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Abstract

Objective—To relate volumetric MRI findings to hypothermia therapy and neurosensory 

impairments.

Study Design—Newborns ≥ 36 weeks’ gestation with hypoxic-ischemic encephalopathy who 

participated in the NICHD hypothermia randomized trial at our center were eligible. We 

determined the relationship between hypothermia treatment and usual care (control) to absolute 

and relative cerebral tissue volumes. Further, we correlated brain volumes with death or 

neurosensory impairments at 18 to 22 months.

Results—Both treatment groups were comparable before randomization. Total brain tissue 

volumes did not differ in relation to treatment assignment. However, relative volumes of 

subcortical white matter were significantly larger in hypothermia-treated than control infants. 

Furthermore, relative total brain volumes correlated significantly with death or neurosensory 

impairments. Relative volumes of the cortical gray and subcortical white matter also correlated 

significantly with Bayley Scales psychomotor development index.

Conclusion—Selected volumetric MRI findings correlated with hypothermia therapy and 

neurosensory impairments. Larger studies utilizing MRI brain volumes as a secondary outcome 

measure are needed.
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INTRODUCTION

Neonatal encephalopathy resulting from suspected acute hypoxic-ischemic perinatal events 

affects 1–2 near-term and term newborns per 1000 births in the developed world.1,2,3 Up to 

40% of infants with moderate hypoxic-ischemic encephalopathy (HIE) and 100% of those 

with severe HIE either die or develop neurosensory impairments, including cerebral palsy, 

mental retardation, and deafness.4 Until recently, treatment for this disorder was primarily 

supportive. Randomized therapy with selective head or systemic induced hypothermia 

therapy has been administered to more than 700 newborns with HIE. 5,6,7,8,9,10 The 

National Institute of Child Health and Human Development (NICHD) whole-body 

hypothermia trial9, demonstrated a 28% relative reduction in death or moderate or severe 

disability at 18 to 22 months in hypothermia-treated infants compared with control infants. 

Although how hypothermia confers neuroprotection is not fully understood, hypothermia 

reduces cerebral metabolism, inhibits glutamate release, preserves high energy phosphates, 

reduces neuronal nitric oxide production, preserves endogenous antioxidants, and 

ameliorates apoptotic neuronal death in experimental models.11,12

Qualitative anatomic MRI studies have helped elucidate the potential short-term effects of 

hypothermia on the extent and pattern of cerebral injury following HIE13,14 and in 

predicting neurosensory disability.15,16 However, quantitative volumetric MRI – an 

emerging tool to assess subtle neuroanatomic treatment effects17–may provide 

complementary information to anatomic MRI scans by objectively assessing regional or 

global cerebral atrophy, a common sequelae of HIE,15,18 and improving prediction of 

neurosensory impairments.19,20 In this pilot investigation, we determined the feasibility and 

reliability of using volumetric MRI to investigate the effects of systemic hypothermia 

therapy on regional brain volumes for neonates with HIE and to establish whether MRI 

brain volumes correlate with neurosensory outcomes. We hypothesized that encephalopathic 

newborns randomized to whole-body hypothermia therapy8,9 will have larger total brain 

tissue volumes than those randomized to the usual care. We further hypothesized that total 

brain volumes will correlate with death or neurosensory impairments at 18 to 22 months of 

age.

METHODS

Subjects

All infants at our institution who were enrolled in the NICHD Neonatal Research Network 

whole body hypothermia trial8,9 were eligible for this substudy. All of the following criteria 

were required for enrollment in the trial: gestational age ≥36 weeks; NICU admission with a 

diagnosis of neonatal depression, asphyxia or encephalopathy; signs of acute perinatal 

asphyxia (cord or neonatal gas within the first hour with pH of ≤7.0 and/or base deficit of 
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≥16 mmol per L; if pH was between 7.01 and 7.15 or a base deficit was between 10 and 15.9 

mmol per L, or a blood gas was not available, additional history of an acute perinatal event 

and an Apgar score at 10 minutes of ≤5 or need for assisted ventilation at birth was 

required); and seizures or moderate or severe encephalopathy by standardized neurological 

examination. Of the 24 eligible infants, 10 subjects, 5 each in the hypothermia-treatment and 

control (usual care) groups, were excluded: 4 because of early death (3 receiving 

hypothermia treatment and 1 control); 3 (all controls) because they were discharged home 

without receiving a brain MRI; 2 because of incomplete MRI scans (1 hypothermia-treated 

and 1 control); and 1 due to poor image quality resulting from significant motion artifacts 

(hypothermia-treated). Of the 14 infants assessed, 8 were randomized to hypothermia 

treatment and 6 to the control usual care arm within 6 hours after birth. Seven of the 8 

infants in the hypothermia arm were systemically cooled to a core temperature of 33.5°C 

and one from the pilot trial8 was cooled to 34.5°C with a cooling blanket (Blanketrol II 

Hyper-Hypothermia System, Cincinnati Sub-Zero). Hypothermia was maintained for 72 

hours at this temperature, followed by gradual re-warming over a 6-hour period (0.5°C per 

hour) until the core temperature reached 36.5°C. Core temperature was monitored with an 

esophageal probe and skin temperature with a probe placed on the abdominal wall. Infants in 

the control group were cared for on overhead radiant warmers and their abdominal-wall skin 

and esophageal temperatures recorded every 4 hours. While informed consent was obtained 

for each infant in the hypothermia trial, a separate institutional review board approval was 

obtained for this substudy.

Anatomic MRI Acquisition and Analysis

Standard anatomic MRI and diffusion-weighted images were obtained with a GE-LX or GE-

Horizon 1.5 Tesla scanner (General Electric, Milwaukee, WI). Axial T2 scans (TE 85; TR 

4500; slice thickness 4 mm; gap 2mm). One of the authors (EBM), blinded to clinical 

history and treatment assignment, interpreted all anatomic MRI scans using a modified HIE 

MRI scoring system based on studies by Barkovich et al21 and Mercuri et al22 (0=normal; 

1=abnormal signal in either basal ganglia (putamen, caudate, and globus pallidus), thalamus, 

or cortex; 2=abnormal signal in cortex and either basal ganglia or thalamus; OR abnormal 

signal in entire cortex; 3=abnormal signal in cortex, basal ganglia and thalami; 4=abnormal 

signal in entire cortex, basal ganglia, and thalamus). Degree of myelination/signal intensity 

of the posterior limb of the internal capsule23 and presence of other abnormalities such as 

brain atrophy and vascular territory infract were also assessed.

Volumetric MRI Analysis

The primary anatomical references used were the Haines atlas of neuroanatomy24 Bayer 

and Altman atlas of human central nervous system development 25 and 2 online human 

atlases.26,27 Axial T2-weighted images were imported into Analyze 7.0 software 

(Biomedical Imaging Resource, Mayo Clinic, Rochester, MN) for manual and semi-

automated whole brain segmentation and volume rendering. We estimated brain volumes for 

the 2mm gap using Analyze. After standardization of image intensity, readily identifiable 

structures were manually segmented based on predefined algorithms, including pixel 

intensity and known spatial neuroanatomical boundaries, in the following order: brain stem, 

fourth ventricle, cerebellum, amygdala, corpus callosum, thalamus, lenticular nucleus, 
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caudate nucleus, and third ventricle (Figure 1B). The lateral ventricles, subcortical/

periventricular white matter, cortical gray matter, and extra-axial CSF were segmented last 

using semiautomated algorithms (Figure 1C).

The ventricles, cerebellum, corpus callosum, cortical gray matter, subcortical white matter, 

and extra-axial CSF were identified and segmented as previously described.17 The brain 

stem was defined by its central location and anterior placement to the cerebellum and fourth 

ventricle. The amygdalae were bound by the hippocampi inferiorly, the lateral ventricles 

inferior-laterally, and the mamillary bodies superiorly.28,29 The thalamic nuclei were 

defined as anterior to the posterior commissure, floor of the lateral ventricles posteriorly, 

posterior limb of the internal capsule medially, and third ventricle laterally. The lenticular 

nuclei were bounded by the internal capsule laterally and external capsule medially. The 

caudate nuclei were located lateral to the anterior horn of the lateral ventricle, lateral and 

ventral to the anterior limb of internal capsule and anterior to the lenticular nucleus. The 

inferior boundaries of the caudate head began at the level of the anterior commissure and the 

most inferior aspect of the third ventricle.30,31

Subcortical gray matter was defined as comprising thalamic, lenticular (putamen and globus 

pallidum), amygdalae, and caudate nuclei. Total intracranial volume was defined as all brain 

tissue and CSF spaces combined. Total brain tissue volume was defined as the total 

intracranial volume minus all CSF spaces. One of the authors (CNG), blinded to clinical 

history and group treatment assignment, segmented all the MR images.

Volumetric MRI Reliability

Regional and global brain segmentation for all 14 MRI scans was repeated by the same 

author (CNG) a fourth time and results compared to the third iteration to determine the 

intraobserver correlation coefficients for all segmented brain regions. Interobserver 

correlation coefficients were determined by comparing segmentation performed by CNG to 

segmentation performed by another experienced evaluator in a separate group of 10 preterm 

subjects scanned at term-equivalent age utilizing the same methodology and landmark 

definitions.

Data Collection and Neurosensory Assessment

Research nurses using prespecified definitions and data forms collected clinical data 

prospectively.9 Anatomic brain MRI was recommended at 44 weeks postmenstrual age or at 

discharge home, whichever occurred first. Data on vision and audiometric characteristics 

were obtained from parental report and standardized neurologic and developmental testing 

were performed by trained and certified examiners blinded to intervention status at 18 to 22 

months of age.9 An assessment of neuromotor disability was based on the presence of 

cerebral palsy, and functional disability was graded according to the Gross Motor Function 

Classification System (GMFCS; range 1–5)32 (level 1 includes children who walk 

independently with some gait abnormalities; level 5 includes those who require adult 

assistance to move). Cognitive outcomes were assessed by using Bayley Scales of Infant 

Development II.33 Moderate disability was defined as a Bayley Mental Development Index 

(MDI) scores 1 to 2 SD below the mean score (i.e., 70 to 84) in addition to one or more of 
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the following: a GMFCS grade of level 2, hearing impairment with no amplification, or a 

persistent seizure disorder. Severe disability was defined as any of the following: MDI score 

more than 2 SD below the mean score (i.e., below 70), a GMFCS grade of level 3 to 5, 

hearing impairment requiring hearing aids, or blindness.9

Statistical Analysis

Baseline variables known or suspected to affect the primary outcome were compared in the 

hypothermia-treated and control groups using the Mann-Whitney U test for continuous 

variables and Fisher’s exact test for categorical variables. To control for the effects of small 

and statistically nonsignificant group differences in head circumference and/or 

postmenstrual age at MRI, we also tested relative brain volumes (absolute volume divided 

by total intracranial volume). Therefore, all analyses examined the effect of absolute and 

relative regional brain volumes. Outcomes were analyzed by Fisher’s exact test or the 

Mann-Whitney U test as appropriate. Correlations of relative brain volumes with the Bayley 

subscales were assessed using Spearman rank correlation (ρ). The analyses were conducted 

using NCSS (version NCSS 2004; NCSS, Kaysville, Utah) statistical software. Intraobserver 

and interobserver correlation coefficients were calculated using SPSS software (version 

10.0.7; June 2000; SPSS, Inc. Chicago, IL). Multiple secondary analyses were conducted to 

identify significant relationships and to generate new hypotheses. A P value of <0.05 was 

considered significant. All reported P values are 2 sided and uncorrected for multiple 

comparisons.34

RESULTS

Subjects

Before randomization, the 8 hypothermia-treated infants and 6 usual care control infants 

were comparable with respect to important baseline variables (P = NS; Table 1). While only 

large differences would be statistically significant with the modest number of infants 

studied, with the exception of cord pH, there was no overall tendency for the hypothermia 

group to be lower risk than the usual care group. Median postmenstrual age at MRI scan was 

also comparable in hypothermia-treated infants (41.0 weeks; 95% CL: 38.6–43.3) and 

control infants (40.4 weeks; 95% CL: 38.7–45.9) (P=0.60). An MRI scan was performed 

within 10 days of life in 4 infants in the usual care and 3 in the hypothermia group.

Perinatal Variables and Total and Regional Brain Volumes

As expected, head circumference, gestational age, and postmenstrual age at MRI scan all 

correlated with total brain intracranial volume (correlation coefficients=0.55 to 0.67; 

P=0.008 to 0.05). These covariates were comparable in our two treatment groups. Potential 

residual scaling effects were controlled by including relative regional brain volumes in the 

analysis (absolute volume divided by total intracranial volume).

Hypothermia and Anatomic MRI Outcomes

Three of the eight hypothermia-treated infants and three of the six controls had abnormal 

anatomic brain MRIs before discharge home (P=NS). Two of the three hypothermia-treated 

infants with abnormal MRI scans had cortical lesions with sparing of the basal ganglia/
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thalamus and the third had cortex-sparing lesions in the basal ganglia/thalamus. Among the 

control infants, one infant had isolated basal ganglia/thalamic lesions, one had cortical 

lesions only, and the third had severe lesions to the basal nuclei and cerebral cortex.

Volumetric MRI Reliability

The intraobserver correlation coefficients ranged from 0.80 to 0.83 for the amygdalae, 

thalamic and caudate nuclei and 0.90 to 0.99 for all the other segmented structures and tissue 

classes. The interobserver correlation coefficient for the lenticular nucleus was 0.88, 0.89 for 

the corpus callosum, and 0.93 to 1.00 for all the other segmented structures and tissue 

classes.

Hypothermia and Regional Brain Volumes

Table 2 presents the absolute and relative brain tissue volumes. Although hypothermia-

treated infants had larger absolute total brain tissue volumes, our primary outcome, this 

difference was not statistically significant. There was no significant difference in relative 

total brain tissue volumes either. We did however observe significantly larger relative 

subcortical white matter volumes in hypothermia-treated infants as compared to control 

infants (P=0.02).

Hypothermia, MRI and Neurosensory Outcomes

Mortality and neurosensory outcome data at 18–22 months were available for all 14 infants. 

Bayley Scales testing however was not performed for two infants (evaluator unavailable). 

These two infants (one from each treatment arm) had normal hearing, vision, and motor 

function on standardized neurological exam. One hypothermia treated infant died after 

nursery discharge but before follow-up. Of the 11 infants with a complete standardized 

neurosensory examination (median age 19 months; 95% CL: 18–28), six were diagnosed as 

having severe neurosensory impairments, and the other five had mild to no impairments. In 

our small sample, treatment assignment did not correlate with death or moderate or severe 

neurosensory impairments (4 of 7 hypothermia-treated infants and 3 of 5 controls; P=NS).

Anatomic MRI findings prior to nursery discharge were strongly associated with death or 

neurosensory impairments: all five infants with abnormal anatomic MRI scans either died or 

developed severe neurosensory impairments (sixth infant with an abnormal MRI did not 

receive a Bayley exam); of the seven infants with normal MRI scans (eighth infant with a 

normal MRI did not receive a Bayley exam), five were developing normally at ≥ 18 months 

and two developed severe impairments (P=0.03). These two infants with a normal MRI and 

severe impairments were both treated with hypothermia, did not have a history of seizures, 

demonstrated a normal standardized neurological exam at discharge and normal clinical 

anatomic MRI readings as well. One of these MRI scans was performed at 21 days of life 

and the second at 5 days of life (122 hours post-birth). In the latter of these two cases, 

diffusion weighted images did demonstrate restricted diffusion in the left occipital 

periventricular white matter, however no signal changes were evident on T1 or T2 weighted 

scans. At 18–22 months, both these infants had a normal motor exam and PDI score at 2 

years of age, but Bayley MDI scores two standard deviations below the mean (<70). Overall, 
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anatomic MRI findings did not significantly correlate with Bayley MDI (P=0.18) or PDI 

scores (P=0.21).

Relative total brain tissue volumes were significantly associated with death or neurosensory 

impairments (P=0.048). Similarly, relative total CSF volumes also correlated with such 

adverse outcomes (P=0.048). However, there was no relationship between absolute total 

brain tissue volumes or total CSF volumes and adverse outcomes. Neither absolute or 

relative subcortical white matter nor cortical gray matter significantly correlated with death 

or disability (P=NS). Relative cortical gray matter and subcortical white matter combined 

volume showed a nonsignificant trend toward correlation with death or neurologic disability 

(P=0.11). No other cerebral regions correlated with death or neurosensory disability. The 

two hypothermia infants with a normal anatomic MRI that developed severe cognitive 

delays had absolute and relative total brain tissue volumes close to the median for the 

hypothermia group.

Last, we observed a significant correlation between relative cortical gray matter and 

subcortical white matter combined volume and Bayley PDI (ρ=0.69; P=0.02). No significant 

relationship existed between relative cortical gray matter and subcortical white matter 

combined volume and Bayley MDI (ρ=0.36; P=0.28). Similarly, relative volumes of total 

brain tissue did not significantly correlate with PDI (ρ=0.51; P=0.11) or MDI scores 

(ρ=0.43; P=0.19). None of the other regional volumes correlated with Bayley II MDI or PDI 

scores.

DISCUSSION

In a single center substudy of the NICHD randomized controlled trial of systemic 

hypothermia, we demonstrated the feasibility and reliability of measuring regional brain 

volumes in infants with HIE. We did not observe significantly larger total brain tissue 

volumes in infants randomized to hypothermia as compared to usual care. Except for 

subcortical white matter, hypothermia was not associated with significantly larger absolute 

or relative volumes in the multiple regions assessed. This absence of differences may reflect 

the small sample size or multiple small baseline differences between the groups favoring the 

usual care group. Alternatively, systemic hypothermia may exert beneficial effects primarily 

through preservation of subcortical/periventicular white matter, a vulnerable region that is 

often injured in infants with HIE. We also observed a significant correlation between 

qualitative and quantitative measure of brain injury on MRI and death or neurosensory 

impairments at ≥ 18 months of age. While volumetric MRI did not appear to provide an 

incremental benefit over anatomic MRI in prediction of neurosensory impairments, our 

study lacked the power to detect smaller differences in diagnosis. Additionally, because half 

of the subjects had their MRI scans within 10 days post-birth, we may not have captured the 

full extent of the cerebral atrophy that follows perinatal hypoxia-ischemia.15,18

To our knowledge, this is the first study to use volumetric brain MRI to assess the effect of 

hypothermia therapy on regional and global cerebral volumes in term infants with HIE and 

to correlate such volumes with their neurosensory impairments. Volumetric MRI may yield 

information complementary to that of qualitative MRI and volumetric sequences can be 
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readily incorporated into routinely performed anatomic MRI scans. Moreover, because brain 

volumes are a continuous outcome measure, significant group differences can be readily 

detected, even with small sample sizes. For these reasons, investigators should consider 

including volumetric analyses along with qualitative MRI assessments. We were able to 

reliably segment not only the three major tissue classes but also smaller subcortical 

structures commonly involved in hypoxic-ischemic injury. Atrophy and cellular loss, an 

important pathologic feature of cerebral injury following hypoxia-ischemia,15,35 can be 

more objectively assessed using 3-dimensional quantitative analyses than with qualitative 

assessments using conventional MRI.

We were able to measure brain volumes using the existing NICHD hypothermia study 

anatomic brain MRI data and commercially available segmentation software. While this 

type of analysis can be performed on regular T2-weighted MRI scans, ideally spoiled 

gradient thin isotropic contiguous slices are required to accurately assess brain volumes for 

smaller structures. Because the anatomic MRI scans we analyzed were performed with a 2 

mm gap, brain volumes for this gap were estimated using the Analyze software. While this 

should have adequately compensated for the slice gap for larger structures and tissue classes, 

the reliability of volume measurements for smaller structures may not be as robust. This 

limitation may have masked true differences in volumes for vulnerable structures such as the 

lenticular nucleus and thalamus. Furthermore, our small sample size lacked the power to 

detect smaller yet meaningful differences in volumes. However, because the primary 

intervention was randomized, our findings are not subject to some of the limitations inherent 

in observational studies.

Unlike Inder and colleagues,13 we observed selective neuroprotection of the subcortical 

white matter rather than cortical gray matter after systemic hypothermia therapy. Their 

study13 also observed more frequent isolated basal ganglia injury in hypothermia-treated 

infants than in controls. In contrast, Rutherford and colleagues14 in an observational study, 

reported significantly fewer lesions in the basal ganglia and thalamus after whole-body or 

selective head cooling than in unmatched controls with HIE. In our small randomized study, 

we observed no qualitative or quantitative differences in basal nuclei injury. Similar but 

larger quantitative studies, including volumetric MRI and diffusion tensor imaging, 

performed at discharge and at neurodevelopmental follow-up are required to delineate the 

regional effects of hypothermia therapy.

As in several previous HIE studies,15,16 we observed a strong relationship between 

structural lesions detected by anatomic MRI and neurosensory impairments at ≥ 18 months 

of age. Similarly, total brain tissue volume correlated with this important adverse outcome. 

Relative cortical gray matter and subcortical white matter combined volumes also correlated 

significantly with Bayley PDI scores. To our knowledge, only one other study has correlated 

in vivo brain volumes, as measured by volumetric MRI at term equivalent age, with 

neurosensory outcomes at ≥ 18 months of age.20 That pilot investigation of preterm infants 

and term controls demonstrated a significant correlation between several hemispheric white 

and cortical gray matter regional volumes with Bayley MDI and PDI scores. One larger 

cohort study related brain volumes in preterm infants to object working memory at 2 years 

but not motor or sensory impairments as in our study.36 Our study provides preliminary 
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evidence that volumetric MRI is also a significant predictor of neurosensory outcomes in 

term infants with HIE. Advanced quantitative MR imaging is emerging as a valid tool to 

assess the short-term neurologic effects of neonatal interventions17 and facilitate prediction 

of neurosensory outcomes.

CONCLUSIONS

In a single-center, substudy of the NICHD randomized whole-body hypothermia trial, we 

demonstrated that volumetric brain MRI is a feasible and reliable surrogate measure 

predictive of neurosensory impairments. Larger multi-center studies are needed to fully 

reveal the potential benefits and limitations of volumetric MRI for assessing the effects of 

neuroprotective interventions for infants with HIE. In centers where it is feasible to reliably 

assess quantitative MRI, we recommend that future randomized trials of neuroprotection 

assess in vivo brain volumes as a secondary outcome measure in all or a representative 

sample of treated infants.
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FIGURE 1. Representative example of brain volume segmentation and labeling methodology for 
an axial T2-weighted brain MRI
A. Unsegmented T2- weighted mid-brain MRI slice.

B. Manual segmentation and labeling of smaller subcortical structures: 10-corpus callosum; 

17-thalamus; 18-lenticular nucleus; 19-caudate nucleus

C. Fully segmented mid-axial slice. Representative pixels were individually sampled from 

the lateral ventricles (light blue), subcortical white matter (white), and cortical gray matter 

(green) and segmented using a semi-automatic segmentation tool. Extra-axial CSF (cyan) 

spaces were sampled and labeled last, based on location and clear regional intensity 

differences.
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TABLE 1

Baseline Characteristics of Hypothermia-Treated and Usual Care Control Infants

Variables
Hypothermia-Treated

(N = 8)
Controls
(N = 6)

Gestational age, wk* 38.5 (36 – 40) 39.5 (37 – 41)

Birth weight, g* 3288 (2775 – 3850) 3415 (2385 – 4885)

Head circumference, cm* 34.3 (32.5 – 35.5) 35.0 (33.0 – 37.0)

Male, n (%) 5 (63%) 3 (50%)

Non-Caucasian, n (%) 7 (88%) 6 (100%)

Chest compressions at birth 4 (50%) 1 (17%)

Resuscitation at 10 minutes 6 (75%) 4 (67%)

Apgar score (5 min)* 3 (0 – 6) 3.5 (1 – 5)

Apgar score (10 min)* 4 (0 – 5) 5 (3 – 7)

Cord pH* 6.96 (6.57 –7.25) 6.77 (6.63 – 7.18)

Outborn 3 (38%) 1 (17%)

Moderate encephalopathy, n (%) 6 (75%) 5 (83%)

Severe encephalopathy, n (%) 2 (25%) 1 (17%)

*
Median and 95% CL
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TABLE 2

Absolute and Relative Brain Tissue Volumes (Median and 95% CL) in Hypothermia-Treated and Control 

Infants

Tissue Class
Hypothermia-
Treated (N=8)

Control
(N=6) P Value

Total brain tissue, total

  Absolute volume, mL 373.1 (314.0 – 396.5) 348.1 (216.2 – 448.6) 0.34

  Relative volume, % 84.3 (78.1 – 87.4) 84.2 (46.8 – 89.8) 0.85

Subcortical white matter

  Absolute volume, mL 152.7 (119.3 – 173.0) 134.8 (119.4 – 188.8) 0.18

  Relative volume, % 35.2 (33.2 – 36.6) 33.5 (29.6 – 34.9) 0.02

Cortical gray matter

  Absolute volume, mL 157.7 (146.1 – 170.3) 163.4 (27.4 – 190.2) 0.45

  Relative volume, % 35.9 (32.5 – 40.4) 39.2 (5.9 – 43.7) 0.57

Subcortical gray matter*

  Absolute volume, mL 18.7 (16.4 – 22.3) 18.0 (12.4–25.5) 0.75

  Relative volume, % 4.2 (4.0 – 5.0) 4.5 (2.7 – 5.3) 0.66

Corpus callosum

  Absolute volume, mL 1.0 (0.6–1.6) 1.0 (0.2 – 1.9) 0.75

  Relative volume, % 0.2 (0.1 – 0.4) 0.2 (0.1 – 0.5) 0.95

Brain stem

  Absolute volume, mL 8.3 (6.3 – 8.6) 7.8 (7.2 – 9.3) 0.85

  Relative volume, % 1.8 (1.5 – 2.0) 1.9 (1.6 – 2.2) 0.75

Cerebellum

  Absolute volume, mL 25.2 (18.4 – 27.5) 25.5 (21.5 – 34.1) 0.85

  Relative volume, % 5.8 (4.9 – 6.1) 6.1 (5.4 – 6.3) 0.14

Total cerebrospinal fluid

  Absolute volume, mL 67.4 (45.2 – 89.5) 66.8 (39.4 – 245.7) 0.95

  Relative volume, % 15.7 (12.2 – 19.1) 15.8 (10.2 – 53.2) 0.85

Total intracranial volume

  Absolute volume, mL 437.3 (359.2 – 486.0) 419.5 (357.4 – 562.2) 0.66

*
Comprising caudate, amygdalae, thalamic, and lenticular nuclei
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