolerance
to FVIII in HA mice through a CD4+ T cell-mediated
mechanism (101).

Whether HSC-directed gene therapy is able to induce
tolerance to FVIII is still under debate, as the immune
suppressive drugs/treatments could be misleading with respects
to the evaluation of the immune system responsiveness (56).
However, previous studies showed that following HSC-based
platelet-specific gene therapy antigen-specific immune tolerance
was achieved in both hemophilia A and B mice and treated
animals maintained the ability to respond to the unrelated
immunogen ovalbumin (OVA) (102, 103). These studies
demonstrate the possibility to treat inhibitor positive HA patients
without the need of ITI for achieving hemostasis.

CONCLUSIONS

During recent years, several approaches have been described to
avoid inhibitor formation as well as to induce FVIII tolerance
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with the potential of improving both the rate of success and
reduce the drawbacks of existing ITI protocols in clinic.

The use of immune modulatory drugs or molecules has been
demonstrated to be helpful in suppressing immune reactions
and in driving the immune system toward FVIII tolerance. This
strategy, however, requires additional and more informative data
regarding the long-term effects of these immune suppressive
treatments on the immune system and the adverse effects in
general associated to the use of immunosuppressive drugs. These
effects may occur at the time of treatment or following the
completion of treatment, such as infections, malignancy, bone
marrow suppression and cytopenia (104).

Immunization of pregnant women is considered beneficial
not only for protecting mothers from infections, but also
offer protecting antibodies through the transplacental passage
of immunoglobulins. The presence of maternal antibodies,
however, could interfere with the immune response of the
newborn to the vaccine (105). Further, the eventual presence of
non-neutralizing anti-FVIII antibodies reported also in healthy
individuals (106) could interfere with the administration of
FVIII-Fc for transplacental FVIII delivery. Further studies
aimed at deeply understanding and characterizing the
mechanisms involved in transplacental transfer, will help
in the development of molecules specifically designed for
optimal delivery to the fetus and reduced interference from
maternal antibodies.

Oral administration of antigens presents different advantages,
including low costs, stability and self-administration, avoiding
the discomfort of injectable preparations. This approach can be
used for both immunization and tolerance induction according
to the correct administration regimen (timing and dosage) (107).
For these reasons, bioencapsulation of FVIII in plant cells and its
oral administration would be an ideal alternative to current ITI
protocols, giving the possibility of avoiding frequent injections
(up to twice a day according to the protocol) and treatment-
related high costs. One of the disadvantages of this strategy
is that production of glycosylated antigens is not suitable in
plastids (107), which are used to achieve high FVIII antigens
production (42). Additional studies are necessary in order to
better evaluate the efficacy of and the optimal dosage for this
strategy in tolerance induction.

Among the described strategies is gene therapy, which despite
the safety concerns related to genotoxicity and insertional
mutagenesis, has the greatest potential. In fact, gene transfer
could simultaneously prevent/eradicate inhibitors by tolerance
induction and provide a life-long and sustained production
of therapeutic FVIII levels with a single administration. This
would reduce the high costs of existing substitution therapy
and avoid the obligatory frequent FVIII infusions for HA
patients. Between the vectors used in gene therapy, AAV have
been used in numerous preclinical and clinical studies for
hepatic FVIII expression (65, 75, 76). These vectors present
some characteristics that make them attractive for gene delivery
studies, including non-integrating ability, high yields during
manufacturing processes and ability of long-term transgene
expression (77). However, the use of AAV, especially in clinical
trial, is limited by the presence of pre-existing immunity to AAV

that could interfere with or nullify the gene transfer treatment
and their non-integrating characteristic that is not optimal for
the gene transfer in pediatric patients, which may not benefit
from the therapy because of transgene dilution during the
physiological liver growth. There are currently ongoing different
phase 1–3 clinical studies for the treatment of hemophilia A using
AAV (75). In 2017 Biomarin reported the first results of BMN270,
a dose-escalation study conducted in nine patients, with stable
FVIII after 1 year and very significant reduction in annualized
bleed rate (from 16 to 1 event/year). They observed an elevation
in alanine aminotransferase (ALT) levels in 8 out of 9 patients
managed with corticosteroids with no effects on FVIII activity
(65). More recently, Biomarin published an update of all the
cohorts of this clinical trial reporting that most of the patients
had substantial decrease in the occurrence of bleedings and more
important the complete interruption of FVIII prophylaxis. These
patients did not report liver damage even though liver-biopsy
need to be taken in consideration to confirm the efficacy and
safety of this approach (108).

Additional clinical trials from Spark (SPK-8011) and
University College of London (GO-8) reported FVIII activity
levels ranging from 13 to 30% for SPK-8011 and from 7 to
63% for GO-8. Both studies described an increase in ALT levels
in some patients that were treated with corticosteroids. An
high FVIII activity reduction was observed in two patients in
the high-dose cohort of SPK-8011 following a capsid cellular
immune response (75). Additional data from ongoing clinical
studies after longer follow-up will help in clarify whether this
approach, as previously observed in preclinical animal models,
is able to induce tolerance to FVIII and allow a stable lifelong
transgene expression, even though the corticosteroid treatment
represent a confounder for the determination of immune
tolerance induction.

Lentiviral vectors, on the other hand, are able to integrate
within the host genome, have an expression cassette with doubled
capacity compared to AAV, and present lower pre-existing
immunity to LV elements (109, 110). These features allow the
design of LV that can contain combinations of transcriptional
and post-transcriptional regulation sequences, i.e., cell type-
specific promoters and microRNA target sequences, in addition
to the therapeutic transgene. This kind of approach allows
transgene expression not only in determined cell types, but
also in specific cell subpopulations, thus avoiding expression in
unwanted cells and, in a final instance, immune reaction against
the therapeutic transgene (55, 73, 74).

Several gene therapy studies are suggesting that antigen
levels and a continuous transgene expression are involved in a
successful tolerance induction to FVIII (56). Due to the high
potential of this strategy of resolving HA and improving a
patient’s quality of life, future studies are necessary to improve
and develop novel gene therapeutic tools.

While HA mice models have been fundamental for the
design of the abovementioned strategies, additional preclinical
studies in larger animal models are necessary to clarify
the efficacy of these proposed approaches and to define
the correct dosages and timing for their clinical use. Such
models will also give the possibility of combining these
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different approaches and assessing their eventual long-term
side effects.

Finally, several studies in recent years have highlighted the
important involvement of the cells in the marginal zone of the
spleen in early FVIII uptake and in the development of inhibitors
in mice, including splenic follicular T cells, marginal zone B cells,
marginal zone macrophages, and marginal zone metallophilic
macrophages (26, 45, 111, 112). Despite this, the mechanisms
of interaction between these cells in the induction of immune
responses or tolerance to FVIII have yet to be described.

The understanding of cells involved in FVIII uptake and
subsequent immune system activation as well as the mechanisms
underlying the response to FVIII will contribute to refine the
presented strategies, thus possibly reducing their eventual side
effects, and will help the development of new therapies to prevent
the formation of or revert existing inhibitors in HA patients.
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