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Predicting Short-term Survival 
after Liver Transplantation using 
Machine Learning
Chien-Liang Liu   1,5*, Ruey-Shyang Soong2,4,5*, Wei-Chen Lee3,4, Guo-Wei Jiang1 &  
Yun-Chun Lin1

Liver transplantation is one of the most effective treatments for end-stage liver disease, but the 
demand for livers is much higher than the available donor livers. Model for End-stage Liver Disease 
(MELD) score is a commonly used approach to prioritize patients, but previous studies have indicated 
that MELD score may fail to predict well for the postoperative patients. This work proposes to use 
data-driven approach to devise a predictive model to predict postoperative survival within 30 days 
based on patient’s preoperative physiological measurement values. We use random forest (RF) to select 
important features, including clinically used features and new features discovered from physiological 
measurement values. Moreover, we propose a new imputation method to deal with the problem 
of missing values and the results show that it outperforms the other alternatives. In the predictive 
model, we use patients’ blood test data within 1–9 days before surgery to construct the model to 
predict postoperative patients’ survival. The experimental results on a real data set indicate that RF 
outperforms the other alternatives. The experimental results on the temporal validation set show that 
our proposed model achieves area under the curve (AUC) of 0.771 and specificity of 0.815, showing 
superior discrimination power in predicting postoperative survival.

Liver transplantation is one of the most effective treatments in treating acute liver failure, chronic liver cirrhosis 
and even hepatocellular carcinomas1. Unfortunately, the demand for liver is much higher than the number of 
available donor livers, explaining why patients on the waiting list for a liver transplantation have to be prior-
itized. End-Stage Liver Disease (MELD) score2–4 has been widely used to estimate the severity of liver disease in 
patients5, and has been accepted as a standard criterion of the allocation of liver graft worldwide. Although high 
MELDs are presumed to link to the worse outcome, but most of the studies failed to show the accurate prediction 
rate between pre-transplantation MELDs and the post-transplantation survival outcome6,7. Therefore, a prom-
ising model that can predict the survival outcome after liver transplantation is essential in liver transplantation. 
Although several predictive models of postoperative survival for liver transplantation have been proposed in the 
past decades8–12, using machine learning to construct predictive model is still limited. This work focuses on con-
structing a model for the prediction of postoperative survival to help physicians make decisions.

With the advancement of electronic medical record and hospital information system, hospitals have increas-
ingly stored patient information in electronic format and it is possible to use these records to discover patterns in 
the data13,14. To analyze these data records, more and more researchers have applied machine learning to medical 
fields such as disease diagnosis15–17, early warning systems18–20, and drug discovery21–23. In the past, researchers 
tended to use statistical methods such as regression or cox regression to predict postoperative survival, but the 
prediction performances are not good enough to be applied to clinical cases. This work proposes to use machine 
learning to develop a prediction model for the postoperative survival of liver transplantation, since machine 
learning does not assume the distribution of the underlying data and many state-of-the-art algorithms have 
been devised over the decades24–26. For example, a previous study used classification trees to predict a candidate’s 
3-month wait-list mortality with Standard Transplant Analysis and Research (STAR) data set, providing more 
accurate and objective predictions than MELD in prioritizing candidates for liver transplantation27. Moreover, 
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the previous study indicated that the model with selected features from RF achieved excellent performance in 
predicting graft failure28. Notably, this work is different from these works as we only use patient basic information 
such as body mass index (BMI), age, and blood test data within 1–9 days before surgery to develop the model. It 
is worth mentioning that these features are easily accessible, and our model focuses on short-term survival after 
the surgery of liver transplantation. Moreover, machine learning enables the system to learn from data, giving a 
base to build and constantly refine a model for making accurate predictions.

The objective of this research is to use data-driven technique to develop a predictive model to predict postop-
erative survival within 30 days for the patients who have undergone liver transplantation. To construct and vali-
date the proposed model, we use machine learning along with real data form liver transplantation Intensive Care 
Unit (ICU) of Chang Gung Memorial Hospital, Linkou which range from January, 2004 to December, 2013. Note 
that the prediction in this work is a binary classification problem rather than a survival analysis as the purpose 
is to predict postoperative survival with the outcome to be either "Survival” or "Non-survival” that is defined by 
whether the survival time of a patient is more than 30 days. To validate our proposed model, we used the patients 
who received the surgery during 2004 and 2012 as the derivation set, while the patient data after 2013 were used 
as the temporal validation set. Notably, we developed the prediction with the derivation set, and validated the 
model with temporal validation set.

Results
Random forest29 (RF) is a state-of-the-art algorithm, and it could provide feature importance based on the 
out-of-bag samples and permutation test, in which informative variables produce a systematic decrease in accu-
racy when permuted. This work uses RF to estimate the feature importance, and the top nine important fea-
tures are international normalized ratio (INR), lymphocytes, prothrombin time (PT), platelets, white blood cell 
(WBC), Magnesium (Mg), Sodium (Na), age, and BMI. The PT and INR represent the same measurement, so 
we only use INR to construct the model in the following experiments to prevent from bias brought by duplicated 
variables.

To evaluate model performance, we use the AUC as the evaluation metric. The AUC provides the overall result 
of the receiver operating characteristic (ROC) curve by using the area under the ROC curve as an important met-
ric for evaluating the predictive model. The value of AUC is between 0 and 1, and a larger value indicates that the 
classifier yields better performance. ROC curve is commonly used in the medical field to determine thresholds for 
patient diagnosis. More detailed introduction about ROC and AUC can refer to the work conducted by Fawcett30. 
Besides AUC, sensitivity and specificity are also used as the metrics. Notably, specificity is more important than 
sensitivity in this work as present study aims to predict survival outcome after the surgery of liver transplantation.

In order to explore and confirm each selected feature is helpful for prediction, we conduct experiments with 
seven models, each of which uses a feature combination. The first model is constructed with the features of patient 
information, and we gradually add the features of blood test item as model features to construct the subsequent 
models. Table 1 shows the experimental results, indicating that the performances of the models increase as more 
features are used by the model. Moreover, once the model uses all the eight features, the AUC could be 0.799 when 
using the data 10 days before the surgery as the data source, meaning that the selected features are important for 
the prediction of survival after liver transplantation.

Once the feature selection process and pre-processing are completed, we use the selected features to learn a 
predictive model. This work proposes to use RF to construct the predictive model, and we compare RF with other 
alternatives by using patient basic information and blood test data from day 1 to day 9 before surgery as our final 
data source. Note that this work proposes to use RF for two tasks, feature selection and the predictive model. We 
use the derivation set with 10-fold cross-validation to evaluate model performance and confirmed the general-
ization ability of the proposal model with temporal validation set. Besides, we compare the proposed method 
with eXtreme Gradient Boosting (XGBoost)31, logistic regression, and decision tree32. The results are presented in 
Table 2, which shows that RF yields the best AUCs on derivation and temporal validation sets. The AUC of 0.771 
on the temporal validation set indicates that the proposed model achieves superior discrimination power than 
other alternatives in predicting postoperative survival. We conclude that the RF uses bagging approach to com-
bine various decision trees, giving a base to perform well on imbalanced data set. XGBoost uses another ensemble 
learning approach, boosting, and it also works well in the experiment.

Model Feature AUC

1 BMI, age . ± .0 550 0 079

2 BMI, age, Na . ± .0 658 0 176

3 BMI, age, Na, Lymphocyte . ± .0 670 0 157

4 BMI, age, Na, Lymphocyte, INR . ± .0 742 0 137

5 BMI, age, Na, Lymphocyte, INR, WBC . ± .0 738 0 157

6 BMI, age, Na, Lymphocyte, INR, WBC, Platelets . ± .0 783 0 157

7 BMI, age, Na, Lymphocyte, INR, WBC, Platelets, Mg . ± .0 799 0 138

Table 1.  Model performances with different feature combinations. We use RF to identify the top eight features, 
and conduct experiments to evaluate model performances with different feature combinations.
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Discussion
In this study, we apply feature selection technique to select important features from the physiological meas-
urement items. The top features presented in Fig. 1 are obtained from RF as well as step-wise selection, and the 
selected features include INR, Lymphocyte, Platelets, WBC, Mg, Na, age and BMI. Moreover, missing data in 
medical research is a common problem, and we propose an imputation method based on the characteristics of the 
features to deal with this problem. Next, detailed discussion regarding the findings is presented below.

Missing data in medical research is a common problem, and we propose an imputation method based on 
the characteristics of the features to deal with this problem, in which we use a conservative strategy to replace 
the missing values. We compare our proposed imputation method with the other alternatives, including impu-
tation with mean, maximum, median and minimum, respectively. The results are presented in Table 3, indicat-
ing that the proposed method achieves the best predictive performance. The proposed method considers the 

Performance on Derivation Set

Method AUC Specificity Sensitivity

RF 0.787 ± 0.185 0.955 ± 0.187 0.653 ± 0.334

XGBoost 0.782 ± 0.268 0.905 ± 0.335 0.729 ± 0.329

Decision Tree 0.576 ± 0.229 0.698 ± 0.349 0.517 ± 0.335

Logistic Regression 0.538 ± 0.273 0.717 ± 0.230 0.695 ± 0.250

Performance on Temporal Set

Method AUC Specificity Sensitivity

RF 0.771 0.815 0.5

XGBoost 0.759 0.796 0.5

Decision Tree 0.632 0.888 0.25

Logistic Regression 0.671 0.870 0.5

Table 2.  Performance comparisons for different learning algorithms on derivation and temporal sets. The 
values in the cell of the top table are the mean and 1.96 standard deviations of 10-fold cross-validation. Random 
forest and XGBoost both work well, and RF outperforms XGBoost in AUC.
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Figure 1.  The top important features selected from RF with step-wise selection. These variables are verified by 
the physician. (DX1: reason for liver transplantation, type: type of hepatitis, HCC: Hepatocellular carcinoma).

Imputation Methods AUC Specificity Sensitivity

Proposed Method . ± .0 787 0 199 . ± .0 955 0 187 . ± .0 632 0 271

Minimum . ± .0 785 0 230 . ± .0 830 0 327 . ± .0 749 0 277

Maximum . ± .0 779 0 245 . ± .0 955 0 187 . ± .0 667 0 381

Median . ± .0 756 0 319 . ± .0 875 0 347 . ± .0 730 0 270

Average . ± .0 753 0 325 . ± .0 865 0 296 . ± .0 754 0 354

Classification and 
Regression Tree . ± .0 736 0 345 . ± .0 825 0 321 . ± .0 750 0 255

Table 3.  Performance comparison of different imputation methods. The values in the cell are the mean and 
1.96 standard deviations of 10-fold cross-validation on derivation set. The proposed method considers the 
characteristics of features, giving a base to outperform other alternatives.
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characteristics of features, and we believe that is the main reason why the proposed method outperforms the 
other alternatives.

This work uses the data 10 days before the surgery as the data source to construct the first model. Subsequently, 
we conduct experiments to find out which period of data before surgery has the most impact on the predic-
tion results. The experiments use RF as the machine learning algorithm, and different ranges of data as the data 
sources to train different predictive models. The experimental results are presented in Fig. 2. The results show that 
the data from day 1 to day 9 before surgery is more important than the other ranges. This result conforms to the 
intuition as day 10 is the day farthest from the surgery in the range.

MELD score is a formula involving bilirubin, INR and creatinine. Thus, MELD score could be considered as a 
combination of the three features. To compare the performance impacts brought by the features, we use RF with 
MELD score and several features to learn a predictive model. The features used by the comparison model includes 
MELD score, hepatitis, HCC, DX1, age, gender, and BMI. The results are presented in the top of Table 4, indicating 
that our proposed model outperforms the alternative model for predicting postoperative survival. Besides, we apply 
cox proportional hazards model with the two combinations of features to perform survival analysis within 30 days 
and the results are listed in the bottom of Table 4. Both of them are statistically significant, but the features selected 
by RF achieves higher Concordance Index (0.85) than those used by MELD score. Moreover, the same experiments 
are applied to temporal validation set to investigate the generalization capability of our proposed model, and the 
results are presented in Table 5. The experimental results indicate that the features selected by RF could provide more 
discriminative capability than the features used by MELD score in predicting survival outcome after liver trans-
plantation. Besides the above analysis, the hazard ratios (HR) from cox proportional hazards model are presented 
in Fig. 3, which only shows the basic features and the blood test data of day 9 owing to the limit of paper length. 
Significant features comprise INR, Platelets and age, which conform to the bedside experience of the domain expert.
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Figure 2.  Experimental results with different range of days as the data source. The AUC increases as more 
training data are used in the model, and the data of day 1 to day 9 is the most important one.

RF Model on Derivation Set

Features AUC Specificity Sensitivity

Features selected by RF 0.787 ± 0.185 0.955 ± 0.187 0.653 ± 0.334

Features used by MELD 0.596 ± 0.315 0.707 ± 0.302 0.720 ± 0.395

Survival Analysis on Derivation Set

Features Concordance Index Likelihood ratio test Wald test

Features selected by RF 0.85 p-value = 6e-08 p-value = 2e-05

Features used by MELD 0.695 p-value = 4e-04 p-value = 8e-05

Table 4.  Performance comparison of RF and survival analysis with different combinations of features. The 
experiments were conducted with 10-fold cross-validation. The features used in MELD model comprise MELD 
score, hepatitis, HCC, DX1, age, gender, and BMI, whereas the features selected by RF are the top eight features 
identified by RF.
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The medical data used in this study is imbalanced as presented in most medical studies. We propose to use 
RF29 to construct the predictive model, which provides not only accurate performance, but also the capability of 
dealing with imbalanced data. This is because RF uses a technology called bagging that can reduce or mitigate bias 
for imbalance data33–35. Bagging approach uses bootstrap sampling technique to sample enormous sub-samples 
with replacement from the initial data set, each of the sub-samples is used to train a predictive model. In RF, 
each model is a classification and regression tree (CART)32, which is a decision tree algorithm. The final model 
is obtained by averaging all these models, and majority vote rule is a typical approach in determining the final 
results. The bagging approach provides a way to eliminate bias caused by unstable models. The experimental 
results indicate that RF works well on imbalanced data used in this study.

In conclusion, the analysis of experimental results presents two findings. First, among these important fea-
tures, most of the features are blood test items and have been clinically proven that those features have a certain 
impact on survival outcome after liver transplantation except Mg. Our experimental results show that Mg is also 
an important feature which has impact on survival outcome after liver transplantation. Second, the experimental 
results show that RF is robust on imbalanced data. Most medical data sets are characterized by imbalanced prop-
erty, and many medical applications are interested in the risk factors that lead to the results. Thus, RF is a very 
good machine learning model in medical domain.

Although previous research has indicated that patients who have undergone orthotopic liver transplantation 
may be a group especially predisposed to hypomagnesaemia36, the domain experts pointed out that Mg has not 
been used clinically to predict survival outcome after liver transplantation. However, blood magnesium ion con-
centration indeed is a very important electrolyte. If the patient has malabsorption or used diuretics, he/she would 
be considered as being in a high-risk group for hypomagnesemia. When the blood magnesium ion concentra-
tion is too low, it would directly affect the recovery of many other electrolytes. Moreover, the previous research 
has indicated that Mg has a direct relationship with heart function37, which associates Mg with mortality38,39, 
such as the association between hypomagnesemia and fatal cardiac arrhythmia40. Thus, another benefit of using 
data-driven approach to devise a predictive model is that one may discover the factors that are not directly related 
to the organs we are focusing on.

RF Model on Derivation Set

Features AUC Specificity Sensitivity

Features selected 
by RF 0.771 0.815 0.5

Features selected 
by MELD 0.681 0.703 0.5

Table 5.  The effect of features on model performance in temporal validation data set. We applied RF with two 
combinations of features to the temporal validation set, and the experimental results point out that the model 
could benefit from the features selected by RF.
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In summary, this work considers the characteristics of features to propose an imputation method to deal 
with missing values, and the results point out that the proposed method works well. Central to this study is 
using machine learning to predict short-term survival which can detect the high risk patients in early phase after 
liver transplantation, and discover important factors that are essential in liver transplantation, in which we argue 
machine learning could help the physicians make decisions. Once the higher risk patients are identified by the 
model, several treatment options could be given to these patients. For example, the immunosuprpesion drug 
should be admitted earlier or in relative high concentration, to avoiding the trigger of acute rejection and causing 
the vulnerable complications, such as acute kidney injection, and secondary bacterial infection.

Methods
In this study, the data in the experiments was collected by liver transplantation ICU of Chang Gung Memorial 
Hospital, Linkou and has been approved by institutional review board (IRB) of Chang Gung Memorial Hospital 
with case number 103-6018B. All the data and methods were performed in accordance with the relevant guide-
lines and regulations by IRB of Chang Gung Memorial Hospital. Additionally, this work is a retrospective study, 
and the IRB waived the need for informed consent. The patient data ranges from January, 2004 to December, 
2013, and the number of data records is approximately two million. We divide the whole research process into 
several stages as shown in Fig. 4.

The first stage is data pre-processing, including two steps: (1) Data cleaning: we follow the suggestion of 
domain experts to clean the data, including unifying the name of test items, processing the extreme values, 
removing the duplicated data, and so on. (2) Defining survival time: because our objective is to predict postop-
erative survival, we use the "Postoperative survival days” in the patient’s personal information as an indicator to 
define survival time.

The second stage is feature selection. In this study, we purpose to use RF to select features, and the goal 
is to select important features from the whole blood tests. A model with enormous features may suffer from 
over-fitting problem. Thus, it is expected that the final model could benefit from feature selection. The third stage 
is to perform imputation of missing values to replace missing values with meaningful values. In this work, we 
separate the data into derivation set and temporal validation set based on time information. Table 6 shows patient 
characteristics in derivation and temporal validation sets. The purpose of derivation set is to train a predictive 
model, while temporal validation set is used for model evaluation. Therefore, in the fourth stage, we use deriva-
tion set to train the RF model. Finally, we use temporal validation set to evaluate the model.

Data pre-processing.  The exported data was presented in comma separated values (CSV) format, and we 
used R (version 3.6.1) to process the data and build the predictive model. The data pre-processing involves two 
tasks in this study, and they are described in the following sections.

Data cleaning.  This work focuses on the prediction of postoperative survival, so it is natural to use the data 
records before the surgery to construct a predictive model. We retain the data records 10 days before the surgery 
for analysis. Several data cleaning steps are used to make the data suitable for the subsequent analysis, and these 
steps are listed below. The final items used in the experiments are listed in Table A.1 of our previous work regard-
ing the prediction of acute allograft rejection after liver transplantation41.

•	 Retaining the data within 10 days: The original data comprises the patient’s postoperative records and the 
records from long-term follow-up study. The goal is to predict postoperative survival, so we only kept the data 
of 10 days before the surgery.

•	 Removing the items of urine test: Urinalysis results are less accurate than blood tests, so we used blood test 
data in the model without using urine test data in this work.

•	 Removing duplicated measurement: When multiple measurement records were present in the examination 
results, we used the average value to represent the measurement value.

•	 Calculating BMI: We used Eq. (1) to calculate BMI based on the patient’s height and weight.

Figure 4.  Experimental flow. The experimental flow comprises data pre-processing, feature selection, 
imputation of missing values, model training and evaluation. The purpose of training data is for model training, 
whereas testing data is used for model evaluation.
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=BMI Weight
Height (1)2

Data labeling.  In this study, we retain those data records 10 days before the surgery for analysis and used the 
“Postoperative survival days” in the patient’s personal information as an indicator to define survival. To exclude 
factors that affect modeling such as quality of life, diet and others, we focus on short-term survival prediction. In 
addition, liver function would not recover until 30 days after liver transplantation, so we define the survival time 
of more than 30 days as “Survival” and others as “Non-survival”. Once the data labeling is completed, the data set 

Predictor candidates

Derivation set (year = 2004–2012) (n 480= ) Temporal validation set (year = 2013) ( =n 58)

n Survival n( 437)= Death n( 43)= p-value* n Survival n( 54)= Death =n( 4) p-value*
Demographic data, mean(sd)

1 Gender, n(%) 1.0 1.0

Male 358 326 (74.60) 32 (74.42) 43 40 (74.07) 3 (0.75)

Female 122 111 (25.40) 11 (25.58) 15 14 (25.93) 1 (0.25)

2 Age 480 52.69 (9.18) 47.93 (15.29) 0.0982 58 52.63 (10.48) 55.25 (7.72) 0.6896

3 BMI 470 24.52 (3.90) 87.00 (39.65) 0.3626 57 26.25 (4.26) 24.05 (2.30) 0.2918

4 Survival days 480 1411.25 (1014.81) 12.14 (7.04) <2.2E-16 58 172.70 (76.51) 11.75 (11.95) 0.00097

Blood test of day 9, mean (sd)

5 INR 470 1.73 (0.85) 2.51 (2.74) 4.724E-06 56 1.58 (2.04) 0.56 (0.56) 0.07164

6 Lymphocyte 467 22.33 (12.31) 18.55 (13.33) 0.02734 57 22.14 (11.40) 18.23 (8.87) 0.5219

7 Mg 415 1.68 (0.24) 1.65 (0.33) 0.1257 50 1.69 (0.26) 1.55 (0.23) 0.3133

8 Na 268 137.06 (5.82) 138.17 (10.12) 0.9906 8 123.28 (5.91) 122.14 (2.32) 0.9908

9 Platelets 476 79.21 (49.16) 63.39 (35.46) 0.0814 57 81.64 (68.08) 85.08 (18.66) 0.2811

10 WBC 476 4.86 (3.26) 5.99 (3.79) 0.03277 57 4.83 (5.16) 6.67 (3.56) 0.1378

Preoperative status, mean(sd)

11 MELD score 480 17.84 (8.90) 24.21 (9.36) 1.617E-05 58 16.69 (10.04) 29.75 (11.90) 0.021

12 Hepatitis, n(%) 0.1996 0.2852

Nil 83 71 (16.25) 12 (27.91) 19 16 (29.63) 3 (0.75)

Hepatitis B Virus (HBV) 277 253 (57.89) 24 (55.81) 22 21 (38.89) 1 (0.25)

Hepatitis C Virus (HCV) 96 90 (20.59) 6 (13.95) 16 16 (29.63) 0 (0)

Dual 24 23 (5.27) 1 (2.33) 11 1 (1.85) 0 (0)

13 HCC, n(%) 0.004467 0.2002

No 264 231 (52.86) 33 (76.74) 33 29 (53.70) 4 (1.0)

Yes 216 206 (47.14) 10 (23.26) 25 25 (46.30) 0 (0)

14 DX1, n(%) 0.1942 —

Virtual hepatitis 396 363 (83.26) 33 (76.74) 43 (79.63) 2 (0.50)

Alcoholic cirrhosis 35 32 (7.34) 3 (6.98) 6 (11.11) 1 (0.25)

Wilson’s disease 6 4 (0.92) 2 (4.65) 1 (1.85) 0 (0)

Primary Biliary cirrhosis 7 7 (1.61) 0 (0) 0 (0) 0 (0)

Biliary atesia 2 1 (0.23) 1 (2.33) 0 (0) 0 (0)

Fulminiant hepatitis 4 3 (0.69) 1 (2.33) 0 (0) 0 (0)

Secondary Biliary cirrhosis 1 1 (0.23) 0 (0) 0 (0) 0 (0)

Other malignancy 2 2 (0.46) 0 (0) 0 (0) 0 (0)

Others 26 23 (5.26) 3 (6.98) 4 (7.41) 1 (0.25)

Other details, mean(sd)

15 Graft-recipient weight ratio 
(GRWR, %) 387 1.01 (0.24) 1.03 (0.48) 0.4077 53 0.94 (0.2) 1.02 (0.23) 0.5004

16 Liver weight 413 633.15 (146.82) 520.61 (134.30) . −E4 163 05 50 644.68 (129.73) 620 (256.60) 0.8381

17 Types of liver transplant, n(%) 0.03325 0.7745

Living donor 414 382 (87.41) 32 (74.42) 54 51 (94.44) 3 (0.75)

Deceased donor 66 55 (12.59) 11 (25.58) 4 3 (5.56) 1 (0.25)

Table 6.  Patients’ characteristics at 9 days before the surgery in derivation and temporal validation sets. The 
characteristics comprise basic information, blood test, preoperative status and other details. Moreover, statistical 
tests are applied to the data. *Mann-Whitney U Test were performed for continuous data, and Pearson Chi-
Squared Tests for categorical data between groups comparison.
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comprises 538 patients, including 491 survival patients and 47 non-survival patients, respectively. The causes of 
death for non-survival patients are listed in Table 7.

Feature selection.  RF combines "bagging” technique as well as random subspace method42 to construct enor-
mous decision trees. It is important to construct uncorrelated decision trees during the learning process, and random 
subspace method is an ensemble learning method that applies to features to reduce the correlation between the trees by 
using a random sample of features to construct each decision tree. As RF relies on a collection of decision trees to make 
the prediction, it provides a way to estimate feature performance from all the decision trees by measuring the impact of 
each feature on accuracy of the model. The idea is to permute the values of a feature i, and test its importance by meas-
uring how much the permutation decreases the accuracy of the model. For important features, the permutation would 
significantly decrease model performance. In contrast, permuting unimportant ones should have little impact on model 
performance. Once the importance scores are available, one could use these scores to rank the features.

Imputation of missing values.  Missing values are always present in the data records, which may come 
from human errors or the patient did not perform some tests. Ignoring these values may cause the model to be 
unstable. As a consequence, we propose a method to replaces missing values with reasonable values. The pro-
posed approach is a conservative strategy, and the imputation is based on feature characteristics and domain 
knowledge. The steps are listed as follows:

•	 STEP 1 - Stratifying the data by MELD score: Based on the MELD score, we divided all data into several 
groups, including 1–9, 10–19, 20–29, 30–39, and 40 or more.

•	 STEP 2 - Dividing features into three categories: The three categories are listed below: 

•	 A features: The higher the value, the worse the prognosis. For example, age and INR.
•	 B features: The lower the value, the worse the prognosis. For example, Na.
•	 C features: The value is too low or too high, the worse the prognosis. For example, WBC.

•	 STEP 3 - Replacing the missing values: Different rules for replacing missing values are applied based on dif-
ferent groups of MELD scores and different categories of features. 

•	 If missing value belongs to A features, we will replace this value with the maximum for that group.
•	 If missing value belongs to B features, we will replace this value with the minimum for that group.
•	 If missing value belongs to C features, we will replace this value with the average for that group.

Model construction.  Since the scales of physiological measurement are quite different, we take the nature 
log of them first. In the previous steps, the important items obtained from feature selection are INR, Lymphocyte, 
PT, Platelets, WBC, Mg, Na, age and BMI. However, according to expert’s experience, INR and PT represent 
the same measurement. To prevent from bias, we only use INR to construct the model. Next, we separated the 
data into derivation set and temporal validation set. The models are trained by RF, XGBoost, Decision Tree and 
Logistic Regression algorithms, and each algorithm made ten different results. Notably, we use AUC as the per-
formance metric because of the data imbalance.

One of the limitations for this work is that we do not apply external validation to our proposed model. This is 
our initial step that attempts to use machine learning to develop a predictive model for the prediction of predict 
short-term survival after liver transplantation. To objectively assess our proposed model, we use a systematic 
approach to develop the model, and separate the data into derivation set and temporal validation set based on 
time information. We believe that the findings in this work are useful for other researchers, and applying external 
validation to our proposed model is our future work.

Cause of death
Derivation set 
(n = 43)

Temporal validation set 
(n = 4)

Acute Cellular Rejection 9 —

Acute Humeral Rejection 5 1

Primary non function 3 —

Sepsis 13 2

Cardiopulmonary 7 1

Complication — —

Small for size graft 3 —

Others 3 —

Table 7.  The causes of death for the short-term survival patients in derivation and temporal validation sets.
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Data availability
The data that support the findings of this study are available from Chang Gung Memorial Hospital, Linkou, 
Taiwan but restrictions apply to the availability of these data, which were used under license for the current study, 
and so are not publicly available. Data are however available from the authors upon reasonable request and with 
permission of Chang Gung Memorial Hospital, Linkou, Taiwan.
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