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  Alzheimer disease (AD) is a chronic and heterogeneous neurodegenerative disorder characterized by complex 
pathological processes involving neuroinflammation, neurodegeneration, and synaptic dysfunction. Understanding 
the exact neurobiological mechanisms underlying AD pathology may help to provide a biomarker for early di-
agnosis or at least for assessment of vulnerability to dementia development. Neural plasticity is defined as a 
capability of the brain to respond to alterations including aging, injury, or learning, with a crucial role of synap-
tic elements. Long-term potentiation (LTP) and long-term depression (LTD) are important in regulating synaptic 
connections between neural cells in functional plasticity. Synaptic loss and impairment of the brain’s plasticity 
in AD leads to cognitive impairment, and one of important roles of synaptic biomarkers is monitoring synap-
tic dysfunction, response to treatment, and predicting future development of AD. Synaptic biomarkers are un-
doubtedly very promising in developing novel approach to AD treatment and control, especially in the era of 
aging of societies, which is one of the most common risk factor of AD. Implementing a widespread measure-
ment of synaptic biomarkers of AD will probably be crucial in early diagnosis of AD, early therapeutic interven-
tion, monitoring progression of the disease, or response to treatment. One of the most important challenges 
is finding a biomarker whose blood concentration correlates with its level in the central nervous system (CNS). 
This review aims to present the current status of biomarkers of activity-dependent plasticity and persistent en-
hancement of synaptic transmission in Alzheimer disease.
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Background	–	Characteristic	of	Alzheimer	
Disease

Alzheimer disease (AD) is one of the most common age-related 
neurodegenerative diseases, clinically characterized by gradual 
loss of memory and cognitive functions [1]. AD is a heteroge-
neous disease with composite etiology [2], with a crucial role 
of disorders of amyloid-beta (ab) and tau protein [3]. Recent 
scientific reports suggest that synaptic dysfunction is also in-
volved in the pathogenesis of AD [4]. Progression of AD is like-
ly to occur years prior to the first signs, symptoms, and clinical 
diagnosis [5]. It can be divided based on age at development 
of the first symptoms: early-onset AD (EOAD) for people age 
<65 years old and late-onset AD (LOAD) (most common) for 
people age >65 years [6]. Currently, the incidence of AD is in-
creasing, probably due to the aging of society [7].

A potential explanation of AD pathogenesis is provided by 
a number of hypotheses [8]. The amyloid-beta theory [9] fo-
cusses on accumulation of excessive amounts of Ab (partic-
ularly Ab42), which results in synapse loss, and neuronal cell 
death [10]. The role of NMDA receptors in AD is highly prob-
able because of the finding of glutamatergic neurons in AD-
affected tissues and their role in mediating synaptic plasticity 
through long-term potentiation (LTP) [11-13]. Long-standing 
activation of NMDA receptors results in a process called “ex-
citotoxicity”, eventually leading to neurodegeneration [14]. A 
high concentration of Ca2+ ions leads to loss of learning abil-
ities and memory functions in AD because of suppression of 
synaptic functions, synaptotoxicity, and atrophy [12]. The tau 
protein hypothesis was first proposed in 1986, citing phos-
phorylation of tau as a likely contributor to the formation of 
neurofibrillary tangles in AD [15], leading to the starvation of 
neural cells by disturbing transport structures [16].

Synaptic	Plasticity	in	Aging	and	Alzheimer	
Disease

Neural plasticity is the ability of the brain to perform structural 
and functional modification as a response to new experience, 
injury, or aging [17]. Architectural plasticity is described as the 
rise of new synaptic connections and removal of old ones, as 
well as the enlargement of synapses, often because of learn-
ing processes [18]. LTP includes the long-lasting strengthen-
ing of synaptic connections between neurons, which is deci-
sive in the formation of long-term memory [19]. Long-term 
depression (LTD) weakens the efficacy of synaptic strengthen-
ing using several mechanisms to effectively use strengthening 
of synaptic connections by LTP [20]. Functional plasticity con-
sists of LTP and LTD, and refers to the brain’s ability to adjust 
to loss or damage of its tissue by transferring previously per-
formed functions by destroyed areas to undamaged regions, 

and occurs by growing new nerve endings by axons of undam-
aged neurons to reconnect links of neural cells destroyed by 
injury in a process called axonal sprouting [21].

Aging is undoubtedly linked with decreased ability of learning 
and memory [22]. Impairment of brain functions is associat-
ed with deficiency in elicitation of LTP and shorter duration of 
maintenance of LTP, which are important for generation of new 
connections between neural cells [23]. Reduction in grey and 
white matter of the brain, cellular aging, and environmental 
factor also contribute to impairment of neural plasticity and 
predispose to neurodegenerative diseases [24].

AD involves loss of synaptic connections between neurons 
without the ability of remaining synapses to alter in response 
to new stimuli, which is one of the most essential mechanisms 
of AD dementia [25]. Maintaining plasticity of the brain in AD 
is crucial to reducing cognitive symptoms and slowing AD pro-
gression, which will certainly reduce the cost of medical care 
and allow most patients to have improved quality of life [26].

This review aims to present the current status of biomarkers 
of activity-dependent plasticity and persistent enhancement 
of synaptic transmission in Alzheimer disease.

Markers of Plasticity in the Development of 
AD

Research efforts are currently directed to the search for and 
analysis of biomarkers reflecting synaptic pathology in the ce-
rebrospinal fluid to improve the diagnosis of neurodegenera-
tive disorders in the early stage of the disease and to monitor 
clinical progression. There are pre- and postsynaptic markers 
that can regulate the functioning of cells of the central ner-
vous system.

Fluid	Synaptic	Biomarkers	in	Dementia

Glial Fibrillary Acidic Protein

Glial fibrillary acidic protein (GFAP) is an intermediate cytoskel-
etal protein released by activated astrocytes during patholog-
ical states of the CNS, including trauma, ischemia, and neu-
rodegeneration [27,28].

Elevated levels of GFAP in cerebrospinal fluid (CSF) were ob-
served in AD [29]. Higher plasma levels of GFAP were observed 
in EOAD in comparison to LOAD [30]. Moreover, an increased 
CSF level of GFAP was also found to correlate with results of 
MMSE, being a promising follow-up marker in future stud-
ies [31]. Measurement of GFAP upon autopsy in temporal, oc-
cipital, and parietal cortices showed a correlation between a 

e938826-2
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Warpechowski M. et al: 
Biomarkers of activity-dependent plasticity

© Med Sci Monit, 2023; 29: e938826
REVIEW ARTICLES

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



high level of GFAP in these regions and weak cognitive perfor-
mance later in life [32]. A 2019 observational study also drew 
similar conclusions [31]. Higher levels of GFAP among adults 
with symptomatic AD were associated with poorer verbal ep-
isodic memory [33]. The elevation of GFAP in AD might be ex-
plained by astrogliosis (abnormal increase in the number of as-
trocytes), which is related to worse cognitive performance [34].

Neurogranin

Neurogranin (Ng) is a postsynaptic protein with highest ex-
pression in associative cortical areas of the brain [35]. It is es-
sential in memory, learning, synaptic plasticity, and LTP [36]. 
Its level was found to be lower in the hippocampus and fron-
tal cortex of AD patients in a postmortem study, with lower 
level among EOAD individuals, suggesting a link with synap-
tic loss and neurodegeneration [37].

Increased Ng concentration in CSF was identified among pa-
tients diagnosed with AD [38], with similar results in larger 
studies [39-41]. Additionally, elevated levels of Ng were corre-
lated with future cognitive decline in prodromal AD [40], but 
other study using plasma neuronal-derived exosomes (NDEs) 
found decreased Ng levels years before the onset of AD de-
mentia [42]. A meta-analysis of 13 high-quality evidence stud-
ies suggest that CSF Ng can predict a decline in Mini Mental 
State Examination (MMSE) scores in people with Ab+ mild cog-
nitive impairment (Ab+ MCI), and moderate-quality evidence 
supports prediction of decline in memory and executive func-
tion [43]. The distinction in Ng expression between MCI and 
AD was studied in a meta-analysis [44] in which analysis of 9 
studies including a total of 801 AD patients and 734 individu-
als with MCI without progression to AD presented higher lev-
els of CSF Ng in AD compared to MCI. Comparison between 
stable MCI patients and MCI who progressed to AD (MCI-AD) 
also showed higher Ng CSF in MCI-AD individuals [44].

Synaptic Proteins

Synaptotagmin-1

Synaptotagmin-1 (Syt1) is a presynaptic vesicle protein that par-
ticipates in quick Ca2+-dependent neurotransmitter release [45]. 
Syt1’s role is considered to be a Ca2+ sensor due to its 2 C2 
(C2A, C2B) domains, which interact with Ca2+ and phospholip-
ids [45,46], and other proteins that are soluble N-ethylenimine 
sensitive factor attachment protein receptors (SNAREs), includ-
ing syntaxin-1, synaptosomal-associated protein 25 (SNAP-25), 
and synaptobrevin-2, to form a tight SNAREs complex, which 
is crucial in forming membrane fusion between synaptic ves-
icle and plasma membranes [47]. Research conducted on an-
imal models demonstrated its essential role in control of syn-
aptic plasticity [48].

High concentrations of Syt1 in CSF were discovered in indi-
viduals with MCI and dementia caused by AD [49]. Blood neu-
ro-exosomal Syt1 in combination with other synaptic proteins 
were found useful in predicting the occurrence of AD, even 5 
to 7 years before cognitive impairment [50].

Synaptosomal-Associated Protein 25

Synaptosomal-associated protein 25 (SNAP-25) belongs to 
the SNAREs complex, which is involved in exocytosis of neu-
rotransmitters during synaptic transmission [51]. Its exact ac-
tion is to mediate the apposition of synaptic vesicles to the 
presynaptic membrane, which leads to Ca2+ fusion, through 
assembly with other synaptic proteins [51]. Research in mice 
proved that SNAP-25 takes part in controlling long-term syn-
aptic plasticity and synaptic transmission [52].

Decreased expression of SNAP-25 was discovered in a post-
mortem study of brains of AD patients [53], whereas higher 
concentrations were discovered in CSF of AD patients in com-
parison to the control group [54-57]. SNAP-25 appears to be 
a promising biomarker due to its good results in the differen-
tiation of dementia and MCI caused by AD from controls, as 
well as various clinical stages of AD, but with no correlation 
with MMSE score [56].

Growth-Associated	Binding	Protein	43

Growth-associated binding protein 43 (GAP-43) is an axo-
nal phosphoprotein linked with the elongation of axons and 
guidance of the growth cone [58]. GAP-43 has a major role in 
synaptic plasticity because of its role in synaptogenesis [59], 
growth of presynaptic terminals [60], formation and regener-
ation of axons [61], and induction of LTP [62].

Several postmortem brain studies revealed decreased expres-
sion of GAP-43 in the frontal cortex and regional increase in 
the hippocampus among AD patients [63-65]. GAP-43 was in-
creased in CSF in preclinical AD [66-67] and may be of great 
relevance in developing future diagnostic approaches for AD.

Neuronal Pentraxins

Neuronal pentraxins (NPTX) belong to a subfamily of pentrax-
ins and consist of neuronal pentraxin 1 (NPTX1), neuronal pen-
traxin 2 (NPTX2), and neuronal pentraxin receptor (NPTXR) [68]. 
They are located in the synaptic cleft and are responsible for 
synaptogenesis [69], elimination of synapse [70], clearance of 
synaptic debris [71], and outgrowth of neurons [72].

Recent studies suggest that regulation of synaptic plasticity by 
NPTX occurs through neuronal activity, as low activity of neu-
rons evokes NPTX1 [73], which contributes to apoptotic cell 
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death of mature neurons [74]. In contrast, NPTX2 [73] is stim-
ulated by high neuronal activity [72] by maintaining homeo-
stasis of synaptic plasticity [72].

NPTXR is a receptor of NPTX1 and NPTX2 and recruits other 
NPTXR and NPTX2 [75]. The role of NPTXR in synaptic plastic-
ity is stabilization of NPTX1 and NPTX2 at synapses [76] and 
clustering to a-amino-3-hydroxy-5-methyl-4-isoxazolepropio-
nate receptor (AMPAR), which has a major impact on synaptic 
transmission [77]. Moreover, NPTXR is likely to recruit AMPAR 
into glutamatergic synapses, which is crucial for LTP [77].

Expression of NPTX2 was found to be lower in brains of AD in-
dividuals, and its CSF levels is correlated with cognitive status 
and volume of the hippocampus, which suggests its promis-
ing role as an informative biomarker [78] for identification of 
patients with AD who are most likely to respond to anti-amy-
loid therapy, as its level is likely to be independent of Ab load 
in asymptomatic AD [78]. It is even considered to be a good 
biomarker for prediction of cognitive decline in AD, as high-
er concentrations of NPTX2 correspond to decreased medial 
temporal lobe atrophy and substantially less decline of cogni-
tive functions during 24-month follow-up [79].

NPTXR level in CSF of people with AD was found to be decreased 
in some studies [80-83]. It was also reported that NPTXR can 
predict AD progression treatment response [80,81]. A relation-
ship between NPTXR and Ab load was also found in a positron 
emission tomography (PET) study [82].

Fluid	Biomarkers	Modulating	Synaptic	Plasticity

Tau Protein

Tau protein is a microtubule-associated protein with a phys-
iological role in stabilization of neuronal microtubules [84]. 
However, in certain conditions, tau protein can undergo mod-
ifications, including phosphorylation, which generates tox-
ic aggregates, finally leading to neurodegeneration [84]. Tau 
protein impairs synaptic plasticity by inducing neuroinflam-
mation through astroglial and microglial activation [85], which 
eventually leads to synaptic loss. In addition, some research-
ers suggest that hyperphosphorylation of tau lowers its affini-
ty to microtubules, resulting in localization of tau in dendrites 
and presynaptic terminals [86], which impairs motility of syn-
aptic vesicles, contributing to synaptic dysfunction [87,88].

The level of tau protein in the CSF was found to play a role in 
cortical plasticity among AD patients [89,90]. Tau deposition 
in the temporal lobe was correlated with its concentration in 
CSF, with a better prediction of cognitive performance in com-
parison to Ab deposition in all regions of the brain [91]. Koch 
et al found that high levels of total tau (t-tau) in CSF were 

associated with impaired cortical plasticity of brains of AD 
patients with APOE4 (measured using transcranial magnetic 
stimulation (TMS)), but no similar relationship was found in 
patients with apolipoprotein 3 (APOE3) [92]. The correlation 
between level of tau protein and neuropsychological test per-
formance may differentiate between MCI and AD individu-
als [93], but a notable overlap between AD patients and con-
trols complicates its usefulness [93].

Brain-Derived Neurotrophic Factor

Brain-derived neurotrophic factor (BDNF) is a neurotrophin 
with high expression in the hippocampus [94]; it is crucial in 
memory formation [95], synaptic and hippocampal plasticity, 
and structural integrity of the brain [96].

Plasma level of BDNF was significantly higher in early stages of 
probable AD compared to patients with severe AD and healthy 
controls, and was significantly correlated with MMSE score [97], 
which might be related to its role in degradation of excessive 
amounts of Ab or compensatory repair mechanism [98], but 
that study is quite old and contained only 30 AD individuals and 
10 controls. More studies presented decrease in BDNF in AD 
and MCI individuals [99-104]. Additionally, there is a report of 
no association in BDNF serum levels among AD, amnestic MCI, 
and controls with BDNF gene polymorphism [105]. Decrease in 
serum BDNF in amnestic MCI patients was positively correlat-
ed with score on Auditory Verbal Learning Tests, reflecting epi-
sodic memory [100]. Moreover, low levels of BDNF might occur 
before neuronal injury in AD measured with reduction of hip-
pocampus, as AD and MCI patients presented lower levels of 
BDNF in comparison to controls [101]. A recent study reported 
a relationship between disease-modifying effects of repetitive 
transcranial magnetic stimulation (rTMS) on the lateral parietal 
cortex of AD individuals and increased levels of BDNF, improve-
ment of visual recognition memory functions, and clock-draw-
ing test scores [106]. In that study, 15 AD patients underwent 
rTMS, which consisted of 10 sessions during 2 weeks [106]. 
One week before rTMS, all patients underwent neuropsychi-
atric testing, MRI screening, and blood sample collection. After 
2 weeks, the same examinations were conducted after rTMS 
[106]. Two weeks after the rTM intervention, a significant im-
provement in WMS-Visual Reproduction Test Recognition and 
Clock-Drawing Test scores was observed, which were correlat-
ed with the increase in BDNF level [106]. Forlenza et al [107] 
revealed that decreased level of BDNF in CSF was a predictor 
of progression from MCI to AD, which may suggest involve-
ment of BDNF in neurodegeneration in AD.

Vascular Endothelial Growth Factor

Vascular endothelial growth factor (VEGF) is a protein encoded 
by the VEGF-A gene [108]. Its physiological function is involved 
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in the growth of blood vessels, delivery of oxygen and glucose, 
regulation of permeability, and vasodilatation of blood ves-
sels [108,109]. VEGF was found to be a positive factor in the 
preservation of cognitive functions among older people, as it 
maintains cognitive abilities [110], participates in promotion 
of neurogenesis [111], and improvement of synaptic plasticity 
[112]. Modification of VEGF signaling through amyloid is believed 
to have a strong effect on cognition in AD, which was found in 
postmortem research on AD patients [113]. Exogenous admin-
istration of VEGF improved memory impairment and a reduced 
amyloid load and hyperphosphorylated tau in AD mice [114].

High availability of VEGF was found to be neuroprotective in 
preclinical AD [114]. However, 2 other studies [115,116] did not 
find this relationship due to a lack of significant statistical dif-
ferences between AD patients and healthy controls [115] and 
higher levels of VEGF among AD individuals [116]. Larger stud-
ies have produced different results because they found less 
cognitive decline among AD patients with higher VEGF levels 
in CSF [117-118]. Additionally, interactions of VEGF, Ab42, and 
t-tau were reported to be useful in predicting memory decline 
among AD individuals [117].

D-Amino Acids

D-amino acids (D-serine, D-aspartate) participate in excitato-
ry glutamatergic neurotransmission via N-methyl-d-aspartate-
receptor (NMDAR) [119]. NMDAR signaling is important for 
synaptic plasticity and survival of neural cells, but over-trans-
mission in the NMDAR signaling pathway leads to cell death 
and is believed to cause progression of neurodegenerative dis-
eases, including AD [120]. High levels of D-aspartate in pre-
clinical murine AD models accelerated brain aging and cogni-
tive decline [121-123]. D-amino acids have been considered a 
promising biomarker in AD due to finding a 5-fold increase of 
D-serine in patients with probable AD in comparison to healthy 
controls [124], but other research did not find differences be-
tween AD patients and elderly controls [125].

Polyunsaturated Fatty Acids

Several studies support a link between proper diet, cognitive 
disorder, and AD [126-129]. Diet including food rich in polyun-
saturated fatty acids (PUFA), like fish, whole grains, fresh fruits, 
and vegetables, was connected with a lower risk of cognitive 
decline than a diet rich in processed food, saturated fats, add-
ed sugars, and refined grains [130]. PUFAs include omega-3 
fatty acids: a-linolenic acid (ALA), docosahexaenoic acid (DHA), 
and eicosapentaenoic acid (EPA) [130]. Omega-6 fatty acids 
include linoleic acid (LA) and arachidonic acid (ARA) [131]. LA, 
ALA, and precursors omega-3 and omega-6 PUFAs cannot be 
synthesized by the human body and must be supplemented 
with diet [132,133]. Elevated concentrations of ARA in neuronal 

membranes were reported to improve synaptic functions be-
cause of the increased fluidity index of brain cells in the treat-
ed group, but no improvement of immediate memory was dis-
covered among AD patients [133, 134].

Omega 3 PUFAs have been studied as a potential biomark-
er of cognitive abilities [135-137]. However, administration of 
high doses of DHA did not slow progression of brain atrophy 
in patients with mild and moderate AD during a 12-month ran-
domized, double-blind, placebo-controlled clinical trial [138]. 
Interestingly, a study conducted on a larger group of patients 
found a positive association between the same dose (2000 mg/
day) of DHA and increase in hippocampal volume in MCI pa-
tients after 1 year of supplementation [139]. Increased phago-
cytosis of Ab by monocytes in flow cytometry was discovered 
after administration of a drink containing 1000 mg DHA and 
the same quantity of EPA in MCI and pre-MCI subjects [139]. 
In addition to DHA and EPA, it also included vitamin D and 
Resveratrol [136]. Transthyretin (TTR) is also a promising bio-
marker of plasticity because of its ability to reduce plaque for-
mation, as it binds Ab [140]. A randomized controlled clinical 
trial revealed increase of plasma TTR concentration after sup-
plementation of n-3 fatty acids after 6 months among indi-
viduals with AD, but the utility of TTR as a biomarker of syn-
aptic plasticity is unknown [136].

Amyloid-Beta Peptides

Amyloid-beta peptides (Ab) are involved in the pathogenesis 
of AD [141]. Continuing progression of Ab leads to cognitive 
decay and memory dysfunction due to its overaccumulation in 
the form of senile plaques as well as its oligomers, which ex-
ert synaptotoxic activity [141]. Intriguingly, a low physiological 
concentration of Ab was found to be crucial for proper neuro-
trophy, neuroprotection [142], and positive modulation of syn-
aptic plasticity and memory [143]. The exact mechanism of syn-
aptic dysfunction by Ab peptides is unclear [144]. It is generally 
believed that pathological amounts of Ab peptides lead to in-
direct overstimulation of extrasynaptic N-methyl-D-aspartate 
receptors (eNMDARs), resulting in abnormal dysregulation of 
calcium ions, oxidative stress, mitochondrial dysfunction, and 
subsequent impairment of synaptic transmission [144]. Excessive 
amounts of Ab peptides disturb NMDAR-dependent LTP and fa-
cilitate NMDA-dependent LTD, which is responsible for synaptic 
dysfunction [145]. Further studies revealed that Ab peptides can 
activate NMDAR, leading to abnormal secretion of glutamate 
into the synaptic cleft and contributing to synaptic dysfunction 
by inhibition of LTP [146]. Moreover, pathological amounts of 
Ab peptides disrupt uptake of glutamate, enhancing LTD [147].

Ab peptides are present in various forms, which are com-
posed of a different number of amino acids (from 39 to 43). 
The most common subtype is Ab40, but with less tendency 
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to aggregate [148], in comparison to Ab42, which is responsi-
ble for neuronal dysfunction in AD [149]. Ab oligomers corre-
late with cognitive decline [150] and can be found decades 
before the onset of AD [151]. However, studies on the useful-
ness of plasma Ab as a cognitive change biomarker have pro-
duced contradictory results, as some studies found low base-
line plasma Ab levels to be linked with higher probability of 
cognitive impairment [152-154], whereas others associate high 
levels of plasma Ab with increased risk of conversion to MCI or 
AD [155,156] or report no association [157,158]. All described 
biomarkers are also summarized in Table 1.

Future	Developments

One of the difficulties in implementing blood biomarkers in 
AD is slow-progressing character of the disease, which com-
plicates determination of the exact degree of blood brain bar-
rier (BBB) loss. The description of BBB dysfunction might be 
helpful in future development of blood synaptic biomarkers 
[159]. Another challenge is the probable need to prepare new 
standardized protocols for analysis and preparation of sam-
ples [160], as blood is a complex fluid with several potential-
ly confounding variables.

Marker Changes	in	the	AD Role in AD References

GFAP Increase Association with early Ab pathology [165] [29-33]

Ng
Increase Involved in synaptic plasticity through LTP mediated by 

calcium-calmodulin pathway [166]

[38-44]

Decrease [37]

Syt1 Increase
Enhancement of synaptic connections neurons and LTP 
[167] 

[49,50]

SNAP-25
Increase

Role in regulation of synaptic transmission [168] 
[54-57]

Decrease [53]

GAP-43
Increase 

Synaptic sprouting [58] 
Hippocampus [63-67]

Decrease Frontal cortex [64,65]

NPTX2
Decrease

Regulation of synaptic remodeling [169] 
[78]

Increase [79]

NPTXR Decrease [80-83]

Tau Increase Stabilization of microtubules in axons and dendrites [86] [91-93]

BDNF

Increase

Regulation of neuronal survival and plasticity [170] 

[97,106]

Decrease [99-104,107]

No association [105]

VEGF
Increase

Neuroprotective factor [109] 
[114,117,118]

No association [115,116]

D-serine
Increase Promotion of neuronal survival and prevention from 

neurodegeneration [119] 

[124]

No association [125]

TTR Increase Neurogenesis, regeneration of neurons [136] [136]

Ab

Increase

Neurodegeneration in excessive Mount [152] 

[155,156]

Decrease [152-154]

No association [157,158]

Table 1. Summary.

GFAP – glial fibrillary acidic protein; Ng – neurogranin; Syt1 – synaptophysin 1; SNAP-25 – synaptosomal-associated protein 25; 
GAP-43 – growth-associated binding protein 43; NPTX1 – neuronal pentraxin 1; NPTX2 – neuronal pentraxin 2; NPTXR – neuronal 
pentraxin receptor; BDNF – brain-derived neurotrophic factor; VEGF – vascular endothielial growth factor; TTR – transthyretin; 
Ab – amyloid-beta.
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A study found no significant correlation between blood and 
CSF levels of Ab [161], whereas serum Ab levels were high-
er in AD patients compared to controls, especially in individ-
uals with familial AD [162]. However, the entanglement of 
various confounding factors makes reproducibility of results 
difficult and complicates the role of Ab as a potential plasma 
biomarker [160]. Research on correlations between concen-
tration of tau protein in plasma and CSF also produced insig-
nificant results [163].

A recently developed method using neuronal-derived exosomes 
(NDEs) enables quantification of some synaptic proteins from 
plasma, including Syt1, Ng, ad GAP-43, with promising results 
in differentiating between healthy controls and AD patients. 
However, to fully prove its usefulness, further studies with 
larger samples are needed [164].

Conclusions

This review has presented an update on the current status of 
biomarkers of activity-dependent plasticity and persistent en-
hancement of synaptic transmission in AD. Biomarkers of syn-
aptic plasticity in AD could be used to monitor disease progres-
sion or response to treatment. These biomarkers could have 
an increasing role in routine clinical practice because of the 
rising incidence of AD in a global aging population. Therefore, 
the identification and clinical application of diagnostic, prog-
nostic, and treatment response biomarkers of synaptic plas-
ticity should focus on their widespread clinical applications.
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