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Abstract: Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, 

and nickel are classified as carcinogens affecting human health through occupational  

and environmental exposure. However, the underlying mechanisms involved in tumor 

formation are not well clarified. Interference of metal homeostasis may result in oxidative 

stress which represents an imbalance between production of free radicals and the system’s 

ability to readily detoxify reactive intermediates. This event consequently causes DNA 

damage, lipid peroxidation, protein modification, and possibly symptomatic effects for 

various diseases including cancer. This review discusses predominant modes of action and 

numerous molecular markers. Attention is paid to metal-induced generation of free radicals, 

the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal 

transduction pathways with major roles in cell growth and development, and roles of 

antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants 

(carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others) with 

cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide 

dismutase) as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is 

also reviewed. Dysregulation of protective pathways, including cellular antioxidant 

network against free radicals as well as DNA repair deficiency is related  

to oncogenic stimulation. These observations provide evidence that emerging oxidative  
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stress-responsive regulatory factors and DNA repair proteins are putative predictive factors 

for tumor initiation and progression. 

Keywords: carcinogenicity; DNA damage; DNA repair; genotoxicity; heavy metal; 

oxidative stress 

 

1. General Features of Carcinogenic Metal Compounds 

Metal compounds are found throughout the environment. Industrial applications contribute 

significantly to human metal exposure. Some metals, including arsenic, cadmium, chromium, cobalt, 

lead, mercury, and nickel have been classified as human carcinogens or considered to be human 

carcinogens by the International Agency for Research on Cancer and by the German MAK Commission. 

Their carcinogenic potentials are predominantly dependent on oxidation state, solubility, and complex 

form. Physicochemical properties control uptake, intracellular transport and distribution, and 

bioavailability [1–3]. Toxic metal ions, with similar properties to essential ions (e.g., charge and size), 

possibly compete with essential ions for biological binding sites, leading to perturbation of biomolecular 

structure and function as well as a disturbance in metal homeostasis [1–3]. Exposure to toxic metals is 

closely associated with the formation of free radicals, directly or indirectly, in living organisms [4–7]. 

The cumulative generation of free radicals, such as reactive oxygen species (ROS) and reactive 

nitrogen species (RNS), is termed oxidative stress and induces a cellular redox imbalance, which is 

linked to cancer incidence [8–10]. The common mode of action for metal-induced carcinogenicity is 

summarized as: (1) Induction of oxidative stress and damage to cellular components, particularly DNA; 

(2) interference with DNA repair systems, resulting in genomic instability; and (3) interruption of cell 

growth and proliferation via signaling pathways and dysregulation of oncogenes or tumor suppressor 

genes [1]. These possible common mechanisms of metal-induced carcinogenicity with unique 

discrepancies regarding to specific metals are discussed in more detail. 

2. Overall Mechanisms of Metal-Induced Genotoxicity and Carcinogenicity 

Common mechanisms of various carcinogenic metals that induce oxidative stress, impair DNA 

repair systems, and interrupt signaling pathways are related to cell proliferation and account for the 

majority of metal-induced carcinogenicity (Figure 1) [1]. Unique mechanisms of specific carcinogenic 

metals cannot be excluded: such as substitution for inorganic phosphate in oxidative phosphorylation 

pathways by arsenic; disruption of cell-cell adhesion by cadmium; direct DNA binding of trivalent 

chromium; and interference with DNA methylation and histone acetylation by nickel. 
  



Int. J. Mol. Sci. 2011, 12           

 

 

9578

Figure 1. Scheme showing (A) main mechanisms and (B) plausible biomarkers with the 

proposed means of risk prediction for metal-mediated carcinogenicity. 

 
(A) 

 
(B) 
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2.1. Induction of Oxidative Stress, a Causative Source for Metal-Toxicity 

Induction of oxidative stress is a remarkable phenomenon to explain metal-induced genotoxicity and 

mutagenicity. Several carcinogenic metals such as arsenic, cobalt, chromium, lead, mercury, and nickel 

induce redox reactions in living systems. These metals induce the production of ROS (e.g., hydroxyl 

peroxide and superoxide radicals) and RNS (e.g., nitric oxide, peroxynitrite and S-nitrosothiols) in both 

in vivo and in vitro systems. The generation of hydroxyl radicals has been mostly constituted through 

Fenton- and Haber-Weiss-type reactions. These radicals have rendered oxidative damage to DNA, 

proteins, and lipids. Redox-inert metal cadmium is unable to perform redox reactions in biological 

systems. However, it is able to stimulate oxidative stress as it inhibits antioxidant enzymes (e.g., catalase, 

glutathione peroxidase, glutathione reductase, and superoxide dismutase) through the interaction with 

their thiol groups, both in vivo and in vitro. Cadmium is also capable of replacing copper and iron in 

various cytoplasmic and membrane proteins (e.g., ferritin, apoferritin), leading to an increase in the 

amount of unbound or poorly chelated copper and iron ions inducing oxidative stress via Fenton 

reactions [11,12]. Cadmium treatment resulted in a significant number of cells with DNA single-strand 

breaks and cellular DNA damage [13,14]. Indeed, an animal system administrated with Cd(II) has 

transient oxidative damage [15,16]. Interestingly, a reversal effect of cobalt on free radical generation 

has been observed [17]. Intake of cobalt significantly suppresses the formation of free radical as well as 

oxidation of lipids and proteins. Other than direct DNA damage, ROS at low concentrations functions as 

a mitogenic signal to activate redox-sensitive transcription factors [1,18]. Chronic toxicity from 

persistent exposure to toxic metals leads to their accumulation in living system and becomes a health 

public concern [19–21]. Exposure to metallic compounds with nanoscalesizes, so called nanoparticles, 

such as cobalt and nickel has led to cytotoxic effect in concentration-dependent manner in vitro [22].  

A number of studies have been conducted to investigate adverse effect of various metallic nanoparticles 

or nanomaterials on induction of free radicals as well as their modes of action both in vitro and  

in vivo [23–27]. These findings indicate several types of DNA damage, including generation of 

micronuclei, formation of DNA adduct (8-hydroxy-2-deoxyguanosine), and chromosomal aberrations. 

From, the results of nanoparticles-mediated expression analysis at both mRNA and protein also reveal 

extensive disruption of particular signaling pathways involving apoptosis, cell cycle control, 

embryogenesis, growth, and inflammation [27–31]. 

Therefore, oxidative stress might not only facilitate tumor initiation by mutagenesis but also deplete 

the activities of cellular antioxidant enzymes through the interactions with their thiol groups and 

dysregulate cell growth and proliferation, leading to tumor promotion. This event is predominantly 

dependent on the degree and duration of persistent exposure to carcinogenic metals. Oxidative stress 

phenomenon represent an interesting view of metal-induced carcinogenicity between relatively low 

doses of metals that are capable of inducing tumor initiation and highly cytotoxic doses of metals that 

elicit free radicals and damage to biomolecules. Hence, it is apparent that oxidative stress is not the 

sole causative factor for metal-initiated carcinogenesis but is still considered as potential contributor to 

malignant transformation. 
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2.2. Impairment of DNA Repair Systems and Involvement in Carcinogenesis 

DNA molecules are continuously damaged by environmental stimuli (e.g., UV, chemical toxicants, 

and biological toxins) and endogenous factors formed during oxidative metabolism. Therefore, several 

endogenous DNA repair systems operate continuously with partial overlapping functions. These 

mainly include base excision repair (BER)/single strand break repair, nucleotide excision repair (NER), 

base mismatch repair, and recombinational (double strand break) repair. Most carcinogenic metals, 

except Cr(VI), are weak mutagens in mammalian cells and are often comutagenic due to the acceleration 

of mutagenicity of other genotoxic agents. A closer look reveals conflicting phenomenon under the 

aspect of DNA repair impairment in metal-mediated carcinogenesis: the presence of oxidative damage 

evoked by redox-inert metal like cadmium; discrepancies between low mutagenicity and high 

carcinogenicity for nickel compounds; and synergistic effects of coexposure to non-carcinogenic 

chemical such as polyaromatic hydrocarbons and cobalt [32]. Indeed, recent research has reported that 

some carcinogenic metals at low concentrations are able to inhibit repair of DNA damage generated  

by both endogenous and exogenous factors [1]. Increasing evidence has clarified that DNA repair 

processes are susceptible to carcinogenic metals, including As(III)/As(V), Cd(II), Cr(VI), Ni(II) as 

well as Hg(II) and Pb(II). Individual metals also inhibit selectively with repair systems at different 

steps. In the NER system, Cd(II) and Ni(II) interfere with the recognition of DNA lesions whereas 

Co(II) impairs the incision as well as the polymerization step [32–34]. As(III) inhibits the incision step 

at low concentrations and the ligation step at higher concentrations [34]. These three metals Cd(II), 

Hg(II), and Pb(II)also decrease the incision step [32,35]. A very recent report has documented that 

assembly and disassembly of the NER machinery are disturbed by water soluble Cd(II), as evidence of 

disassembly inhibition of XPA and XPC, principle components in the global genome NER [36]. 

Metalloids such as arsenic in particulate form, methylated arsenites and arsenates, are capable of 

inhibiting BER, NER, and strand break repair in vitro [37–39]. Chromate diminishes NER and 

synergistically augments mutagenicity of benzo[a]pyrene in mammalian cells [40]. A polymorphism 

of OGG1 enzyme involved in the BER process has shown repair susceptibility to chromate in human 

populations [41]. 

Inherited or acquired deficiencies in such repair systems can initiate to malignant growth. Genetic 

defects and polymorphisms in genes of the DNA repair components (e.g., ERCC1, MGMT, MLH1, 

MSH2, MSH6, and XRCC4) are strongly associated with human cancer [42,43]. Consecutive disturbance 

of repair and persistent DNA damage give rise to genomic instability, possibly allowing for aberrant 

cell proliferation and/or imperfect apoptosis. 

2.3. Interruption of Cell Growth Signaling and Its Promotion of Carcinogenesis 

Tumor development is likely attributable to dysregulation of cell growth and differentiation. 

Carcinogenic metals may affect cell growth by mechanisms such as changes in expression of  

growth-related factors and inactivation of growth regulation. Some metals promote several pathways, 

such as the mitogen-activated protein kinase (MAPK) pathways. This involves activation of nuclear 

transcription factors (AP-1, NF-κB, p53, NFAT, and HIF-1) which govern the expression of 

cytoprotective genes in relevance to DNA repair, immune response, cell cycle arrest, and apoptosis. 
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Toxic metals and ROS probably interact with thiol groups in many types of phosphatases, particularly 

serine/threonine-, phosphotyrosine- and phospholipid-phosphatases, which are oxidized to form disulfide 

bonds [44,45]. This leads to protein conformational changes which in turn up-regulate various 

signaling cascades and result in the activation of particular redox-regulated transcription factors as 

mentioned above. 

Nuclear transcription factor AP-1 has a vital role in cell growth and apoptosis [46]. AP-1 activity is 

induced by the JNK and p38 MAPK cascades in response to particular metals, hydrogen peroxide, 

cytokines, and other stressors [47]. Nuclear factor NF-κB has important functions in several processes, 

notably the inflammatory response, cell transformation, and cell survival [48,49]. Activation of  

NF-κB has been associated with carcinogenesis by external stimuli such as toxic metals, UV, and 

benzo[a]pyrene [48,49]. The influence of metals and ROS on NF-κB activation has been supported by 

the finding that the activation by several stimuli is often blocked by antioxidants, including thiols and 

vitamin E [50,51]. Administration of antioxidant N-acetyl-L-cysteine (NAC) significantly inhibits ROS 

production as well as NF-κB-, p38 MAPK-, and protein kinase C-mediated signaling pathways, 

resulting in abolished inflammation in rats treated with nanoparticles [24]. p53 gene mutations are 

linked to the majority of human cancers [52]. p53 mutation can occur by environmental carcinogens 

such as nickel, cigarette smoke, and UV irradiation [53,54]. Mechanisms of p53 activation in response 

to carcinogenic metals have determined in multiple ways [55,56]. The nuclear factor of activated T cells 

(NFAT) controls cytokine production, muscle growth and differentiation, and angiogenesis [57,58]. 

Previous studies have determined that various metals such as nickel increase intracellular calcium, 

representing a plausible mode of action for metal-activated NFAT [59]. Certain metals activate NFAT 

not only via a calcium-dependent pathway but also through formation of hydrogen peroxide [60]. 

Hypoxia-induced factor HIF-1 controls precise oxygen homeostasis by modulating expression of several 

cancer-related genes, including heme oxygenase1 and vascular endothelial growth factor [61]. The 

carcinogenic metals such as nickel or chromium and hydrogen peroxide have been known to activate 

HIF-1 [60,62]. In vitro study has reported that nickel activates the HIF-1 based on the substitution of iron 

in the oxygen carrier by nickel, which leads to permanent hypoxia; thus activating HIF1 [60]. 

Indeed, epigenetic mechanisms such as hypo- or hyper-methylation of DNA or altered histone 

acetylation might lead to changes in gene expression patterns. Alteration of gene regulation by 

carcinogenic metals in a persistent manner is linked to tumor manifestations. Some carcinogenic metals 

inhibit tumor suppressor p53 and/or decrease the expression of tumor suppressor genes (e.g., p16 and 

p53) as well as senescence genes. Therefore, metals might enhance cell proliferation by inhibiting 

apoptotic processes and allow for cell adaptation to metal-toxicity. Nickel alters normal growth control 

by distinct epigenetic mechanisms [63]. Recent studies have been conducted in mammalian cells in 

which nickel compounds enhance methylation of cytosine bases and reduce expression of tumor 

suppressor genes, resulting in accelerated cell proliferation. In nickel-induced tumors, DNA 

hypermethylation has been detected with decreased expression of the tumor suppressor genes p16 and 

Fhit. As a second epigenetic mechanism, nickel compounds have been observed to inhibit acetylation 

of several histones followed by chromatin condensation in vitro, probably by the binding of nickel ions 

to histone proteins. Because histone acetylation facilitates the accessibility of transcription factors to 

DNA, inhibition of histone acetylation apparently contributes to silencing of telomeric genes. 
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3. Revisiting Potential Biomarkers for Metal-Genotoxicity and Carcinogenicity: Interference of 

Protein-Protein Interactions with Zinc Finger Proteins 

Approximately 10% of genesencode zinc finger proteins in the human genome with diverse ranges of 

functions, including DNA recognition and repair, RNA packaging, transcriptional activation, regulation 

of apoptosis, and protein folding and assembly [64–67]. Within zinc finger structures in their  

DNA-binding motifs, zinc is complexed to four cysteines (Cys) and/or histidines (His), allowing for 

proper folding of different structural domains and facilitating DNA-protein as well as protein-protein 

interactions [68,69]. Current data on interference with zinc finger DNA repair proteins by toxic metals 

will be summarized. 

Indeed, interactions with zinc finger proteins, notably DNA repair proteins, transcription factors, 

and tumor suppressors, are thought to be more relevant for metal-mediated carcinogenesis rather than 

direct binding to DNA [1]. Possible mechanisms for zinc finger-interference by carcinogenic metals 

include isostructural substitution, replacement with altered geometry, mixed complex formation, and 

catalysis of thiol oxidation [69]. These modes related to metal carcinogenesis are dedicated to the 

altered gene expression [70]. Definite zinc finger proteins might be regarded as predictive direct 

biomarkers for the initiation of cancer (Figure 1). 

3.1. Mammalian DNA Repair Protein XPA 

Xerodermapigmentosum A (XPA) is a prominent protein, containing a single Cys4 zinc finger 

domain, for DNA lesion recognition in NER pathway [71,72]. NER is one of the most versatile repair 

pathways against various bulky DNA lesions, induced by UV light, environmental carcinogens, and 

particular anticancer agents. In the initial step, XPA is a key component in the assembly of the  

pre-incision complex by recruiting other proteins to the damaged DNA site. These include excision 

repair cross complementing protein 1, transcription factor IIH, and replication protein A. XPA binds 

specifically to DNA lesions induced by UVC, benzo[a]pyrene, or cis-platinum [73–75]. XPA contains 

a single zinc finger motif, as part of the minimal DNA-binding domain, in which four Cysresidues 

arecomplexed with zinc. Replacing of these individual Cysleads to a dramatic loss in NER activity [71]. 

Using a gel mobility shift assay, systematic studies focusing onmetal-inhibited XPA binding to a  

UV-irradiated oligonucleotide have shown that DNA binding activity is diminished by adding Cd(II), 

Co(II), and Ni(II) whereas it has not been affected by As(III), Hg(II), or Pb(II) [76] Simultaneous 

treatment with Zn(II) effectively prevents XPA inhibition by Cd(II), Co(II), and Ni(II) [76].Parallel 

experiments with a bacterial form amidopyrimidine-DNA glycosylase (Fpg), a well-studied zinc finger 

protein responsible for BER, have revealed susceptibilities to Cd(II) and Hg(II)but no inhibitory effect 

of the other tested metals [76].This reflects that individual zinc finger proteins have unique sensitivity 

to different toxic metals. Further molecular studies have been conducted using a structural model of 

the 37-peptide XPA zinc finger motif (XPAzf), allowing for competitive analysis of Zn(II) with Cd(II), 

Co(II), and Ni(II) in a quantitative manner [77,78]. In the presence of Ni(II), it has been found to 

promote XPAzf oxidation, resulting in the loss of Zn(II). This might be due to alterations in the 

tetrahedral geometry of the metal site and irreversible formation of intramolecular disulfide bonds 

catalyzed by Ni(II). In the case of Co(II), it demonstrates less effectiveness for Zn(II) substitution, 
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relative to Ni(II). At excessive Co(II) concentrations, it has been observed to indirectly induce strong 

oxidation of XPAzf. To study of Cd(II), it is possible to substitute Zn(II) in quantitative fashion and 

consequently distort the peptide structure without Cd(II)-mediated oxidation of thiol groups, due to its 

very high binding affinity. These three metals are capable of interfering with XPA in different ways. 

Recent research has reported that soluble cadmium chloride obviously disturbs disassembly of XPA 

and XPC a key initiator in the global genome NER [36]. Collectively, other mechanisms of the 

exacerbated DNA-protein interactions via interference in its zinc finger motif by carcinogenic metals 

remain to be elucidated. 

3.2. Poly (ADP-Ribose)Polymerase(PARP) 

DNA strand break repair protein PARP possesses two separateCys3His1-type zinc finger domains 

with the main role of detecting and signaling DNA strand breaks for enzymatic machinery involved  

in BER [79]. Following DNA strand breakage, PARP catalyzes the addition of long chains  

of poly(ADP-ribose)polymers to target proteins participating in chromatin architecture and DNA 

metabolism [80–82]. This modification step seems to be obligatory for detecting and/or recognizing 

nicked DNA [82,83]. Under mild to moderate genotoxic stimuli, PARP proceeds with the DNA repair 

process through cell cycle arrest and subsequent interaction with DNA repair enzymes [80,82]. PARP 

may be hyperactivated by severe DNA damage which eventually stimulates the apoptotic process [82,84]. 

Furthermore, PARP likely has a profound role in anticancer agent-induced and spontaneous apoptosis; 

however, it is not yet fully clarified [85]. A very recent investigation evaluated inhibitory effects of 

anticancer metal complexes on PARP activity derived from human cancer cells, indicating a strong 

link between PARP inhibition and binding ability of these complexes to the zinc finger motif by  

zinc competition [82]. These data support the concept that zinc displacement with other metals in the 

zinc finger motif yields a reduction in its activity. This result emphasizes that PARP is promising 

mediator involved in drug resistance to cancer cell chemotherapies. PARP activity is reduced in a 

human lymphoma cell line by As(III) [86]. Similar experiments have demonstrated that hydrogen 

peroxide-induced PARP activity in HeLa cells is selectively inhibited by As(II), Co(II), Cd(II), and 

Ni(II) but not by Pb(II) or Hg(II) [68]. However, further molecular studies based on inhibition via 

interactions with the zinc finger motif are necessary. 

3.3. Tumor Suppressor Protein p53 

The p53 protein with Cys3His1-typed zinc finger domain has an important role in DNA repair 

through the NER and genomic stability [87]. p53 controls a number of key events to induce either 

DNA repair processing, cell cycle arrest, or apoptosis via coordinated pathways, depending on the 

physiological state and cell type [87]. Indeed, p53 is activated by multiple forms of stress signals, 

including DNA damage. p53 regulates the transcription of several downstream genes including XPA, 

via its binding to specific response elements, which prevents damaged cells from dividing, leading to 

repair of damaged DNA, or ultimately to cells with severe damage by apoptosis. In addition, p53 

directly interact with particular proteins involved in DNA repair, replication, and transcription [88]. 

Based on its key biochemical property, sequence-specific DNA binding is dependent on metal and 

redox regulation. p53-DNA binding is mediated by tetrahedral co-ordination of zinc with three Cys 
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and one Hys, suggesting that zinc is required for proper folding of p53 into its native conformation and 

consequent functionality [89]. Selenium compounds, as redox stimulators, may facilitate p53-specific 

DNA binding as well as p53-mediated DNA repair through a redox regulation at definite Cys residues, 

in the presence of DNA damage [90–95]. Co(II) and Ni(II) impair p53-DNA binding capacity and 

inhibit cell cycle arrest [96], due to the disruption of p53 native conformation. Water-soluble cadmium 

chloride and particulate cadmium oxide compounds also altered p53 conformation at the zinc finger 

motif in human cells [36,97]. 

Taken together, zinc finger motifs participate in protein–DNA and protein-protein interactions in 

several groups of proteins, including those involved in DNA repair, transcription, and tumor suppression. 

Definite carcinogenic metals, such as arsenic, cadmium, cobalt, lead, and nickel differentially inhibit 

these zinc finger proteins, leading to distorted zinc finger domains and consequent dysfunction of the 

proteins. Therefore, this reactivity could be considered as a plausible molecular mechanism in 

carcinogenesis. Indeed, very limited information has established reference concentration (RfC) or 

reference dose (RfD) for the exposure of individual carcinogenic metals, indicating no confident 

association between metal levels and their carcinogenicities in humans. Besides direct measurement  

of metal levels in human specimens, the use of these zinc finger proteins as genetic factors could 

predict risk of carcinogenesis with a higher specificity based on changes in their binding constants or 

stability constants when complexed with either Zn(II) or thiol-typed antioxidants (e.g., glutathione 

andthioredoxin) [16,66]. Alternatively, assessing DNA repair capacity via assays of particular enzymes 

(DNA polymerase β “β pol” and XPG or ERCC5) involved in definite zinc finger protein-modulated 

repair pathways, with the use of protein extracts from human tissues or cells, might be useful for 

partially evaluating cancer risk [98,99]. 

4. Enhancement of Antioxidant Defense Systems Responsible for Reducing Metal-Induced 

Carcinogenicity  

The interactions of various carcinogenic metals with biological components are quite complex. The 

cellular components in antioxidant defenses are vitalas they scavenge and balance prooxidants, ROS 

and RNS, which are attributable to the activities of antioxidant enzymes as well as the action of  

non-enzymatic antioxidants (Figure 1), thus providing maximal protection fat biological sites. The most 

efficient enzymatic antioxidants are comprised of catalase, glutathione peroxidase, and superoxide 

dismutase [10,100]. Non-enzymatic antioxidants include vitamin C, vitamin E, thiol antioxidants 

(glutathione, thioredoxin, and lipoic acid), natural flavonoids, melatonin, and selenium [101]. Some 

antioxidants such as vitamin C act in a hydrophilic phase, some such as vitamin E in a hydrophobic 

phase, and others such as α-lipoic acid act in both phases. Indeed, the capacity to regenerate one 

antioxidant by another, called an antioxidant network is driven by redox potentials [102]. There is 

correlation between enhanced ROS levels and abolished activities of both enzymatic and  

non-enzymatic antioxidants in tumor cells. 

4.1. Enzymatic Antioxidants and Their Physiological Response to Metallotoxicity 

Several studies have documented altered levels of reduced glutathione and glutathione peroxidase in 

animals following arsenic exposure [4,103,104]. In the case of cadmium, changes in antioxidant enzymes 
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activities (e.g., catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and  

Cu, Zn-superoxide dismutase) have been determined in rats [105,106]. Lead exposure results in 

alterations of oxidative stress markers (catalase, superoxide dismutase and glutathione peroxidase, and 

glutathione reductase) as well as the level of reduced glutathione in animal models [107,108]. 

Although adding antioxidant enzymes such as catalase and superoxide dismutase (75 and 150 μg/mL, 

respectively) does not appear to protect lymphocytes against organic mercury-induced genotoxicity  

in vitro [109,110], epidemiological observations have revealed that the activity of these enzymes 

changes in exposed populations with resulting genotoxic alterations [109,111]. These data emphasize 

that chronic exposure to relatively low levels of mercury may inhibit antioxidant enzymatic activity 

due to persistent oxidative stress [109,111]. This phenomenon might represent an important peripheral 

target for mercury toxicity in exposed populations. 

4.2. Non-Enzymatic Antioxidants and Their Melioration towards Carcinogenesis 

Supplementation with vitamin C and/or vitamin E is protective against cadmium intoxication as 

shown by the decrease in ROS level in rat testicular tissues. Dietary uptake of a combination of these 

vitamins restores normal testicular function in cadmium-treated rats [112]. Effective antioxidants  

and free radical scavengers such as melatonin, methyl gallate, and quercetin also have cytoprotective 

effect against cadmium toxicity by reducing lipid peroxidation and maintaining physiological 

homeostasis [113–115]. Inhaled cobalt particles interact primarily with surfactants and antioxidants on 

the lung surface [116]. Reduced glutathione, a ROS scavenger, acts as one of the first lines of defense 

against lung injury due to formation of excessive ROS. The extent of the reduction in thiol concentration 

is correlated with the amount of dust and consequent surface area exposed. Co(II) exposure also results 

in the depletion of intracellular ascorbate [117]. Intriguingly, the influx of ascorbate is inhibited by 

cobalt whereas the efflux is metal-independent process. Both ascorbate and reduced glutathione can 

scavenge superoxide and hydroxyl radicals, initiated by cobalt [116,118]. Additionally, reduced 

glutathione and Cysresidues in proteins also have a prominent role in redox regulation in response to 

cobalt in the form of a cobalt/tungsten (Co/WC) mixture [116,118].  

Previous reports suggest that ascorbate is a primary reducer of Cr(VI) in cells [119–121]. However, 

ascorbate has dual opposing roles in Cr(VI) intoxication, as a protective-antioxidant outside and a 

prooxidant inside of cells. The ascorbate-initiated reduction of Cr(VI) inside cells cause high amounts 

of chromium-DNA adducts, allowing for DNA mutation [120–122]. In addition, Cr(VI)is also reduced 

through non-enzymatic reactions with Cys and glutathione. The primary reductant of Cr(VI)in 

mitochondria seems to be NAD(P)H, resulting in stable Cr(III) with relatively higher DNA affinity 

than that of Cr(VI) [2,122]. 

The majority of lead intoxication is related to glutathione metabolism [4,123]. Lead exposure in 

animal models alters the reduced glutathione level [107,108]. Glutathione is an important substrate, 

which impacts the action of several drugs and toxins via its conjugation in the liver. An increase in the 

incidence of hypertension has been observed following lead exposure in humans, possibly due to 

significant effect of RNS such as nitric oxide [124]. Antioxidants can be utilized to inhibit the 

availability of nitric oxide. Administration of vitamin E (5000 IU/kg) and vitamin C (3 mmol/L of 

drinking water) to hypertensive rats with suppressed glutathione formation abolish shypertension. Zinc 
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supplementation in lead-treated animals restores superoxide dismutase levels [125], suggesting that 

zinc acts as an antioxidant and a plausible chelating agent toward lead toxicity. Administration of 

selenium prior to lead exposure is plays a protective effect in animals [126]. Selenium elevates reduced 

glutathione, glutathione peroxidase, and superoxide dismutase levels in kidney and liver tissues as well 

as reduced glutathione. Selenium generates a stable lead-selenium complex, implying protective effect 

against lead toxicity. Alpha-lipoic acid is an effective antioxidant with chelating properties. In 

response to lead exposure, alpha-lipoic acid suppresses the deleterious effect of lead on glutathione and 

oxidative stress markers in liver and kidney tissues [127]. 

In studies of mercury-induced toxicity, increased glutathione levels may protect cells by exerting 

antioxidant activity and chelating mercury [109,128], suggesting that glutathione acts as a major line 

of cell defense against mercury toxicity. Previous data also suggest that high levels of intracellular 

glutathione may contribute to neuro protection upon exposure to mercury compounds [129]. In vivo 

research has demonstrated that glutathione levels are also higher in human populations that consume 

methylmercury-contaminated fish (levels of mercury content in hair of 12–15 μg/g) [111]. Furthermore, 

a direct positive relationship between glutathione and mercury levels has been found in the blood. 

Antioxidant substances such as ascorbate also exhibit their protective action against mercury 

genotoxicity in vitro by preventing sister chromatid exchanges and abnormal mitosis [130]. Interestingly, 

a substantial inverse correlation was observed between mercury levels in blood and consumption of 

tropical fruits (particularly vitamin C-rich oranges) in mercury-exposed populations [131]. This reflects 

another aspect of the protective role of the antioxidant compounds.  

Nevertheless, a meta-analysis of randomized controlled trials has revealed inconsistent findings 

between experimental studies (both in vitro and in vivo) and human clinical trials with regard to the 

association between antioxidant supplements and the risk of carcinogenesis, suggesting that experimental 

studies showing the effects of antioxidant substances cannot be directly applied to humans [132] because 

these substances might exert adverse properties or promote carcinogenesis under clinical circumstances. 

Currently, no clinical evidence supports the use of antioxidant supplements for primary and secondary 

prevention of cancer. Although many populations consume antioxidant substances to improve their 

health and prevent cancer, the potential effects (either beneficial or deleterious) of antioxidant 

supplements on human health, particularly in relation to cancer risk, must be emphasized. 

5. Conclusion 

The relevance between metal-induced interference and carcinogenesis in living systems has 

received increasing attention. Understanding the mechanisms underlying toxicity initiated by diverse 

carcinogenic metals and metallic nanoparticles is of great concern. Little is known about toxicity and 

guidelines based on metallic nanoparticles whereas their trend of use has been increasing. Chronic 

exposure to toxic metals via diverse routes into living bodies can cause accumulation and dangerous 

illness [21,133–136]. Among children, toxic metal biomonitoring in physiological tissues such as 

blood and urine may provide adequate assessments to prevent such illness/suffering, leading to severe 

mental retardation [19,21]. Metal carcinogenicity occurs through complex mechanisms and oxidative 

assault, cellular redox homeostasis, DNA repair, and particular signal transduction pathways are 

thought to be interconnected. The interference of toxic metals with zinc finger proteins, notably DNA 
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repair proteins, is likely to be more relevant for metal-mediated carcinogenesis than for direct 

interactions with DNA [1]. The relevant issue of zinc finger proteins functioning in DNA repair 

systems is also supported by epidemiological observations that a large number of human populations 

with inadequate dietary zinc, even in developed countries, have augmented cancer incidence [16,137]. 

Zinc deficiency probably results in enhanced displacement and lowered restoration of zinc finger 

motifs which are present in zinc finger proteins (e.g., DNA repair enzymes, nuclear transcription 

factors, and tumor suppressors). Hence, a broad spectrum of these zinc finger proteins might be 

regarded as promising biomarkers for risk assessment of environmental and occupational exposure to 

definite carcinogenic metals. Identifying novel markers or a collection of specific markers will be 

further required for developing a test so that the defects will be detected as early as possible. These 

studies will be helpful for further developing a robust risk evaluation and improving public health 

protection. Significant action to reduce cancer incidence relevant to oxidative stress seems to be 

counteracted by non-enzymatic antioxidants cooperating with cellular antioxidant enzymes. The most 

important action of cancer prevention is to minimize exposure to oxidative stressors, particularly 

exogenous sources. 
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