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Abstract

poorly understood.

controlling stemness of CRC cells.

Background: Cancer stem cells (CSCs), the major driver of tumorigenesis, is a sub-population of tumor cells
responsible for poor clinical outcomes. However, molecular mechanism to identify targets for controlling CSCs is

Methods: Gene Set Enrichment Analyses (GSEA) of Wnt/B-catenin and RAS signaling pathways in stem-like subtype
of colorectal cancer (CRC) patients were performed using two gene expression data set. The therapeutic effects of
destabilization of (-catenin and RAS were tested by treatment of small molecule KYA1797K using CRC patient derived cells.

Results: Treatment with KYA1797K, a small molecule that destabilizes both (3-catenin and RAS via Axin binding, effectively
suppresses the stemness of CSCs as shown in CRC spheroids and small intestinal tumors of Apc*"™*/K-Ras®"?PLA2 mice.
Moreover, KYA1797K also suppresses the stemness of cells in CRC patient avatar model systems, such as patient-derived
tumor organoids (PDTOs) and patient-derived tumor xenograft (PDTX).

Conclusion: Our results suggest that destabilization of both (3-catenin and RAS is a potential therapeutic strategy for
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Background

Colorectal cancer (CRC) is the third most commonly diag-
nosed cancer worldwide [1], and has remained a major
cause of cancer-associated mortality mainly due to the me-
tastasis and recurrence [2]. Cancer stem cells (CSCs), the
sub-population of tumor cells that possess stem cell proper-
ties, plays critical roles in the initiation and progression of
CRC, and are considered as main culprits that contribute to
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the metastasis and recurrence of CRC [3-6]. A recent clin-
ical study revealed that CRC patients who possess the tu-
mors with high stem cell properties have critically short
disease free survival (DFS) rates compared with those who
possess differentiated tumors [7]. However, drugs to control
CSCs as well as the molecular targets for development of
such drugs have not yet been identified.

The Wnt/B-catenin pathway is a major signaling pathway
that maintains intestinal homeostasis via regulation of in-
testinal stem cells (ISCs) and their precursor cells [8]. Mu-
tation of Adenomatous polyposis coli (APC) which occurs in
more than 90% of CRC patients, is an initial event for in-
duction of CSCs and tumor formation. Indeed, convincing
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molecular markers representing CSCs in CRC including
leucine-rich repeat-containing G-protein coupled receptor 5
(LGRS), CD44, and CD133 are the transcriptional targets of
Wnt/B-catenin pathway [9-11]. Recent studies using
lineage tracing in animal models revealed that stem-cell-
specific loss of Apc resulted in progressive growth of neo-
plasia by transformation of their progenitor cells [3].

KRAS mutations, which occur in 50% of advanced
CRC patients, activate both extracellular signal-regulated
kinase (ERK) and phosphatidyl inositol 3-kinase (PI3K)-
AKT signaling pathways, and subsequently induce prolif-
eration of ISCs [12, 13]. Although Kras mutation alone
does not induce CSC activation or the tumor formation
in murine small intestine, co-occurrence of mutations in
both Apc and Kras enriches and activates CSCs via syn-
ergistic activation of the Wnt/B-catenin pathway [14—
16]. Therefore, inhibition of both pathways has been
suggested as an effective strategy for suppression of
CSCs as a treatment for CRC [17, 18].

In this study, we analyzed the genomic expression pro-
files of stem-like subtypes of CRC patient tissues posses-
sing CSC characteristics using two gene expression data
set (GSE13294; N = 125, GSE14:333; N = 246) derived from
resected primary CRC tissues [7]. Interestingly, we found
that the expression levels of the Wnt/p-catenin and RAS/
MAPK signaling pathways target genes are highly in-
creased in stem-like subtype of CRC patient tissues com-
pared with other differentiated subtypes of CRC patients.
In addition, both (-catenin and RAS protein, as well as
the GTP-bound active RAS levels were also highly ele-
vated in the CSC-like populations possessing stem cell
characteristics compared with non-CSC like populations
of CRC cell lines classified by fluorescent activating cell
sorting (FACS). KYA1797K, a small molecule that
destabilize both B-catenin and RAS by activating GSK3[3
via binding with Axin [19], effectively suppressed the
stemness of CRC spheroids with their growth inhibition.

Moreover, KYA1797K effectively suppressed the stem-
ness of CSCs in small intestinal tumors of Apc™™*/
KrasS"*PLA2 mice as well as patient avatar models such
as patient-derived tumor organoids (PDTOs) and patient-
derived tumor xenograft model (PDTX). In addition,
KYA1797K effectively induced differentiation in meta-
static CRC PDTX tissues as shown by increased expres-
sion of KRT20, a convincing differentiation marker of
CRC. Taken together, we suggest that a small molecule-
induced destabilization of both B-catenin and RAS is the
potential therapeutic approach to suppress the stemness
of CSCs with clinical implications for treatment of CRC.

Methods

Cell cultures and reagents

Human CRC cells (HCT15, DLD1, SW48, SW480, SW620,
Widr, RKO, and HCT116) were purchased from the
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American Type Culture Collection (Manassas, VA, USA).
DLD-1 harboring mutant KRAS [20]. was provided by B.
Vogelstein (John Hopkins Oncology Center, Baltimore,
MD, USA). All cell lines were authenticated using short
tandem repeat profiling (Cosmogenetech, Korea) and were
maintained in RPMI1640 (Gibco, Carlsbad, CA, USA) or
DMEM (Gibco) supplemented with 10% fetal bovine serum
(Gibco). KYA1797K was dissolved in dimethyl sulfoxide
(Sigma-Aldrich, St. Louis, MO, USA) for in vitro studies.

Immunoblotting

Cells were washed with ice-cold PBS and lysed using
radio-immunoprecipitation assay (RIPA) buffer (150 mM
NaCl; 10 mM Tris, pH7.2; 0.1% sodium dodecyl sulfate;
1% Triton X-100; 1% sodium deoxycholate; and 5 mM
ethylenediaminetetraacetic acid). Samples of mouse tissues
stored in liquid nitrogen were prepared in RIPA buffer
and then homogenized. Proteins were separated on a 10—
12% sodium dodecyl sulfate polyacrylamide gel and trans-
ferred to a nitrocellulose membrane (Whatman, Little
Chalfont, UK). Immunoblotting was performed with the
following primary antibodies: anti-pan-RAS monoclonal
(Millipore, MA, USA, MBS195; 1:3000), anti-p-catenin
(Santa Cruz Biotechnology, TX, USA, sc-7199; 1:3000),
anti-c-Myc (Santa Cruz Biotechnology, sc-789; 1:1000),
anti-p-ERK (Cell Signaling Technology, sc514302; 1:1000),
anti-p-AKT (Cell Signaling Technology, #4060 s; 1:1000),
and anti- B-actin (Santa Cruz Biotechnology, sc-47,778; 1:
5000). Horseradish peroxidase-conjugated anti-mouse
(Cell Signaling Technology, #7076; 1:3000) or anti-rabbit
(Bio-Rad, Hercules, CA, USA, #1706515; 1:3000) second-
ary antibodies were used.

Reverse transcription and quantitative real-time PCR
Total RNA was isolated using Trizol reagent (Invitrogen,
Waltham, MA, USA) according to the manufacturer’s
instructions. Total RNA (2 pg) was reverse transcribed
using 200 U of M-MLV reverse transcriptase (Invitro-
gen) in a 20-ul reaction mixture at 42°C for 1h. For
quantitative real-time PCR analyses, the resulting cDNA
(1 pl) was amplified in 10 pl of Rotor-gene SYBR green
(Bio-Rad). The comparative cycle-threshold (Ct) method
was used, and f-actin served as an endogenous control.

Animal studies

All animal experiments were performed in accordance with
the guidelines of the Korean Food and Drug Administra-
tion. Protocols were reviewed and approved by the Institu-
tional Animal Care and Use Committee of Yonsei
University. The C57BL/6J-Apcd™™*  (Apc™™*) and
B6.129S-Kras™3™’ mice were obtained from Jackson La-
boratory (Bar Harbor, ME, USA) To generate Apc™*/
KrasS"?PLA2 mice, Apc™™* were crossed with Kras®'*
PLA2 mice. Mouse genotyping was performed using
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genomic DNA extracted from the tail. To control for gen-
etic background effects, sex-matched littermates were used
as controls. To investigate the in vivo efficacy of KYA1
797K, 5-week-old Apc™™* /Kras®**PLA2 (N = 4) mice were
intraperitoneally injected with KYA1797K (25 mg/kg) 5
days per week for 7 weeks. Immediately after sacrifice, the
abdomen of each mouse was cut open longitudinally and
cleaned by flushing with PBS. The tumors were classified
according to standard World Health Organization histo-
pathological criteria. Tumor sizes were classified based on
the diameter (small <1 mm, 1 mm < medium <3 mm, and
large > 3 mm). For biochemical analyses, a subset of freshly
isolated tissues was snap frozen in liquid nitrogen and
stored at — 80 °C.

For the PDTX studies, athymic nu/nu mice were
injected subcutaneously in the dorsal flank with DLD-
KRAS-MT (5 x 10° cells/mice) in 200 ul of PBS/Matrigel
(BD Biosciences, Bedford, MA, USA; 1:1). When the mean
tumor size reached between 100 and 200 mm?, the mice
were randomly divided into two groups to receive either
vehicle or KYA1797K. Twenty-eight days after the initial
drug treatment, the mice were sacrificed, and tumors were
excised and fixed in 10% neutralized formaldehyde for fur-
ther analyses.

Immunohistochemistry

For IHC analyses, 4-pm paraffin-embedded tissue sec-
tions were treated with citrate buffer (pH 6.0) and auto-
claved for 15 min. The sections were then blocked with
5% bovine serum albumin (BSA; Affymetrix, Santa Clara,
CA, USA) and 1% normal goat serum (NGS, Vector La-
boratories, Burlingame, CA, USA) in PBS for 30 min.
After blocking, sections were incubated with primary
antibody overnight at 4 °C followed by incubation with
anti-mouse Alexa Fluor 488- (Life Technologies, Carls-
bad, CA, USA, A11008; 1:500) or anti-rabbit Alex Fluor
555-conjugated (Life Technologies, A21428; 1:500) sec-
ondary antibodies for 1 h at room temperature. The sec-
tions were then counterstained with 4, 6-diamidino-2-
phenylindole (DAPI; Sigma-Aldrich) and mounted in
Gel/Mount media (Biomeda Corporation, Foster City,
CA, USA). All incubations were conducted in dark,
humid chambers. The fluorescence signal was visualized
using a confocal microscope (LSM510; Carl Zeiss) at ex-
citation wavelengths of 488 nm (Alexa Fluor 488), 543
nm (Alexa Fluor 555), and 405 nm (DAPI). At least three
fields per section were analyzed.

Immunocytochemistry

The cells were fixed with 5% formalin for 30 min, perme-
abilized with 0.2% Triton X-100 for 30 min, and pre-
blocked with PBS containing 5% BSA and 1% NGS for 1 h.
The cells were then incubated with the indicated primary
antibody overnight at 4.°C, followed by incubation with
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Alexa Fluor 488- or Alex Fluor 555-conjugated secondary
antibodies for 4h at 4°C. Samples were then counter-
stained with DAPI for 10 min at room temperature. After
incubation, the cells were mounted in Gel/Mount media
(Biomeda Corporation). The fluorescence signal was visu-
alized using a confocal microscope (Zeiss, LSM510) at ex-
citation wavelengths of 488 nm (Alexa Fluor 488), 543 nm
(Alexa Fluor 555), and 405 nm (DAPI).

RAS activation assay and immunoblotting

GTP-loaded active RAS was analyzed by manufacture’s
procedure (Cell signaling technology, #11860). Cells were
lysed by lysis buffer plus 1 mM PMSF, and cleared by cen-
trifugation at 16,000 x g, for 15 min at 4 °C. 500 pg of cell
lysates was incubated with beads coated with fusion pro-
tein (GST-Raf1-RBD) at 4 °C for 1 h. Beads were washed 3
times with cold lysis buffer, and bounded protein was
eluted with 2x SDS sample buffer, incubated at 100 °C for
5 min and analyzed by immunoblotting for RAS.

Tumor organoid experiments

For human PDC-derived tumor organoids, 250 cells per
25l of growth factor-reduced Matrigel (BD Bioscience)
were mixed, and N2 medium containing 10% R-spondin-1
CM, 100 pg/ml noggin (Peprotech, Rocky Hill, NJ, USA),
1.25 mM N-acetyl cysteine (Sigma-Aldrich), 10 mM nico-
tinamide (Sigma-Aldrich), 50 ng/ml EGF (Peprotech), 10
nM gastrin (Sigma-Aldrich), 500 nM A83-01 (Sigma-Al-
drich), and 3 uM SB202190 (Sigma-Aldrich) were added.
The growth medium was refreshed every 2 days, and the
cells were passaged by mechanical disruption every 10-14
days at a 1:5 ratios. The measurements of tumor organoid
growth were performed using the CellTiter-Glo Lumines-
cent Cell Viability Assay (Promega, Madison, W1, USA)
according to the manufacturer’s instructions. Lumines-
cence was measured with a FLUOstar Optima instrument
(BMG Labtech, Ortenberg, Germany).

For mouse tumor organoid experiments, small intestinal
tumors of Apc™™*/Kras"*’LA2 mice were isolated and
washed with ice-cold PBS, and single cells isolated from
tumors were collected using 0.25% trypsin containing
10 uM Ly27632 (Sigma-Aldrich) and 100 pg/ml Primocin
(Invivogen, San Diego, CA, USA) for 30 min. After incuba-
tion, 1X B27 (Sigma-Aldrich) was added, and the mixture
was filtered through 100-pm and 40-pm cell strainers (BD
Biosciences) to collect single cells. The cells were then
mixed with growth factor-reduced Matrigel. The growth
medium was refreshed every 2 days and the cells were pas-
saged by mechanical disruption every 10—14 days at a 1:5
ratios. The measurements of tumor organoid growth were
performed using the CellTiter-Glo Luminescent Cell Via-
bility Assay according to the manufacturer’s instructions,
and luminescence was measured with a FLUOstar Optima
instrument.
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Primary cell culture from human CRC cells and PDTX

CRC PDCs that had previously been established [21] were
used after receiving patient-informed consent and ap-
proval from the Institutional Review Board of Asan Med-
ical Center. All procedures performed in studies involving
human participants were conducted in accordance with
the International Ethical Guidelines for Biomedical Re-
search Involving Human Subjects. For the PDTX model,
animal procedures were performed following protocols
approved by the Seoul National University Institutional
Animal Care and Use Committee. PDTX experiments
were performed as previously described [22]. Briefly, small
pieces of CRC tumors that had metastasized to lung were
subcutaneously transplanted into the flanks of 5-week-old
NOD/SCID mice (N=5). After the tumor volumes
reached 50—150 mm?, erlotinib was injected by oral gavage
at a dosage of 25mg/kg 5days per week for 28 days.
KYA1797K was intraperitoneally injected into mice (N =
5) at dosage of 25 mg/kg every day for 28 days. Tumor
growth was determined by measurement of the short and
long diameters of the tumor with a caliper, and tumor
volumes were determined according to the following for-
mula: tumor volume (mm?®) = (short diameter mm) x (long
diameter mm) x 0.5.

Fluorescence activating cell sorting (FACS) analyses

The sorting methods are described in our previous study
[23]. Briefly, CRC cell lines (SW480, HCT116, DLD-1,
SW620, SW48, and HT29) were dissociated into single cells
by trypsin-EDTA, incubated with anti-human CD133-PE
(Miltenyi Biotec, Bergisch Gladach, Germany), anti-human
CD166-PerCP-eFluor (eBioscience, Waltham, MA, USA),
and anti-human/mouse CD44-APC (eBioscience), and
sorted by FACS (BD Bioscience).

Statistical analysis

All data are represented as the mean + standard devi-
ation of at least three independent experiments. The
statistical significance of differences was assessed using
the Student’s t-test. Significance was denoted as 7.s. not
significant, P <0.05, P <0.01, and P <0.001.

Results

Both Wnt/B-catenin and RAS signaling pathways are
activated in CRC harboring CSC properties

Due to the frequent mutations in the components of
Wnt/B-catenin and RAS pathways in CRC and their crit-
ical roles in the synergistic activation of CSCs [15, 16,
24], we first investigated whether activation of these
pathways are correlated with stem cell activities in the
CRC patients. Gene set enrichment analysis (GSEA)
using two differential gene expression profiles from CRC
patient data sets (GSE13294; N =125 and GSE14333;
N =246) showed that genes involved in the Wnt/f-
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catenin and RAS pathways are simultaneously elevated
in stem-like subtype of CRC patient tumors that highly ex-
press stem cell-related gene signatures (GSE13294; N =20
and GSE14333; N =55) [7] compared with other differenti-
ated CRC patient tumors (Fig. 1a, b). Since simultaneous
activations of Wnt/(3-catenin and RAS signaling pathways
is associated with stabilizations of both B-catenin and RAS
proteins by APC loss [18, 25], we examined the expression
levels of B-catenin and RAS in the CSC-like populations
which have higher spheroid forming sorted by FACS using
CSC markers including CD44, CD133, and CD166 com-
pared with those in the non-CSC populations. In addition,
the CSC characteristic of CSC-like population was con-
firmed by their higher spheroid forming ability compared
with non-CSC-population [23] (Additional file 1: Figure
S1). B-catenin and RAS levels were highly elevated with ac-
tivations of RAS downstream ERK and AKT kinases in
CSC-like populations of CRC cell lines with various genetic
backgrounds as shown by immunoblot analyses (Fig. 1c).
Moreover, significant increases in the GTP-RAS, the active
form of RAS, were observed in the CSC-like populations
(Additional file 1: Figure S2), showing that the enriched
RAS proteins in the CSC-like populations are active.
These results suggest that B-catenin and RAS proteins
would be effective molecular targets for suppressing the
colorectal CSCs.

The stem cell characteristics of CRC cell lines are
suppressed by KYA1797K, the small molecule
destabilizing both B-catenin and RAS

Given that CSC-like populations of CRC cells have ele-
vated protein levels of [B-catenin and RAS, compared
with non-CSC populations, we investigated whether the
stem cell characteristics of CRC are associated with
stabilization of P-catenin and RAS by treating the B-
catenin and RAS destabilizing compound, KYA1797K
[19], on the spheroid-cultured DLD-KRAS-MT CRC
cells harboring both APC and KRAS mutations [16, 20].
KYA1797K effectively degraded both [-catenin, RAS,
and inhibited the ERK and AKT activities (Fig. 2a) with
decreased spheroid forming ability as measured by the
numbers and sizes of spheroids (Fig. 2b- d). Consistent
with the effects on sphere-forming ability, KYA1797K
significantly reduced the mRNA levels of the CSC
markers LGRS, CD44, CD133 and CDI166 (Fig. 2e). Im-
munocytochemical analyses confirmed the KYA1797K-
mediated decrease of B-catenin and RAS levels were
followed by reduction of CSC markers in the DLD-
KRAS-MT spheroids (Fig. 2f). Flow cytometry analyses
also revealed that CSC populations having CD44"
CD133" CD166" triple positive cells were significantly
decreased by KYA1797K (Fig. 2g; Additional file 1: Table
S1). Consistently, similar inhibitory effects of KYA1797K
on the CSC properties were also confirmed in SW480
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and SW620 CRC cell lines (Additional file 1: Fig. S3 A-
D). Moreover, immunohistochemistry (IHC) analyses of
tumor tissues of DLD-1-KRAS-MT xenograft mice also
revealed that KYA1797K effectively suppressed the can-
cer stemness of DLD-1-KRAS-MT cells (Fig. 2h).

The small molecule-induced destabilization of both -
catenin and RAS suppresses the stemness of small
intestinal tumors of Apc™™*/Kras®'?PLA2 mice

We examine whether KYA1797K effectively inhibit the
stemness of CSCs in small intestinal tumors of Apc™™*/
KrasS"*PLA2 mice that exhibit synergistic activation of
CSCs by Apc and Kras mutations (Additional file 1: Figure
S4) [15, 16], we tested the effects of KYA1797K on the
stemness of small intestinal tumors in Apc™™*/Kras®'*
PLA2 mice. KYA1797K treatment decreased the levels of
[-catenin and Ras proteins as well as the activities of Erk
and Akt in the small intestinal tumors of the Apc™™* /K-
ras“"?PLA2 mice reducing both of their number and size

of tumors (Fig. 3a-c). IHC analyses revealed that
KYA1797K treatment significantly reduced expression
levels of CD44 and CD133 (Fig. 3d) as well as the convin-
cing intestinal CSC markers, Lrigl and EPHB3 (Additional
file 1: Figure S6). Furthermore, the growth of tumor orga-
noids derived from small intestinal tumor cells of Apc-
Min/s /Kras“"?PLA2 mice was effectively suppressed by
KYA1797K treatment (Fig. 3e, f) along with significant de-
creases in the number and size of the tumor organoids at
day 7 in the presence of EGF, R-spondinl, and Noggin,
mimicking the in vivo condition of hyper-activated CSCs.
(Additional file 1: Figure S5; Fig. 3g).

KYA1797K suppresses the stemness of CSC in the CRC
patient tumor-derived cells (PDCs) and patient-derived
tumor xenograft (PDTX)

To further explore the clinical relevance of destabilization
of B-catenin and RAS in suppression of CSCs, we treated
KYA1797K to CRC PDCs which detected mutation
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profiles of genes frequently occurred in CRC patients
(Additional file 1: Table S2) [21] Treatment with KYA
1797K significantly suppressed growth of PDCs (Fig. 4a)
with reduction of B-catenin and RAS levels (Fig. 4b). In
addition, KYA1797K effectively reduced the expression of
CSC markers in PDCs (Fig. 4c-f). The inhibitory effects of
KYA1797K on the formation of tumor organoids derived
from PDC1 and PDC2 further confirmed the suppression
of CSC characteristics (Fig. 4g- j).

To investigate the effects of destabilization of -catenin
and RAS on CSC activation related to metastasis, we sub-
cutaneously implanted NOD/SCID mice with KRAS mu-
tated colon adenocarcinoma metastasized to lung, and

measured effect of KYA1797K treatment. KYA1797K de-
creased levels of both B-catenin and RAS with inactivation
of ERK and AKT kinases in the tumor lysates of the PDTX
(Fig. 5a). The growth of tumors was effectively inhibited
during time course up to 28 days (Fig. 5b) and tumor vol-
umes were reduced to 58% compared to vehicle treated tu-
mors at 28 days after KYA1797K treatment (Fig. 5c).
Hematoxylin and Eosin staining analyses showed that
PDTX tissues derived from colon adenocarcinoma metasta-
sized to lung still retain the colon adenocarcinoma hist-
ology and their histology was not altered by KYA1797K
treatment (Fig. 5d). Furthermore, KYA1797K effectively
suppressed the expressions of CSC markers with decreased
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Fig. 3 Effects of KYA1797K on the CSC properties of mice harboring Apc and Kras mutations. Analysis of 5-week-old Apc"™*/K-ras®'?PLA2 mice
treated with intraperitoneal (i.p.) injections of vehicle or KYA1797K (25 mg/kg) 5 days per week for 7 weeks (N =4). a Immunoblots of vehicle- or
KYA1797K-treated small intestinal tumors of Apc"™*/K-ras®'?PLA2 mice using the indicated antibodies. b, ¢ The numbers (b) and sizes (c) of
vehicle- or KYA1797K-treated small intestinal tumors of Apc*™*/K-ras®’?’LA2 mice. d IHC analyses of small intestinal tumors treated with vehicle
or KYA1797K using the indicated antibodies. Representative images were captured using Zeiss confocal microscope from at least three different
fields. Boxes indicate enlarged areas. Scale bar in the low-magnification images represents 20 um, and the scale bar in the high-magnification
images represent 100 um. e Bright-field microscopy images of DMSO- or KYA1797K-treated tumor organoids derived from small intestinal tumor
cells after 0, 3, 5, and 7 days. Representative images were captured using a Nikon 2000 U microscope from three different fields. f Viable cells
were detected by luminescence production using CellTiter-Glo® Luminescent Cell Viability Assay. g Numbers and sizes of tumor organoids were
measured using Image J v1.47 software. The quantitative data are presented as mean =+ standard deviation. ** P < 0.01, *** P < 0.001

levels of B-catenin and RAS (Fig. 5e, f), while it significantly
increased the expression of CK20, a convincing differenti-
ation marker, in PDTX tissues (Additional file 1: Figure S7),
suggesting that KYA1797K suppresses the stemness of
CRC stem cells.

Discussion

Aberrant activation of the Wnt/p-catenin and RAS sig-
naling pathways with elevated B-catenin and RAS pro-
tein levels has been observed in various human cancers
including CRC, gastric cancer, endometrium cancer, and
non-small cell lung cancer (NSCLC) [19, 26—-30]. There-
fore, small molecule-mediated destabilization of both [3-
catenin and RAS has been shown to suppress the tumor

growth in cancers such as CRC, gastric cancer, and
NSCLC The effectiveness of small molecules to many
different types of cancers is due to the destabilization of
B-catenin and RAS proteins which are overexpressed in
the different types of cancer [19, 28-30], suggesting that
stabilization of B-catenin and RAS play critical roles in
regulating the activation of Wnt/p-catenin and RAS sig-
naling pathways in many types of cancers as well as the
effect of their component gene mutation.

In CRCs, both B-catenin and RAS protein levels are
highly elevated mainly due to APC mutations occurring
in as many as 90% of CRC patients [18, 19, 25]. In the
presence of APC mutation, additional KRAS mutation
synergistically activates the Wnt/p-catenin signaling via
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Fig. 4 Effects of KYA1797K on the CSC potential in CRC PDCs. a Immunoblot analyses of PDCs treated with DMSO or KYA1797K (25 uM) were
performed using the indicated antibodies. b The effect of KYA1797K on the growth of CRC PDC1, PDC2, and PDC4 were performed using a 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. ¢- f gRT-PCR analyses of (c) LGRS, (d) CD44, (e) CD133, and (f) CD166 were
performed on KYA1797K- or DMSO-treated PDC1, PDC2, and PDC4. g The effects of KYA1797K on PDC1- and PDC2-derived tumor organoid
formation (N = 3). h Viable cells were detected by luminescence production using the CellTiter-Glo Luminescent Cell Viability Assay. i Numbers
and j sizes of PDC-derived tumor organoid formation were measured using Image J v1.47 software. The quantitative data are presented as
mean + standard deviation. * P < 0.05, ** P < 0.005, *** P < 0.001

a positive feedback loop through the MEK-ERK pathway,
resulting in activation of CSCs [16]. In this study, we ob-
served that Wnt/B-catenin and RAS signaling pathways
are highly activated in the stem-like subtype of CRCs
that possess CSC characteristics. Of interest, [B-catenin
and RAS protein levels as well as the active form of RAS
(GTP-RAS) are significantly higher in CD44, CD133,
and CD166 triple-high populations of CRC cells which
possess the higher spheroid forming ability, compared
with their low counterparts, suggesting that suppression
of the Wnt/B-catenin and RAS pathways, especially by
reduction of the levels of f-catenin and RAS could be an
effective approach to control CSCs in CRC and have led
us to investigate the effects of the -catenin and RAS de-
stabilizing compound KYA1797K on inhibition of CRC
stem cells. Destabilization of [B-catenin and RAS by

KYA1797K effectively suppressed the stemness of colo-
rectal CSCs as confirmed by suppression of the CSC
markers including LGR5, CD44, CD133, and CD166
with significant inhibition of Wnt/p-catenin and RAS
pathways in various spheroid cultured CRC cell lines.
The suppressive effects of KYA1797K on the stemness
of small intestinal tumors were also confirmed in Apc-
Min/+ /KrasS"*PLA2 mouse model and its small intestinal
tumor cell-derived tumor organoids in the presence of
EGF, Noggin, and R-spondin-1 which mimics the hyper-
activation conditions of LGR5" CSCs in vivo. Moreover,
the clinical relevance of the destabilization of p-catenin
and RAS by KYA1797K on the suppression of CSCs was
validated by using the patient avatar models such as
CRC PDCs and PDTX derived from CRC patient tissues
that had metastasized to lung. Especially, considering the
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Fig. 5 Effects of KYA1797K on the tumorigenic potential and stemness of CRC PDTX. NOD/SCID mice bearing CRC patient tumors were treated
with vehicle or KYA1797K (25 mg/kg) via i.p. injection for 28 days (N =5). a Immunoblot analyses of vehicle or KYA1797K treated PDTX using
indicated antibodies. b Volumes of subcutaneous tumors treated with vehicle or KYA1797K were measured using calipers two times a week for
28 days. ¢ Final tumor volumes of vehicle- or KYA1797K-treated CRC PDTX. d Hematoxylin and eosin staining of vehicle- or KYA1797K-treated
PDTX. Scale bar represents 200 um. e IHC analyses of vehicle- or KYA1797K-treated PDTX using the indicated antibodies. Scale bar represents

100 um. Mean intensities of fluorescence of indicated markers were quantified using Zen software in at least three different tissue samples. f gRT-
PCR analyses of LGR5, CD44, CD133, and CD166 mRNAs in vehicle- or KYA1797K-treated CRC PDTX samples. Quantitative data are presented as

importance of CSCs in the development of metastasis
[16], the inhibitory effects of KYA1797K on the growth
of lung-metastasized colon cancer PDTX were con-
firmed with significant suppression of CSC properties
and induction of differentiation, suggesting that our ap-
proach for simultaneous degradation of both [B-catenin
and RAS is a potential approach for suppression of me-
tastasis as well as the stemness of CRC cells.

Conclusion

we demonstrated that small molecule-mediated
destabilization of f-catenin and RAS offer a potential ap-
proach to control CSCs in CRC. Considering the im-
portance of CSC activation in tumor metastasis and
recurrence and its association with poor patient survival

and drug resistance, this therapeutic approach to sup-
press the CSCs would be an effective strategy for im-
proving clinical outcomes in CRC patients.
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ras™. Figure S7. KYA1797K significantly induces the KRT20 in CRC PDTX.
Table S1. Effects of KYA1797K on CSC populations of CRC cells. Alter-
ation of CSC marker positive cells by KYA1797K treatment were analyzed
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