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Abstract: Obesity and diabetes is generally accompanied by a chronic state of oxidative stress,
disequilibrium in the redox balance, implicated in the development and progression of complications
such as micro- and macro-angiopathies. Disorders in the inner layer of blood vessels, the
endothelium, play an early and critical role in the development of these complications. Blunted
endothelium-dependent relaxation and/or contractions are quietly associated to oxidative stress.
Thus, preserving endothelial function and oxidative stress seems to be an optimization strategy in
the prevention of vascular complications associated with diabetes. Diet is a major lifestyle factor
that can greatly influence the incidence and the progression of type 2 diabetes and cardiovascular
complications. The notion that foods not only provide basic nutrition but can also prevent diseases
and ensure good health and longevity is now attained greater prominence. Some dietary and lifestyle
modifications associated to antioxidative supply could be an effective prophylactic means to fight
against oxidative stress in diabesity and complications. A significant benefit of phytochemicals
(polyphenols in wine, grape, teas), vitamins (ascorbate, tocopherol), minerals (selenium, magnesium),
and fruits and vegetables in foods is thought to be capable of scavenging free radicals, lowering the
incidence of chronic diseases. In this review, we discuss the role of oxidative stress in diabetes and
complications, highlight the endothelial dysfunction, and examine the impact of antioxidant foods,
plants, fruits, and vegetables, currently used medication with antioxidant properties, in relation to
the development and progression of diabetes and cardiovascular complications.

Keywords: diabetes; complications; oxidative stress; antioxidants; plants; prevention

1. Introduction

Today, WHO and IDF (International Diabetes Federation) draws attention to the similarity of trends
in obesity and diabetes in the World. The term “diabesity” is commonly used today to describe this
epidemic or pandemic with exponential dramatic growth observed in all countries [1]. Our change of
lifestyle to a sedentary attitude and massive industrialization with access from an early age to food
and beverages rich in energy, fat, sugar, or a combination thereof is partly the cause of millions of
obese and diabetic people [2]. Despite technical and technological progress accompanying therapeutic
arsenal available and public health plans, we fail today to stop the progression of diabetes and its
complications. In fact, diabetes is a silent and sneaky disease. Therefore, it is associated with many
complications. Cardiovascular diseases are the major cause of death and disability among diabetic
people [3], particularly for woman who have lost cardiovascular protection afforded by the classically
female sex. Diabetic vascular complications are an important pathological issue in diabetes that leads
to the further functional deterioration of several organs and caused micro- and macro-angiopathy [4].
Endothelial dysfunction, the loss of a balance between vasodilators and vasoconstrictors factors in the
blood vessels, has largely been associated in several regions of the vasculature in T2D [5].
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A common point of all these cardio-metabolic disorders is the appearance of oxidative stress.
Oxidative stress is due to an imbalance between antioxidants (enzymes, vitamins, proteins, etc.) and
pro-oxidants (UV radiations, alcohol, smoking, etc.) [6]. Oxidative stress along with chronic low-grade
inflammation may initiate changes in cardiovascular structure and function such as endothelial
dysfunction, cardiac hypertrophy, cardiac fibrosis, and ventricular contractile dysfunction [7].
Many studies have shown that diabetic patients undergo chronic oxidative stress, particularly due to
hyperglycemia [8,9]. Thus, a strategy focus on both oxidative stress and endothelial function could
help to prevent or delay the onset of vascular-related type 2 diabetes complications.

Much evidence shows that consumption of natural source substances confers chemopreventive
and cytoprotectant activities. In fact, epidemiological studies suggest that consumption of fruits,
vegetables [10–14], and plants [15] may be associated with a reduced risk of diabetes or a protective
effect [16]. Some observations have also revealed an inverse relationship between the risk of
cardiovascular mortality or morbidity and the consumption of polyphenol-rich products (red wine,
cocoa and tea) [17–20]. Their consumption brings several exogenous antioxidants and vitamins,
increasing the antioxidant status of the organism, in addition to their direct effect on blood vessels and
in particular on the endothelium [21].

Many plants are also used for their benefits in traditional medicines. Some of them are at
the origin of the development of drugs [16] such as biguanide, metformin, antidiabetic drugs, and
Galega officinalis. In developed countries, traditional, complementary, and alternative medicines are
becoming increasingly popular and are commonly used to treat or prevent chronic diseases and are
improving quality of life [15].

Therefore, we will see through this review that many compounds surrounding us can be a real
asset in the prevention of “diabesity” but also a valuable aid in addition to current treatments to
prevent the occurrence of such complications. We will also discuss the appeal for the use of single
molecules to the detriment of total extracts, thereby promoting molecular synergy.

2. Diabesity and Cardiovascular Complications

2.1. The Evolution of Obesity and Diabetes

Developed societies face two crucial health problems: overweight and obesity. Obesity is the
most common metabolic disease, and the number of individuals who are overweight or obese is
fast increasing worldwide [22]. Overweight and obesity are defined as abnormal or excessive fat
accumulation that may impair health. Body mass index (BMI) is a simple index of weight-for-height
that is commonly used to classify overweight and obesity in adults. It is defined as a person's weight
in kilograms divided by the square of his height in meters (kg/m2). BMI is widely used as a measure
of weight status and disease risk and is widely used for routine characterization of weight status in
epidemiology, clinical nutrition, and research. Moreover, fat mass and fat-free mass as assessed by
validated techniques (densitometry, dual impedance analysis, etc.) are also currently used. Thus, the
term obesity in our review is used in a broad sense that includes BMI, fat mass, % body fat, etc.

Obesity has more than doubled since 1980. The prevalence of overweight and obese youth has
increased dramatically over the past three decades [23]. In 2014, more than 1.9 billion adults, 18 years
and older, were overweight. Of these over 600 million were obese. 39% of adults aged 18 years and
over were overweight in 2014, and 13% were obese. Most of the world’s population lives in countries
where overweight and obesity kills more people than does underweight.

Overweight and obesity have reached epidemic proportions globally along with an adoption of a
Westernized lifestyle characterized by a combination of excessive food intake and inadequate physical
activity. Raised BMI is a major risk factor for noncommunicable diseases such as cardiovascular
diseases (mainly heart disease and stroke), which were the leading cause of death.

The dramatic rise in the prevalence of obesity and changes in lifestyle-related factors such as
a reduction in physical activity have been accompanied by alarming increases in the incidence and
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prevalence of type 2 diabetes [24]. Diabetes is a chronic disease that occurs either when the pancreas
does not produce enough insulin or when the body cannot effectively use the insulin it produces.
Insulin is a hormone that regulates blood sugar [25]. Hyperglycemia, or raised blood sugar, is a
common effect of uncontrolled diabetes and, over time, leads to serious damage to many of the body's
systems, especially the nerves and blood vessels. In 2014, 9% of adults 18 years and older had diabetes.
In 2012, diabetes was the direct cause of 1.5 million deaths. More than 80% of diabetes deaths occur in
low- and middle-income countries.

Epidemiological studies have confirmed a strong positive association between excess adiposity
and risk of developing type 2 diabetes. Based on the data from the Behavioral Risk Factors Surveillance
System conducted by the United States, Mokdad et al. [26] estimated that, for every kilogram increment
in self-reported body weight, the risk of diabetes increases by about 9%. The term “diabesity” has been
coined to illustrate the close relationship between obesity and diabetes [27,28].

2.2. Lifestyle

Lifestyle habits have deteriorated over time with increases in obesity, central obesity, and diabetes
and stagnating rates of persistent smoking. An increase in obesity and diabetes has paralleled the
growth of urbanization and globalization in the region. For example, in China, the prevalence
rates of diabetes in large provincial capital cities range from a high of 8% (in the Eastern region) to
4.6% (in the lowest in the Western region) [29]. Behavioral risk factors include tobacco use, alcohol
consumption, unhealthy diet, and physical inactivity. Physical inactivity is the 4th mortality risk factor
for mortality [30] with an increase of 20–30% of death compared with people who practice 30 min of
exercise a day [31].

Finally, advances in agriculture and food systems, consequent increases in food availability, and a
shift in dietary consumption patterns with economic development and urbanization of developing
societies promotes overweight and obesity. This “new” diet favors consumption of fats, saturated
fats largely from animal sources and sugars. The essence of these changes is captured by the term
“nutrition transition” which accompanies the demographic and epidemiologic transition in these
countries with economic development [32].

Epidemiological studies indicate that weight loss, even moderate, can improve insulin sensitivity,
improve insulin action, and decrease the risk of developing type 2 diabetes. Improvements in insulin
action after an average of 10% weight reduction were lost with weight regain but largely preserved
with weight maintenance [33].

Physical activity is associated with a significant reduction in the risk of type 2 diabetes, whereas a
sedentary lifestyle is associated with an increased risk [34,35]. There is a 20% increased risk of diabetes
for each 2-h daily increment in watching television [36]. However, some studies have demonstrated the
feasibility and efficiency of lifestyle intervention programs in the prevention of diabetes in individuals
with impaired glucose tolerance [37,38]. The lifestyle intervention program permits a reduction in
weight with moderate exercise and a controlled food intake (reduction of fat, increase in fiber, and
frequent consumption of fruits, vegetables, etc.)

2.3. Diabetic Complications: Link with Oxidative Stress and Inflammation

Chronic hyperglycemia, disturbances of carbohydrate, and lipid and protein metabolism lead
to metabolic derangements in diabetes and various complications including both macro- and
microvascular dysfunctions [22]. Over time, diabetes can damage the heart, blood vessels, eyes,
kidneys, and nerves. The incidence of cardiovascular diseases in people with diabetes, one of the
major complications, is three to four times that in non-diabetic individuals. In a multinational study,
50% of people with diabetes die of cardiovascular disease (primarily heart disease and stroke) [39],
with a twofold increase in risk of heart failure in male patients, and a fivefold increase in female
patients [40]. Likewise, diabetes increased incidence of coronary artery disease and atherosclerotic
lesions at a younger age, often associated with multivessel disease and involvement of distal coronary
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segments. Hypertension is also commonly found in both type 1 and type 2 diabetes [41]. Finally,
diabetes can cause distinct pathologic alterations in the myocardium, independent of its effect on blood
pressure and coronary atherosclerosis, termed “diabetic cardiomyopathy” (DMC) [42]. We will focus
on cardiovascular complications below in this review.

Combined with reduced blood flow, neuropathy (nerve damage) in the feet increases the chance
of foot ulcers, infection, and the eventual need for limb amputation and affects almost 30% to 50%
of patients with diabetes. One percent of global blindness is attributed to diabetic retinopathy [43]
due to a long-term accumulated damage to the small blood vessels in the retina, and the overall risk
of dying among people with diabetes is at least double the risk of their peers without diabetes [44].
Another important microvascular complications is diabetic nephropathy, of which there is a ninefold
higher risk in patients with diabetes, leading to end-stage renal disease requiring chronic dialysis and
transplantation [23].

Oxidative stress has been suggested to be a common pathway for the pathogenesis of
complications in diabetes [24,25]. For example, (1) the production of hydrogen peroxide by mesangial
cells and lipid peroxidation, activation of protein kinase C (PKC), mitogen-activated protein (MAP)
kinases, and cytokine production lead to renal injury [26]; (2) the redox-sensitive nuclear transcriptional
factor, NFκB, accumulation of advanced-glycation end-products (AGEs) localized in sub-retinal
membranes, and microvessels are activated earlier in the course of diabetic retinopathy [23,27] in
addition to polyol accumulation and glycation associated to cataract [28]; (3) AGEs inhibit axonal
regeneration [29], an increase in DNA damage and the stimulation of the PKC pathway, and NFκB
and TGF-β increase deposition of the extracellular matrix [30], and all mechanisms have involved
in neuropathy. Moreover, HbA1c, a biomarker of the overall glycemic exposure, is the most known
diabetic parameter link to oxidative stress. In fact, it is due to the glycation of hemoglobin. The increase
in Hb1Ac variability predicts the risk of microvascular complications in T1D [31–33] and the risk of
nephropathy and cardiovascular diseases in T2D [34–36].

In addition to oxidative stress, inflammation stands out as a determinant process in the
development of diabetic complications [37]. It is difficult, in fact, to understand the impact of these
factors without each other, since numerous interplays exist between inflammation and oxidative stress
and vice versa [38,39]. Hyperglycemia increases the levels of pro-inflammatory proteins [37], and
infiltrated macrophages secrete inflammatory cytokines (correlate with a higher body mass index:
IL-6, IL-8, MCP-1 [43]), thereby leading to a local and systemic inflammation. Increased production of
TNF-α has also been widely associated with obesity-related insulin resistance and abnormal vascular
reactivity, the vasculature being an important target of TNF-α [44] and closely linked to diabetic micro-
and macro-complications [40,45].

3. Oxidative Stress and Cardiovascular Complications

The concept that oxygen, which is essential to life, could be causing cell damage and involved
in many diseases, was discovered in recent years. Today, many epidemiological and clinical studies
strongly suggest the involvement of reactive oxygen species (ROS) in the genesis and evolution of
chronic diseases, including diabetes and its complications [7] (Figure 1). Chronic hyperglycemia caused
a major oxidative stress [22], and Yubero-Serrano et al. [46] recently proposed SOD activity as the most
relevant oxidative stress biomarker in patients suffering from metabolic syndrome. It could be used as
a predictive tool to determine the degree of the underlying oxidative stress in this pathology.



Diseases 2016, 4, 24 5 of 51
Diseases 2016, 4, 24 5 of 48 

 

 
Figure 1. Oxidative stress in the middle of diseases and complications, including diabetes. 

3.1. Oxidative Stress: A Question of Balance 

3.1.1. Oxygen Paradox and Anti-Oxygen 

Oxygen, which first appeared three billion years ago in Earth's atmosphere, is an essential 
molecule for life. Through redox mechanisms, oxygen, the final electron acceptor, is transformed into 
water by the mitochondrial respiratory chain [41]. This reaction is a source of energy through ATP 
production and also the formation of 2% to 3% of reactive oxygen species (ROS), a free radical that is 
particularly unstable and reactive [42]. In 1954, Gerschman published the free radical theory of 
oxygen toxicity, due to partially reduced forms of oxygen [47], and, two years after, Harman 
proposed the concept of involving free radicals in the aging process [48]. Whereas McCord and 
Fridovich discovered the enzyme superoxide dismutase (SOD) in 1969 [49] and provided convincing 
evidence about the importance of free radicals in the living system [50], the concept of anti-oxidants 
has been reported for much longer by Dufraisse and Moureu in the 1920s, when they discovered that 
the polymerization of acrolein was inhibited by hydroquinone, an oxygen-dependent mechanism 
[51]. Originally named “anti-oxygen,” the Anglo-Saxon term “antioxidant” was quickly privileged 
and replaced. Since the properties as second messengers of ROS were discovered for the first time by 
Mittal and Murad in 1977 [52], many studies are now interested in this delicate balance between the 
beneficial and harmful effects of free radicals, which is the redox regulation for maintaining redox 
homeostasis and has provided protection to living organisms from various oxidative stresses. 

3.1.2. Free Radicals, Oxidative Stress, and Diabetes 

Beside physiological oxidations, many environmental processes have induced free radical 
formations: air pollutants [53], tobacco [54], UV radiation from sun [55], and industrialized lifestyle 
[56]. Different endogenous enzymes can also form free radicals at physiological concentrations: 
NADPH oxidase, xanthine oxidase, cyclo-oxygenases (COXs), and lipo-oxygenases (LPOs), nitric-
oxide synthases (NOS), P450 cytochrome, and mitochondrial chain [57]. These free radical were 
reduced by the first line of antioxidant defense: the superoxide dismutase SOD [58]. Free radicals 
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3.1. Oxidative Stress: A Question of Balance

3.1.1. Oxygen Paradox and Anti-Oxygen

Oxygen, which first appeared three billion years ago in Earth's atmosphere, is an essential
molecule for life. Through redox mechanisms, oxygen, the final electron acceptor, is transformed into
water by the mitochondrial respiratory chain [41]. This reaction is a source of energy through ATP
production and also the formation of 2% to 3% of reactive oxygen species (ROS), a free radical that is
particularly unstable and reactive [42]. In 1954, Gerschman published the free radical theory of oxygen
toxicity, due to partially reduced forms of oxygen [47], and, two years after, Harman proposed the
concept of involving free radicals in the aging process [48]. Whereas McCord and Fridovich discovered
the enzyme superoxide dismutase (SOD) in 1969 [49] and provided convincing evidence about the
importance of free radicals in the living system [50], the concept of anti-oxidants has been reported for
much longer by Dufraisse and Moureu in the 1920s, when they discovered that the polymerization of
acrolein was inhibited by hydroquinone, an oxygen-dependent mechanism [51]. Originally named
“anti-oxygen,” the Anglo-Saxon term “antioxidant” was quickly privileged and replaced. Since the
properties as second messengers of ROS were discovered for the first time by Mittal and Murad in
1977 [52], many studies are now interested in this delicate balance between the beneficial and harmful
effects of free radicals, which is the redox regulation for maintaining redox homeostasis and has
provided protection to living organisms from various oxidative stresses.

3.1.2. Free Radicals, Oxidative Stress, and Diabetes

Beside physiological oxidations, many environmental processes have induced free radical
formations: air pollutants [53], tobacco [54], UV radiation from sun [55], and industrialized lifestyle [56].
Different endogenous enzymes can also form free radicals at physiological concentrations: NADPH
oxidase, xanthine oxidase, cyclo-oxygenases (COXs), and lipo-oxygenases (LPOs), nitric-oxide
synthases (NOS), P450 cytochrome, and mitochondrial chain [57]. These free radical were reduced
by the first line of antioxidant defense: the superoxide dismutase SOD [58]. Free radicals include
reactive nitrogen species (RNS) and reactive oxygen species (ROS). The most important is superoxide
anion (O2

.´), which is rapidly dismutated into oxygen and hydrogen peroxide (H2O2) by superoxide
dismutase (SOD). Then, catalase (CAT) dismutates H2O2 into water and oxygen, and glutathione
peroxidase (GPx) reduces both H2O2 and organics hydroperoxides (ROOH). However, in the presence
of transition metals such as iron or copper, O2

.´ and H2O2 form the strong oxidant hydroxyl
radical (OH.) via Fenton reaction and the Haber–Weiss reaction. With chloride ions and H2O2,
myeloperoxidase produce hypochlorous acid (HOCl). Nitric oxide (NO.) is produced from oxygen
by various nitric oxide synthases (NOS) and produces the strong oxidant peroxynitrite (ONOO-) by



Diseases 2016, 4, 24 6 of 51

reacting with O2
.´. No enzymatic process can degrade ONOO–; however, with the presence of CO2,

it form nitrate anion (NO3
´) and nitrogen dioxide (NO2) (Figure 2).
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Figure 2. Oxidative defense and complications. AGEs: advanced glycated end-products;
COX: cyclooxygenases; H2O2: hydrogen peroxide; LOX: lipoxygenases; NO: nitric
oxide; NOS: NO synthase; NADPH oxydase: nicotinamide adenine dinucleotide oxidase;
MDA: malondialdehyde (lipid peroxidation); SOD: superoxyde dismutases; GPx: glutathione
peroxydase; GSH gluthathione; O2

.´:superoxide anion; ONOO.´: peroxynitrite; OH. hydroxyl radical;
8-OHdG: 8-hydroxy-2’-deoxyguanosine (DNA damages).

In diabetes, the alteration of the first sites in the mitochondrial membrane lead to the activation of
the complex II [59] and contribute to the formation of excessive O2

.´ by a leakage of electrons [60].
NADPH oxidases (Nox’s), a family of enzymes with the sole function of producing ROS, are
implicated in the pathophysiology of many cardiovascular diseases [61–64] and are the major source of
glucose-induced ROS production in the vasculature [65,66], kidney [65], liver [66,67], and β cells [68],
confirming this enzyme as a mediator of diabetic complications. Recently, Brandes et al. [69] described
molecular mechanisms of Nox activation and supported their implications in diabetes, hyperglycemia,
and hyperinsulinemia through complex pathways involving NADPH oxidases. Xanthine oxidase
is also implicated in diabetes and vascular complications [70], whereas treatment of T2D patients
with Allopurinol, a XO inhibitor, reduces the level of oxidized lipids in plasma and improves blood
flow [70]. Glucose itself, as well as its metabolites, is known to react with hydrogen peroxide in the
presence of iron and copper ions to form hydroxyl radical during auto-oxidation, described in diabetes
and complications by Wolff and Dean in 1987 (Figure 2).

3.1.3. Antioxidants Defenses

The body has a number of very effective antioxidant defense systems to lower the concentration
of free radicals in the body. The term antioxidant refers to “any substance that, when present at low
concentration compared with that of an oxidizable substrate, significantly delays or inhibits oxidation
of the substrate” [71]. Nature of the antioxidant systems differs depending on the cell types, tissues,
and localization in the intracellular or extracellular medium [72]. There are different types of molecules,
natural or synthetic, with enzymatic or scavenging activities (Figure 3).
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Figure 3. Oxidative defense strategies. CAT: catalase; GPx: glutathione peroxydase; SOD:
superoxyde dismutases.

The first line of defenses against free radicals groups these enzymatic systems (SOD, CAT,
GPx) (Figures 2 and 3) and are aided by micronutrients (copper, zinc, selenium) [73] as cofactors.
There are three isoforms for the SOD described in mammals [74]: the manganese-SOD (MnSOD)
in the mitochondria, copper (Cu), or zinc (Zn) in the cytoplasm and the mitochondria, and both
Cu/Zn extracellular SOD (Cu/Zn SOD) in vessels. CAT is essentially present in peroxisomes and
in erythrocytes [75]. GPx is present in the extracellular fluid (blood) and in the cytoplasm and
membranes of cells [76] and forms a couple with glutathione reductase (GR) providing glutathione
(GSH) bioavailability [7].

The second line of defenses involves non-enzymatic antioxidants, such as naturally nutrients
provided by food, with a scavenging effect (capture of free electron and formation of more stable
entities), a stimulatory effect on endogenous antioxidant enzymes, or both [77]. Main molecules
are GSH, vitamin E (the most active form: α-tocopherol), vitamin C (L-ascorbic acid), vitamin
A (carotenoids), but also polyunsaturated fatty acids or exogenous flavonoids (quercetin, rutin,
resveratrol, etc.), which can strengthen the antioxidant defenses of the body [73]. For example,
increasing concentration of GSH with these products can protect against cancer [78] and diabetic
complications [79]. Vitamin E traps organic free radicals from the oxidation of lipids and helps reduce
lipid peroxidation.

B-cells are particularly sensitive to ROS because they are low in free radical quenching
(antioxidant) enzymes such as CAT, SOD, and GPx [80–82] and have a lower level of GSH [82,83].
However, the balance between free radicals and antioxidant defense systems is crucial to maintaining
homeostasis; if its equilibrium is broken in favor of the pro-oxidant entities, pathological oxidative
stress appears [84] (Figure 4).
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3.2.1. Physiological Roles: The Good Boy Side 

Oxygen homeostasis at the tissue level is vital for development, growth, and survival, and cells 
hence have evolved a number of mechanisms to sense and respond to low oxygen levels. Under 
physiological conditions, beneficial effects of free radicals occur at low or moderate concentrations 
and involve physiological roles in the regulation of cellular signals implicated in proliferation and 
cell adhesion, apoptosis, inflammatory responses, and the regulation of transcription factors [6]. ROS, 
in low concentration, are generating when cells are stimulated by cytokines, growth factors, and 
hormones [86], and ROS can thus play a role as a secondary messengers [87,88] like the mitogen-
activated protein kinase (MAPK) pathways [89], probably the most significant effect of metals and 
ROS. This involves the activation of nuclear transcription factors and control of the expression of 
protective genes that repair damaged DNA, power the immune system, arrest the proliferation of 
damaged cells, and induce apoptosis [89]. Cell adhesion plays an important role in embryogenesis, 
cell growth, differentiation, wound repair, and others, depending on redox regulation [90] and the 
involvement of NADPH oxidase [91]. In an inflammatory environment, activated neutrophils and 
macrophages produce a large quantity of ROS via NADPH oxidase and myeloperoxidase. This 
“oxidative burst” plays a key role in the defense against environmental pathogens [92]. Low and 
moderate levels of ROS also play important roles in regulating autophagy and apoptosis, therefore 
controlling cell death and survival [93,94], and ROS generated during ischemic preconditioning 
(alternation of short periods of ischemia and reperfusion) confer cardiac protection by reducing 
necrosis and the severity of arrhythmias, improving functional recovery when challenged with a 
longer period of ischemia [95]. This mechanism is very complex and involves triggers, mediators, 
and multiple second messengers’ pathways [96–98], but it is an innate physiologic adaptive process 
against potentially lethal ischemic injury. NO stimulates soluble guanylyl cyclase, leading to the 
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3.2. Free Radicals: Good and Bad Boys?

ROS and RNS are well recognized for playing a dual role as both deleterious and beneficial
species, since they can be either harmful or beneficial to living systems [85], but it is a well-known
feature that cells are capable of generating endogenously and constitutively ROS [6].

3.2.1. Physiological Roles: The Good Boy Side

Oxygen homeostasis at the tissue level is vital for development, growth, and survival, and cells
hence have evolved a number of mechanisms to sense and respond to low oxygen levels. Under
physiological conditions, beneficial effects of free radicals occur at low or moderate concentrations
and involve physiological roles in the regulation of cellular signals implicated in proliferation and
cell adhesion, apoptosis, inflammatory responses, and the regulation of transcription factors [6].
ROS, in low concentration, are generating when cells are stimulated by cytokines, growth factors,
and hormones [86], and ROS can thus play a role as a secondary messengers [87,88] like the
mitogen-activated protein kinase (MAPK) pathways [89], probably the most significant effect of metals
and ROS. This involves the activation of nuclear transcription factors and control of the expression
of protective genes that repair damaged DNA, power the immune system, arrest the proliferation of
damaged cells, and induce apoptosis [89]. Cell adhesion plays an important role in embryogenesis,
cell growth, differentiation, wound repair, and others, depending on redox regulation [90] and
the involvement of NADPH oxidase [91]. In an inflammatory environment, activated neutrophils
and macrophages produce a large quantity of ROS via NADPH oxidase and myeloperoxidase.
This “oxidative burst” plays a key role in the defense against environmental pathogens [92]. Low and
moderate levels of ROS also play important roles in regulating autophagy and apoptosis, therefore
controlling cell death and survival [93,94], and ROS generated during ischemic preconditioning
(alternation of short periods of ischemia and reperfusion) confer cardiac protection by reducing
necrosis and the severity of arrhythmias, improving functional recovery when challenged with a
longer period of ischemia [95]. This mechanism is very complex and involves triggers, mediators,
and multiple second messengers’ pathways [96–98], but it is an innate physiologic adaptive process
against potentially lethal ischemic injury. NO stimulates soluble guanylyl cyclase, leading to the
relaxation of vascular smooth muscle [99] and the essential role of NO in endothelium-induced
relaxation was discovered by Furchgott and Zawadzki in 1980 [100]. Nowadays, various studies
report a pivotal role of NO on vascular homeostasis (anti-thrombotic, anti-aggregate, anti-migration,
and relaxation) [101–103]. ROS play a crucial role in the activation of mechanotransduction signaling
pathways and in cardiac contraction and relaxation [104]. In addition, in cardiovascular health, insulin
sensitivity plays a vital role, and ROS intervene in the insulin signaling pathway. H2O2 induces typical
metabolic actions of insulin, linking ROS to insulin [105], increases glucose uptake in adipocytes and
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muscles [106], is involved in the modulation of vascular endothelial function [107], and stimulates
GLUT4 translocation and lipids synthesis in adipocytes [108]. However, ROS levels are the major
determinants of impaired versus enhanced insulin sensitivity [109] through a ROS-induced increase in
PI3K/Akt signaling [110].

3.2.2. Pathological Roles: The Bad Boy Side

Certainly necessary in many physiological pathways, their excessive production causes direct
damage to biological molecules (DNA oxidation, proteins, lipids, and carbohydrates) as well as
secondary damage due to cytotoxic and mutagenic character of metabolites released in particular
during the lipid oxidation (Figures 2 and 5). The body may also react against these abnormal
compounds by producing antibodies, which unfortunately may be autoantibodies creating a third
wave of attack.Diseases 2016, 4, 24 10 of 48 
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While DNA is the memory of all the biochemical live composition, it is very sensitive to free
radical “attack.” At the very least, five main classes of oxidative damage mediated by OH‚ can be
generated. Among them are oxidized bases, abasic sites, intra-catenary adducts, strand breaks, and
DNA-protein bridges [111]. In addition to ROS, RNS such as peroxynitrites and nitric oxide have also
been implicated in DNA damage [112]. The most extensively studied DNA lesion is the formation
of 8-OH-G, and these changes are the first steps of carcinogenesis [85]; it is no coincidence that the
carcinogenic agents are powerful free radical generators (UV and ionizing radiation, smoke, alcohol,
asbestos fibers, carcinogenic metals, polycyclic hydrocarbons, etc.) (Figure 5).

The carbon reactive compounds (RCCs), such as malondialdehyde (MDA) and 4-hydroxynonenal
(2-HNE), are formed endogenously during lipid peroxidation and glycoxidation of carbohydrates.
They react with the tissue and cellular proteins to form AGEs (advanced glycation end-products)
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and ALEs (advanced lipid peroxidation end-products), inducing protein dysfunctions (loss of
activity, increased sensitivity to proteases) [113,114] and damage in cellular responses—in particular,
in inflammatory responses and apoptosis [114,115]. Lipids, mainly polyunsaturated fatty acids, are the
main target of the attack by OH‚ and form conjugated diene radical [116]. These modifications concern
circulating lipoproteins or membrane phospholipids. These derivatives are often hydrophobic and
will therefore form in and around abnormal clusters of endothelial cells. These RCCs, MDA, 4-HNE, or
oxidized-LDL were found in large quantities during mechanisms of carcinogenesis in various stages of
cardiovascular diseases [117] such as atherosclerosis [118,119], metabolic syndrome [7], diabetes and
complications [120], obesity, and insulin resistance [121], and in chronic inflammatory diseases such
as lupus [122], asthma, chronic inflammation of the lungs, and respiratory allergies [123,124], and in
degenerative diseases [120] (Figure 5).

3.3. Oxidative Stress, Diabetes, and Vascular Complications

Increased oxidative stress has been proposed to be one of the major causes of
hyperglycemia-induced triggers of diabetic complications, implicates several mechanisms [125], and
is a bipolar process. The first is the generation of ROS, and the second is a decrease in plasma
antioxidants such as vitamin E, vitamin C, lipoic acid, and glutathione [126]. Both have been observed
in diabetic patients [127,128] with micro- and macrovascular diabetic complications [3,129], linking
metabolic-generated ROS to the development of diabetic complications [24]. This role of hyperglycemia
has been established by large-scale prospective studies for both T1D and T2D, the DCCT/EDIC
(Diabetes Control and Complications Trial) [130], the UKPDS (UK Prospective Diabetes Study) [131], and
the Steno-2 study [132]. Diabetic cardiovascular complications appear to be multifactorial in
origin [133,134], but, in particular, glycol-oxidative stress has been suggested to be the unifying
link between the various molecular disorders in diabetes mellitus [59,135]. In fact, it is well established
that hyperglycemia and acute glucose fluctuations have many side effects: modifying the redox
balance, increasing circulating FFA, increasing NADPH oxidase activity and TNFα [126], and
decreasing NADPH levels and glutathione, all of which generate by-products, activate oxidative,
and inflammatory signaling. Hyperglycemia induces (1) an increase in glucose and other sugar fluxes
through the polyol pathway, (2) an increase in advanced-glycation end-products (AGEs) formation
through the hexosamine pathway, (3) expression of their receptor (RAGE) [136], and (4) the stimulation
of protein kinase C (PKC) pathway. These mechanisms lead to increase production of glycative,
glycoxidative, and carbonyl free radicals [22,137,138], which altered enzymatic and non-enzymatic
antioxidant defenses. For example, oxidative stress increases mitochondrial DNA damages and
causes axons cell death, leading to neuropathies [139]. Accumulation of sorbitol, due to an enzymatic
conversion of excessive glucose, disrupts osmotic balance [140], a higher fructose production induces
AGEs formation [141], and all participate in peripheral insulin resistance development [142,143] and
β-cells injury [144]. Elevated AGEs may be a significant risk factor for T1D [145] and induce the
progression of pre-diabetes to diabetes [146] and some complications such as diabetic retinopathy [147].
As shown before, oxidative stress is closely link to inflammation. Indeed, circulating TNF-α may impair
vascular function by altering the balance between endothelial-derived vasodilator and vasoconstrictor
substances because it downregulated the expression of eNOS and upregulated ET-1 production in
endothelial cells [148]. Moreover, it may also directly activate NADPH oxidase and then increase the
production of ROS in the vasculature [149].

Oxidative stress can be measured in vivo in multiple types including cells, solid tissues, urine,
blood, and saliva. Several investigations correlated oxidative stress observed in serum and in saliva,
and, today, saliva can be considerate as an oxidative stress diagnostic fluid [150,151]. Some human
studies highlight reactive compounds in saliva in some pathologies, such as T1D [152–155] and
T2D [153,156], with the detection of biomarkers such as 8-oxodG [152], MDA, and TBARS, proteins
carbonyl [152], and total antioxidant capacity [153–156]. Recently, Wang et al. published a critical
review of salivary biomarkers of oxidative stress [157], highlighting the problem of standardization in
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methods of saliva collection and measurements of composition. They proposed a guideline that could
assist in discovery and validation of salivary oxidative stress biomarkers, allowing a diagnosis or even
a simple predictive test of diabetes.

3.4. Endothelial Dysfunction, Diabetes, and Complications

As shown before, a large amount of evidence has demonstrated that hyperglycemia plays an
important role in the pathogenesis of microvascular complications [158]. Dysfunction of the vascular
endothelium is also regarded as an important factor [159,160], closely related to hyperglycemia and
more recently to hypoglycemia [161], and has gained increasing attention in the study of vascular
disease [162,163]. In fact, the endothelium is in constant interaction with the blood and subjected
to mechanical stresses in the vessel, namely, intraluminal pressure, variations of flow including
shear stress, and high glucose concentration. This strategical localization allows it a protective role
as a detector toward theses stimuli. Endothelial cells respond to them through the production of
messengers, addressed to cells by the blood. Thus, the endothelium plays a key role in vascular
homeostasis by regulating the balance between relaxing and contracting factors. However, this
protective role of the endothelium is also the first target of risk factors such as high cholesterol
or high blood pressure [164], smoking [165], obesity and visceral fat distribution [166], impaired
fasting glucose and hyperglycemia [167,168], insulin resistance [169–172] where this strategic balance
is lost in favor to pro-mitogenic, pro-aggregation mediators [173,174], and inflammation [175].
Inflammation, in addition to oxidative stress, cause injury in cells (e.g., endothelial cells), leading
to endothelial dysfunction [176] reported in numerous human and animal studies. In turn, this
dysfunction promotes a pro-inflammatory environment as evidenced by increased endothelial
expression of adhesion molecules, the imbalance of arachidonic acid metabolites, and chemoattractant
molecules [176]. Forming a positive feedback loop, vascular inflammation leads to endothelial
dysfunction (176). Lipopolysaccharide (LPS) from the bacterial cell wall [177] and C-reactive
protein [178] are strong triggers for inflammation and endothelial vascular dysfunction in humans, as
observed in T2D [179,180].

These disorders enable endothelial dysfunction as an early step in pathologies such as
atherosclerosis and heart failure [181–186] and aging [187], as well as metabolic syndrome [188,189] and
diabetes [190,191]. Endothelial dysfunction has been associated in several regions of the vasculature in
animals and humans with T2D due to defects in NO-derived vasodilation [192,193], associated with
diabetic complications such as nephropathy [194], retinopathy [195], and erectile function in animal
models or human [190,196], and associated with cardiovascular and all-cause mortality in diabetic
patients [191]. However, vascular complications may also be related to defects in endothelium-derived
hyperpolarizing factor (EDHF) [193], which is thought to be an extremely important vasodilator
substance, notably in resistance vasculature [64]. Unfortunately, the nature and, indeed, the very
existence of EDHF remain obscure. Potentially, there are multiple EDHFs demonstrating vessel
selectivity in their actions [197].

Mechanisms are complex and multiple, and etiologies are still at the heart of current research;
however, oxidative stress are the common denominator [198] (Figure 6).
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Figure 6. Role of endothelium in vascular homeostasis. In a healthy artery, vasodilators factors
such as nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and prostacyclin
(PGI2) play a key role in homeostasis. In a pathological artery, they decrease in favor of contractor
factors such as endothelium-derived contracting factor (EDCF), prostaglandin (PGH2), endothelin-1
(ET-1), and thromboxane A2 (TXA2) in the presence of oxidative stress and superoxide anions
(O2

.´). AA: arachidonic acid, eNOS: endothelial nitric oxide synthase, sGC: soluble guanylate cyclase;
AC: adenylate cyclase; K+: potassium.

3.4.1. Free radicals, NO and NO Synthases

Free radicals are able to modify relaxation or contraction balance in favor of contracting factor
release, playing a primordial role in vascular pathologies [198]. O2

.´ decreases NO bioavailability,
forms peroxinitrites [199,200], and inhibits activity and expression of soluble guanylate cyclase
(sGC) [201–203]. Peroxinitrites themselves at a high concentration inhibits sGC, prostacyclin
production through the nitration of the prostacyclin synthase, inhibits SOD [202], notably in
diabetes [204], and uncouples NO synthase, leading to O2

´ synthesis. Peroxinitrite has a toxic effect
on vasculature and contributes to the disease progression and myocardial damage [205]. This loss
of NO availability induces disorders [57] such as the formation of a thrombogenic surface in the
vessels, an increase in endothelium permeability and an accumulation of oxy-LDL, an attraction of
monocytes and T lymphocytes, smooth muscle cell proliferation, and vascular wall growing, leading
to vasculopathies. Deficiency of vascular NO is also associated with altered vasorelaxation in arterial
pressure [206,207], atherosclerosis [208], hypercholesterolemia [209,210], vascular aging [62,211–213],
metabolic syndrome [189], and diabetes [214,215]. Moreover, this blunted-NO availability is believed
to be the primary defect that links insulin resistance and endothelial dysfunction [171], and is
associated with oxidative stress, for example, in mesenteric arteries from established T2 models
Otsuka Long–Evans Tokushima fatty (OLETF) rats [216].

In diabetes, the underlying mechanisms seem to be diverse, but include the effects of
hyperglycemia [217], AGEs [211,214,218], uric acid [219], and oxidative stress [213] (Figure 6), and
polymorphisms in eNOS lead to NO deficiency [220]. In fact, a high level of glucose induces an
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uncoupling of eNOS [221], and, although translocation to the membrane operates, this might be an
inactivated form of the enzyme [222]. eNOS is not the only form to play a role in diabetes and its
complications. In fact, NOS-opathies include three isoforms: neuronal (nNOS; NOS1), inducible
(iNOS; NOS2), and the most well studied endothelial (eNOS; NOS3). Deletion of all three in
mice results in spontaneous coronary artery diseases, myocardial infarction, and sudden cardiac
death, [223,224] and results confirmed a protective role of eNOS and nNOS, whereas iNOS was found
to exert an unfavorable role. Khanna et al. recently reviewed the implication of isoforms in diabetic
cardiomyopathy and highlighted the important role of epigenetic modifications in the regulation of
gene expression [225]. nNOS, originally expressed throughout the central and peripheral nervous
system, is sympathoinhibitory in a range of diseases including chronic heart failure, chronic renal
failure, and hypertension [226]. Moreover, nNOS, expressed also in macula densa cells and pylor, is
involved in the pathogenesis of renal hemodynamic changes [227] and gastropyloric dysfunction [228]
associated with diabetes. However, a characteristic feature of iNOS is its lack of expression in strictly
resting cells. Instead, it is induced by immunological stimuli, which led to its original designation
as inducible NO synthase [229]. The host cell localization of iNOS has been mainly investigated in
macrophages, neutrophils, and smooth muscle cells, where the production of NO is more robust
(µm vs. nM for eNOS and nNOS), continually (some days vs. min.) The authors of [230] initially
intended to compensate the downregulation of eNOS by oxidative stress [231]. However, like a
double-edged sword, the inflammatory cytokines, importantly, TNFα and C-reactive protein at the
same time, will activate NADPH oxidase, which in turn produces O2

.´. Excessive NO concentration
produced reacts with O2

.´ forming peroxynitrite and contributes to an uncoupled iNOS due to the
substrate limitation, and therefore the production of ROS [232]. Therefore, the link of oxidative stress
and inflammatory response leads to decreased NO bioavailability causing endothelial dysfunction and
contractile dysfunction [233], as shown in diabetic complications [234–236].

3.4.2. Free Radicals and EDHF

Alterations of EDHF signaling are also associated to animal and human pathologies [237],
including hypercholesterolemia, arterial pressure [64], obesity [238], diabetes [239], and aging [62,213]
and are characterized by O2

´ induce blunted EDHF-mediated relaxations through a decrease in
potassium channels sensitive to calcium (SKCa and IKCa) [62–64,213] and myoendothelial gap junctions
between endothelial cells and smooth muscle cells [64]. In mesenteric arteries from established
T2D models such as OLETF-rats [240] and the insulin-resistant fatty Zucker rats (ZDF) [241,242],
EDHF-mediated relaxation decreases due to alterations of both potassium channels, recently associated
with oxidative stress [216,243,244] and probably involving renin-angiotensin-aldosterone systems
(RAAS) [216] such as aging [62,213].

3.4.3. Free Radicals and Contractions

There is great heterogeneity in the formation of EDCF (endothelium-derived contracting
factor)-dependent stimuli, vascular beds, age, and experimental animal models used. Among contractor
factors produced by endothelial cells, we cite derivatives of arachidonic acid metabolism such as
endoperoxides, thromboxane A2 (TXA2), prostaglandin H2 (PGH2), and prostacyclin (PGI2), but also
superoxide anions (O2

´), endothelin 1 (ET-1), and angiotensin II [245]. ET-1 is increased in metabolic
syndrome [189] and obesity [238], and EDCF-mediated contraction is also exacerbated by obesity,
hypertension and diabetes (e.g., OLETF-rats [216]) and thus are likely to contribute to the endothelial
dysfunction [246].

3.4.4. Iron and Non-Transferrin-Bound Iron (NTBI)

Sometimes, the complex interactions between iron, oxidative stress, inflammation, and diabetic
complications [247] have attracted considerable interest despite a poor understanding of the
mechanisms involved. Numerous forms of body iron exist, and only forms not bound to transferrin
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or other iron-binding proteins named non-transferrin-bound iron (NTBI) seem to be implicated in
oxidative damages due to their high reactivity [248]. NBTI could be considered a biomarker of the
side effect of iron in diseases, greatly correlated with Hb1Ac [249]. Recently, Aljwaid et al. [249]
confirmed association of NTBI with the risk of vascular complications in diabetes already highlighted
10 years earlier [250–252], because NBTI is easily accessible to plaque as well as endothelial cells,
macrophages, and smooth muscle cells. Inflammation contributes to iron-mediated endothelial
dysfunction, characterized by a high release of iron by infiltrated macrophages, an increase in
E-selectin, and other adhesion molecules implicated in atherosclerotic plaque [247,253]. Iron can
enter into the atherosclerotic lesion in the form of free hemoglobin, which is prone to oxidation, and
can form methemoglobin, ferryhemoglobin, and release heme. All of these exert pro-oxidant and
pro-inflammatory effects on the vascular wall [253]. Vinchi et al. [253] summarized current knowledge
about the role of hemoglobin, heme, and iron through controversial epidemiological studies and
concluded, given more evidence, their negative impact, compared with the innocent role of iron in
atherosclerosis. The chronic increase in the release of hemoglobin and heme (hemolysis) is associated
with endothelial dysfunction and reduced NO bioavailability [254] and with coagulopathy [255,256]
and vasculopathy [256], as observed in diabetes [257], greatly reviewed by Vinchi et al. [258].

4. Nutritional Prevention: Antioxidants against Diabesity and Complications

Regarding the low level of antioxidant enzymes expression in the pancreas [80], combinations of
conventional antidiabetic treatments with antioxidants were quickly privileged [259]. A Mediterranean
diet (MedD) is characterized by abundant plant foods (fresh fruit, vegetables, breads, other forms of
cereals, seeds, etc.), olive oil as the principal source of fat, and wine. The PREDIMED study examined
the effect of a one-year MedD on oxidative and inflammatory parameters in subjects with a high risk for
cardiovascular diseases. Results showing that the MedD increases plasma non-enzymatic antioxidant
capacity, decrease the biomarkers of atherosclerosis,have anti-inflammatory effect in addition to the
improvement of lipid profile, insulin sensitivity, blood pressure, and carotid atherosclerosis. Adherence
to MedD reduces the incidence of T2D, metabolic syndrome, and diabetic retinopathy. However, the
MedD have no effect on diabetic neuropathy, highlighting complexity to recommend an ideal model
for diabetic complication prevention. In patients with newly diagnosed T2D, consumption of this
diet resulted in a greater reduction of HbA1c levels, a higher rate of diabetes remission, and delayed
need for diabetes medication [260]. Moreover, a Mediterranean diet enriched with extra-virgin olive
oil but without energy restrictions reduced diabetes risk among persons with a high cardiovascular
risk [261]. Antioxidants act synergistically or by trapping single electrons to free radicals or by
reducing ROS enzymatically. Some antioxidants such as vitamins E (tocopherol), C (ascorbate), and Q
(ubiquinone), and carotenoids or polyphenols come from food. Inhibition of hyperglycemia-induced
ROS production using transgenic antioxidant enzyme expression or antioxidant compounds prevents
the development of experimental diabetic retinopathy [262], nephropathy [263,264], neuropathy [265],
and cardiomyopathy [266]. Additionally, the mechanisms behind the anti-inflammatory effect of
carotenoids (β-carotene and lycopene) have been recently described: both decrease TNFα-mediated
ROS generation and increase NO bioavailability at the endothelial level, linking oxidative stress
inflammation and vascular beneficial impact [267]. In humans, some large epidemiological studies
such as the Linxian study, the Clark study, the Qixia study, the NPC study, or the SU.VI.MAX study in
France, the feasibility and efficacy to prevent cancer or mortality with moderate doses of antioxidants
has been demonstrated in healthy subjects. Zatalia et al. [16] recently listed all the beneficial effects
observed in animals and humans, from vitamins and supplements, plants but also drugs used for
treating diabetes and its complications. These experimental and human studies led to a proposal for
nutritional prevention to inhibit diabetic complications. Table 1 resumes some classical products that
have potential cardiovascular protective effects.
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Table 1. Effects of functional foods and their bioactive compound on cardiovascular parameters [268].

Functional Foods Bioactive Compound Mechanisms

Black tea ‚ Tea polyphenols
‚ Anthocyanins,

catechins, cyanidins

‚ Ó blood pressure

Citrus fruit ‚ Vitamin C
‚ Ascorbic acid

‚ Inhibition of ox-LDL
‚ Ó blood pressure
‚ Antioxidant action
‚ Endothelial function

Dark chocolate ‚ Flavonoïd ‚ Lowering blood Chol
‚ Inhibition of ox-LDL
‚ Ó blood pressure
‚ Endothelial function

Extravirgin olive oil ‚ Polyphenolics and oleic acid
‚ Tocopherols, tocotrienols

‚ Inhibition of ox-LDL
‚ Antioxidant action

Fish ‚ Omega-3 fatty acids ‚ Lowering blood Chol
‚ Inhibition of ox-LDL
‚ Lowering blood TG
‚ Ó blood pressure
‚ Endothelial function

Fruits and vegetables ‚ Fibers (pectin)
‚ Carotenoids
‚ Vitamin C

‚ Lowering blood Chol
‚ Inhibition of ox-LDL
‚ Antioxidant action
‚ Endothelial function

Ginseng ‚ Ginsenosides ‚ Ó blood pressure

Grapes and red wine ‚ Grape polyphenols
‚ Anthocyanins, catechins,

cyanidins and flavonols
‚ Myricetin and quercetin

‚ Ó blood pressure
Antioxidant action

‚ Endothelial function
‚ Platelets aggregation

Green leafy vegetables ‚ Carotenoids ‚ Inhibition of ox-LDL
‚ Antioxidant action

Green tea ‚ Tea polyphenols ‚ Inhibition of ox-LDL
‚ Ó blood pressure
‚ Antioxidant action

Margarine ‚ Phytosterols ‚ Lowering blood Chol

Nuts ‚ Tocopherols, omega-3
fatty acids

‚ Polyphenols

‚ Lowering blood Chol
‚ Endothelial function

Onion and garlic ‚ Quercetin ‚ Ó blood pressure

Pomegranate ‚ Polyphenols ‚ Inhibition of ox-LDL

Soy proteins ‚ Genistein and daidzein
‚ glycitein

‚ Lowering blood Chol
‚ Inhibition of ox-LDL
‚ Antioxidant action

Tomato ‚ Lycopene ‚ Inhibition of ox-LDL
‚ Antioxidant action

Vegetable oil ‚ Tocopherols, tocotrienols ‚ Antioxidant action

Whole grains ‚ Fibers and phytochemicals ‚ Lowering blood Chol
‚ Ó blood pressure

Chol: cholesterol; ox-LDL: oxidation of LDL; TG: triglycerids.
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We will now see different management strategies of diabetes and complications using
non-exhaustive examples of the interest inspired by plants, fruits and vegetables, polyphenolic
compounds, and even some drugs used today in the treatment of diabetes with an antioxidant
activity (Tables 2–7).

4.1. Plant Therapy

Plants have been used from a long time by Chinese, African, and South American peoples as
traditional medicines and is used by about 60% of the world’s population. The first texts written
about herbal medicine are etched in clay. It includes a series of tablets engraved in cuneiform, and its
authors, the Sumerians, drafted them 3000 years before the common era. They used plants such as
myrtle, hemp, thyme, and willow. From century to century, Theophrastus, Aristotle, Pliny the Elder,
and Dioscorides deepened their knowledge of plants and their properties. Morphine, aspirin, quinine:
What do they have in common? All come from nature and have led to major drugs. Morphine is
extracted from opium (Papaver somniferum), aspirin is extracted from willow bark, and quinine is from
a tree from the Cordilleras in the Andes called the cinchona. The world contains many molecules with
interesting biological properties, but they must be highlighted. Recently, there has been considerable
interest in finding natural antioxidants from plant materials to replace synthetic ones, and natural
antioxidants occur in all higher plants and in all parts of the plant (wood, bark, stems, pods, leaves,
fruit, roots, flowers, pollen, and seeds) [269]. There have been many investigations into the effects
of these plants and their antioxidant ingredients on diabetes and its complications, and good results
have been achieved. Dixit et al. focuses on Indian Herbal drugs and plants used in the treatment
of diabetes, especially in India [270]. Dodda and Ciddi [15] reported on other plants used in the
management of diabetic complications (nephropathy, neuropathy, cataract, and retinopathy) and,
last year, Qiang et al. [271] demonstrated the protective effect of Sancaijiangtang on NO and ET-1
dysfunction observed in the vessels of T2D patients. Table 2 shows antioxidant properties of some of
these plants, except from those treated by Dixit in his review.

If herbal medicine enjoys an extraordinary craze across the world, this is not just a matter of
fashion. Of course, our era is deeply marked by the search for a healthier life, a return to nature
and essential values. One recent example is the use of Stevia, with 200 species around the world
growing primarily in the Amambay mountain range of Paraguay [272]. Stevia rebaudiana, the only
species with the ability to sweeten with no caloric value, contain specific substances (glycosides) in
leaves that are rich in vitamins and complements [273]. Research on diabetic rats has shown the
antihyperglycemic, insulinotropic, and glucagonostatic actions of stevia [274] and its ability to reduce
postprandial blood glucose levels in type 2 diabetic patients, indicating its beneficial effects on glucose
metabolism [275]. Stevia offers an ideal alternative to sugar, well tolerated, with a zero glycemic index
and no pharmacological effect in T1D and T2D patients [276].

Table 2. Effects of plants on oxidative and metabolic parameters.

Plants Experimental studies Efficacy

Allium cepa
Allium sativum

Alloxan-induced diabetic rats [277]
and STZ-induced diabetic rats [277]

‚ ROS scavenger
‚ ROS scavenger
‚ Ó oxidative stress (lipid peroxidation)
‚ Ò SOD, Ò GST

Aralia elata STZ-induced diabetic rats [277] ‚ Inhibition of aldose reductase
‚ Inhibition of cataract (retinopathy)

Aloe verra STZ-induced diabetic rats [277] ‚ Ò antioxidant enzymes activities
‚ Ó oxidative stress (lipid peroxidation)

Anoectochilus formosanus STZ-induced diabetic rats [277] ‚ Ò antioxidant enzymes activities
‚ Ó oxidative stress (lipid peroxidation)

Cassia fistula Alloxan-induced diabetic rats [277] ‚ Ò antioxidant enzymes activities
‚ Ó oxidative stress (lipid peroxidation)
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Table 2. Cont.

Plants Experimental studies Efficacy

Coccinia indica STZ-induced diabetic rats [278–280] ‚ hypoglycaemic/hypolipidaemic effects
‚ ÒVitamin C, antioxidant activity
‚ Ò antioxidant enzymes activities

Eugenia jambolana STZ-induced diabetic rats [277] ‚ ROS scavenger

Ever green shrubs (Larrea divarita) STZ-induced diabetic rats [277] ‚ Ó XO activity, ion chelation, ROS
scavenger, Ó blood pressure, inhibition
of nephropathy

Fomes fomentarius STZ-induced diabetic rats [277] ‚ Ò antioxidant enzymes activities
‚ Ó oxidative stress biomarkers

Juglans regia T2D-mouse [277] ‚ Ó oxidative stress biomarkers

Trigonella foenum-graecum (fenugreek) T2D patients [281] ‚ Hypoglycemia effect

Lycium barbarum Alloxan-induced diabetic rats [277] ‚ Ó lipids

Panax ginseng T2D rats [277] ‚ ROS scavenger
‚ Erectile dysfunction protection

Potentilla chinesis STZ-induced diabetic rats [282] ‚ Ò antioxidant enzymes activities
‚ Ó oxidative stress (lipid peroxidation)
‚ Ó blood glucose
‚ Ó LDL, ÓTG, ÒHDL

Scoparia dulcis STZ-induced diabetic rats [277] ‚ Ò antioxidant enzymes activities
‚ Ó oxidative stress biomarkers
‚ Ò GSH

Stevia rebaudiana bertoni STZ-induced diabetic rats [283] ‚ Ó blood glucose, Òglucose tolerance
‚ Ò insulin levels and Òsensitivity
‚ ÓALT, ÓAST, Ò filtration rate glomerular
‚ Improve kidney damages (nephropathy)
‚ Ó oxidative stress (lipid peroxidation)
‚ Ò total antioxidant capacity
‚ Ò antioxidant enzymes activities

Trifolium alexandrium STZ-induced diabetic rats [277] ‚ Ò antioxidant enzymes activities
‚ Ó oxidative stress (lipid peroxidation)

Ulva lactuca polysaccharides (alga) STZ-induced diabetic rats [284] ‚ Ó blood glucose
‚ Óenzymes of lipid metabolism and
absorption
‚ Ó LDL, ÓTG, ÒHDL
‚ protection hepatic and renal functions

Vitis vinifera Alloxan-induced diabetic rats [277] ‚ ROS scavenger
‚ Ò GSH
‚ Ó oxidative stress (lipid peroxidation)

Viburnim dilatatum STZ-induced diabetic rats [277] ‚ ROS scavenger
‚ Ó oxidative stress (lipid peroxidation)

Viscum album STZ-induced diabetic rats [277] ‚ Ò antioxidant enzymes activities
‚ Ó oxidative stress biomarkers

Nopal (Opuntia streptacantha Lemaire) Healthy people [285]
T2D patients [286,287]

‚ Hypoglycemia effect
‚ Ó blood glucose, Ó insulin
‚ Ò insulin sensitivity

Pycnogenol® Healthy people [288]
Hypertensive patients [289]
Metabolic syndrome patients [289]

‚ Ò NO-mediated forearm blood flow
‚ Ó blood pressure
‚ Improve endothelial function

Zygophyllum album Alloxan-induced diabetic rats [290] ‚ Ó blood glucose, Óobesity

Many plants STZ-induced diabetic rats [291] ‚ ion chelation, ROS scavenger
‚ Ó oxidative stress (lipid peroxidation)

Plants like ferula assa-foetida STZ-induced diabetic rats [277]
KK-Ay mice [292]

‚ Ò antioxidant enzymes activities
‚ Ó oxidative stress biomarkers
‚ Ó blood glucose

ALT and AST: hepatic transaminases; GSH: gluthatione; GST: glutathione S-transferase; ROS: reactive oxygen
species; SOD: superoxide dismutase; STZ: streptozotocin; TG: triglycerides; XO: xanthine oxidase.
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4.2. Fruits and Vegetables

Scientific and medical interest in cardiovascular health benefits of fruit- and vegetable-rich diets
has grown exponentially in recent years, due to compelling epidemiological evidence showing that
the consumption of fruits and vegetables might reduce the risk of cardiovascular diseases [10–14].
Although studies demonstrate no significant beneficial effect against diabetes [293], others highlight
a decrease in the risk to develop diabetes [294,295], which was confirmed by a recent meta-analysis
on diets rich in green leafy vegetables [296]. Their antioxidant capacities in humans have also been
demonstrated in many studies, namely, the effects of strawberries and tomato juice on metabolic
syndrome, hyperlipidemia, and T2D [297–299]. Table 3 shows experimental studies that evaluate the
effect of natural antioxidant products, fruits, and vegetables on diabetes and its related complications.

Table 3. Effects of fruits and vegetables on experimental diabetes models.

Fruits or Vegetables Experimental Studies Efficacy

Apple STZ-induced diabetic rats [300]

‚ Ó TG, serum LDL and VLDL
‚ Ó food intake
‚ Óweight
‚ Ó glycemia

Asparagus STZ-induced diabetic rats [301]
‚ Ò pancreatic β cells functionality
‚ Ó hyperglycemia
Improves oxidative status

Black radish STZ-induced diabetic ratsHigh Fat Diet
rats [302]

‚ Ó cholesterol and triglycerides
‚ no effect on glycemia
‚ Ó oxidative stress

(lipid peroxidation)
‚ Improves plasmatic

antioxidative status

Celery-root Alloxane-induced diabetic mouse [303]

‚ Ò insulin secretion
‚ Ó oxidative stress

(lipid peroxidation)
‚ Ò antioxidative enzymes activity

(CAT, SOD, GSH)

Cherry Alloxane-induced diabetic rats [266]
‚ Ó glycemia
‚ Improves renal function

Cucumber Alloxane-induced diabetic mouse [304]
‚ Ó glycemia
‚ Ó cholesterol and triglycerides

Garlic

STZ-induced diabetic rats [305,306]

‚ Ó serum glycemia
‚ Ó serum triglycerides
‚ Ó serum cholesterol
‚ Improves

endothelial dysfunction

Alloxane-induced diabetic rats [307]
‚ Antioxidative properties
‚ Ó hyperglycemia

High Fat Diet rats [308]
‚ Ó oxidative stress (lipid

peroxidation)

Resistant rats [280] ‚ Ó glycemia

Green bean STZ-induced diabetic rats [309]
‚ Ó AGEs development

(Ó branched collagen)

Onion

STZ-induced diabetic rats [310–312]

‚ Improves glycemia regulation
‚ Improve glucose tolerance
‚ Ó hyperglycemia
‚ Ó oxidative stress (TBARS,

8-OHdG)

High Fat High Sucrose rats [313]
‚ Ó oxidative stress

(lipid peroxidation)
‚ Ó NADH oxidase activity
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Table 3. Cont.

Fruits or Vegetables Experimental Studies Efficacy

Red cabbage STZ-induced diabetic rats [314]

‚ Óglycemia
‚ Improves renal function
‚ Ó lipid peroxidation
‚ Ò antioxidative enzymes activity

(CAT, GPx, SOD)
‚ Improve nephropathy

Shallot Fructose-induced Insulin resistant
rats [315]

‚ Ó glycemia

Strawberry High Fat Diet mouse [316]
‚ Ó inflammation (C protein

CRP reactive)
‚ Ó glycemia

Tomato STZ-induced diabetic rats [317]

‚ Ó lipid peroxidation
‚ Ó glycemia
‚ Improves insulin secretion
‚ Ò antioxidative enzymes activity

(CAT, SOD, GPx)

Zucchini Alloxane-induced diabetic mouse [304]
‚ Ó glycemia
‚ Ò insulin levels
‚ Ócholesterol and triglycerides

AGEs: advanced glycation end-products; CAT: catalase; SOD: superoxide dismutase; GPx: gluthatione
peroxidase; TG: tryglicerides; TBARS: peroxided-lipids.

Recently, studies suggested that these beneficial effects could be due to nitrate content [318–320].
Machha and Schechter [321,322] reviewed and reported the beneficial effects of nitrite and nitrate
on cardiovascular health, especially with respect to vascular function. Nitrites and nitrates, the
content of the fruits and vegetables [323] and direct eNOS subtracts, can improve NO bioavailability
in the vasculature and improve endothelial function and all the beneficial effects of NO, nitrites and
nitrates as a substrate to eNOS. This evidence has been shown by several in vitro and in vivo animal
models [324–326] and in humans [325,327,328] to increase the bioavailability of NO to reduce vascular
tone, blood pressure, and micro- and macrovascular complications, and improving insulin sensitivity
is certainly an attractive therapeutic target in T2D.

Even though antioxidant and anti-inflammatory mechanisms by which fruits and vegetables
exert their protective effects are not entirely clear, some studies have identified several bioactive
components such as carotenoids, vitamins, fiber, magnesium, and potassium as acting synergistically
or antagonistically to promote a holistic beneficial effect. For example, vitamin C restores endothelial
function in T1D patients, leading to decreased micro- and macrovascular complications [329]. Chronic
vitamin E, with low (100 UI/d, 3 months) or high (250UI/d, 6 months) doses, decrease lipid
peroxidation in T1D patients [330,331]. Vitamin E is the best example that shows the complexity
of antioxidant studies. In fact, this antioxidant supplement has been investigated extensively. Since
1998, Heinonen et al. [332] has suspected an increase in prostate cancer, not confirmed later by
Lippma et al. [333] and Gaziano et al. [334] in 2009. However, in 2005, Miller et al. [335] described
an increase in all-cause mortality, and the SELECT study was stopped in 2008 due to an increase in
prostate cancer with 400UI/d of vitamin E [336]. Moreover, a randomized clinical trial with vitamin E
showed no cardiovascular benefits, mainly in non-diabetic subjects [337]; this was confirmed later by a
HOPE clinical trial [338,339]. However, an analysis of all data in a sub-group of subjects with diabetes
and haptoglobin 2-2 genotype in HOPE and ICARE studies revealed that, in fact, vitamin E (400UI/d,
18 months) reduced the rate of cardiovascular events in these high risk subjects [340,341], which was
confirmed in a recent meta-analysis [342].

Table 4 shows antioxidant efficacy of vitamins and supplements focus in diabetes and
its complications.
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Table 4. Effect of vitamins and supplements in diabetes and complications.

Vitamins Human or Experimental Studies Efficacy

Vitamin C

T2D patients [343,344]
‚ Ófasting plasma insulin level,

ÓHbA1c Òinsulin sensitivity

T1D patients [329] ‚ Restore endothelial function

Healthy patients [343,345]
‚ Ò insulin sensitivity
‚ Ò endothelial function

Diabetic rats [346] ‚ Improve retinopathy

Vitamin D

Young predisposed child to T1D [347,348] ‚ Ó risk for T1D

T2D-rats [349]
‚ Ó vascular lesions, Ó

inflammation
‚ Ó leucocytes adhesion

Vitamin E

Diabetic patients [350]
‚ Ó OS biomarkers,

Óinsulin resistance

T2D patients [351] ‚ Ó OS biomarkers, Ó ox-LDL

T2D patients [352,353] ‚ Ó protein glycation, ÓROS

T2D patients [354] ‚ Ó ROS, Ó retinopathy

T2D patients [355–358]
‚ Ò insulin secretion, Ó

glycemia, Ó HbA1c
‚ Ó TG, Ó FFA, Ó T-Chol

T2D patients [299,359,360]
‚ Ó inflammation, Ò antioxidant

defenses, Ó ox-LDL

T2D patients [341,360]
‚ Ó CV complication, Ò

endothelial function

Diabetic patients [340,361]
‚ Prevention of myocardium

infarction, stroke, CV death

T1D patients [330] ‚ Ó lipids peroxidation

T1D patients [362]
‚ Ó retinal homodynamic

abnormalities (retinopathy)

Diabetic Balb/c mice [363]
Diabetic rats [346]

‚ Improve atherosclerosis
‚ Improve retinopathy

Combined with
nicotinamide IMDIAB IX study T1D children [331,364] ‚ Ò C peptid levels

Transitional metal
chelating agent STZ-induced diabetic rats [365,366]

‚ Ó early neuropathy
‚ Ó hyperglycemia-induced

endothelial dysfunction

Selenium Alloxane-induced diabetic rats [367] ‚ ÒGSH in liver and brain

Zinc STZ-induced diabetic rats [368] ‚ Ó retinal lipid peroxidation

Combined vitamin C,
E, selenium, Zinc and
B-carotene

SU.VI.MAX Healthy patients [369]
‚ No effect on fasting glycemia
‚ Ó cancers and death in man

B-carotene Alloxane-induced diabetic rats [370] and
T2D patients [371]

‚ Ó ox-LDL

CV: cardiovascular; FFA: free fatty acid; GSH: glutathione; ox-LDL: oxidized-LDL; OS: oxidative stress; ROS:
reactive oxygen species; STZ: streptozotocin; T-Chol: total cholesterol; TG: triglycerides.

4.3. Polyphenols: Extract Versus Molecular Compound

Polyphenols are a large and heterogeneous group of phytochemicals of plant-based foods,
including tea, coffee, wine, cereal grains, vegetables, legumes, fruits, and berries [372]. And the
largest and best-studied polyphenols are flavonoids, which include several thousand compounds,
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among them flavonols, flavones, flavonones, flavan-3-ols, anthocyanins, and isoflavones [373]. The
estimated intake of dietary polyphenols is approximately 1 g/day [374]. Increasingly, the dietary
recommendations for individuals at risk of T2D emphasis the intake of plant food products, such as
whole grains, berries, fruits, and vegetables, all known to be excellent sources of dietary fiber, but also
good sources of variable polyphenolic compounds. In fact, epidemiological studies report an inverse
association between dietary polyphenol consumption and both diabetes [17–20] and more generally in
chronic diseases such as cardiovascular diseases, atherosclerosis, hypertension, and cancer [375].

As shown before, vascular protection may also be due to the direct action of polyphenols on the
endothelial function. In fact, polyphenols are able to stimulate the endothelial formation of NO and
EDHF in isolated blood vessels, and improve endothelial function in humans. Schini-Kerth et al. [21]
described the vascular protection led by natural product-derived polyphenols in ex vivo and
experimental models of cardiovascular disease, including metabolic syndrome and diabetes. Recently,
Franzini et al. [376] indicated that diets that contain a high level of polyphenol-rich natural sources
such as red wine, grapefruit, berries, and dark chocolate, improved endothelial function in a low
cardiovascular risk population, and Khan et al. [377] discusses the effects of cocoa polyphenols on
cardiovascular-related inflammation. Table 5 shows the effect of polyphenol-rich natural sources on
human vascular function.

Table 5. Beneficial effects of several polyphenol-rich natural sources on vessels in humans.

Natural Sources Human Studies Efficacy

Plants

Soybean Woman with CV risk factor [378] Ò FMD

Grape-derived products

Red wine + olive oil Healthy people [379–381]
Healthy people [382]

Ò basal FMD
Ò basal FMD

Red wine

Atherogenic potential [383,384]
Healthy people [385]

Ò FMD, Ó blood pressure

Hypercholesterolemic patients [386]
improved FMD, enhanced
endothelium-independent vasodilation

Coronary artery disease [387,388] Ò FMD

Grape juice

Healthy people [389] Ò basal FMD

Hypercholesterolemic patients [386]
Ò FMD protect against coronary
artery disease

Concord grape juice Coronary artery disease [390] Ò FMD

Grape seed extract Healthy people [391,392]
Coronary artery disease [393,394]
Hypertensive patients [395]

Ò basal FMD
Ò FMD
Ó blood pressure

Dark chocolate

Atherogenic potential [396] Ò basal FMD, Ó blood pressure

Hypertensive patients [397,398] Ó blood pressure

Overweight adults [399]
Ò FMD, Ó blood pressure
(sugar-free preparations)

Healthy people [400] Ó blood pressure

Cocoa
patients [401]
Overweight adults [399]

Ò basal FMD by 30%
reverse vascular dysfunction
no effect on glycaemia control
Ò FMD, Ó blood pressure(may attenuate
by sugar)
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Table 5. Cont.

Natural Sources Human Studies Efficacy

Hypertensive patients [402] no effect on blood pressure

Pomegranate juice Severe carotid artery stenosis [403]
Hypertensive patients [404]

Ó blood pressure, Óartery thickness
Ó blood pressure

Strawberry Obese patients [405] Ó risk factors for CVD and stroke

Teas

Black tea Coronary artery disease [406] Ò FMD

EGCG extract (Teavigo®) Green tea

Coronary artery disease [407] Ò FMD

Borderline diabetes or diabetes [408] Ó blood pressure

Healthy prospective cohort [309] Ó CV mortality strongly vs. all causeÓ stroke

Coronarien patients [407]
Endothelial cells protection (Ò NO)
Ò FMD

Maritime Pycnogenol®

Healthy people [288] Ò NO-mediated forearm blood flow

Hypertensive patients [289] Ó blood pressure

Metabolic syndrome patients [289] Improve endothelial function

Oil

Krill oil (
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Besides their beneficial effects on endothelial function and vascular homeostasis, they also
influence glucose metabolism by several mechanisms, such as the inhibition of carbohydrate digestion
and glucose absorption in the intestine, the stimulation of insulin secretion from the pancreatic β-cells,
the modulation of glucose release from liver, the activation of insulin receptors and glucose uptake in
the insulin-sensitive tissues, and the modulation of hepatic glucose output [410]. Many polyphenols
have been shown to inhibit mostly α-glucosidase activity in vitro (anthocyanins, catechins, flavanones,
flavones, flavanols, isoflavones, phenolic acids, and proanthocyanidins), whereas α-amylase activity
is inhibited only by phenolic acids and some flavonols such as quercetin, luteolin, and myricetin.
As regards the various effects of polyphenols, very few of them are able to induce insulin secretion
from cultured cells or islets isolated from pancreas (cyanidin and delphinidin, epicatechin and EGCG,
rutin, quercetin, apigenin, etc.) and inhibit the sodium-dependent glucose transporter (SGLT1) and
the glucose transporter GLUT2) (tea catechins and quercetins) [410]. Recently, Hanhineva et al. [410]
listed the impacts of dietary polyphenols on glucose metabolism with in vitro and in vivo studies and
highlight the protective role of dietary rich in polyphenols on carbohydrate metabolism in both animals
and humans. For example, Rostami et al. [411] demonstrated that cocoa is effective in improving
TG levels, decreasing blood pressure, and fasting blood sugar in T2D patients with hypertensive
complications. A meta-analysis of eleven randomized controlled clinical trials showed that resveratrol
significantly improves glucoregulation and insulin sensitivity in diabetic patients, but not control
participants [412]. Similar results were obtained in a second meta-analysis that included only T2D
patients [413]. One recent review [414] reported the latest advances regarding the timing, dosage,
formulation, bioavailability, toxicity of resveratrol in human, focusing on cancer, neurogeneration and
diabetes, obesity, and cardiovascular diseases. Curcumin has been reported as a potent scavenger of
a variety of ROS [415], exhibiting anti-inflammatory activity as well as antioxidant properties [416].
The phenolic (OH) structure of curcumin was believed to be essential for curcumin’s anti-oxidant
activity [417]. Novelle et al. [414] concluded about difficulties of establishing a specific range of
safety/efficacy for particular doses of resveratrol for particular populations, and many discrepancies
and conflicting information must be resolved before recommending the use of resveratrol. Tables 6
and 7 show the effect of polyphenol-rich natural sources on human prevention of T2D on in vitro and
in vivo models of diabetes and complications, respectively.



Diseases 2016, 4, 24 23 of 51

Table 6. Beneficial effects of several polyphenol-rich natural sources on Human
cardio-metabolic diseases.

Polyphenols Human Study Efficacy

Single compounds

Quercetin
Myricetin different national public health registers [418] Ó risk T2D an chronic disease

Quercetin
Kaemferol
Myricetin
Apigenin
Luteolin

The Woman’s Health Study [419] no effect

EGCG extract

Overweight or obese men [420] no effect on insulin sensitivity,
no effect on glucose tolerance,
modest Ó in DBP

T2D patients [421] no effect on insulin sensitivity,

T2D patients [408,422] no effect on HbA1c and glycaemia and
Insulin resistance

Lipoic acid T2D patients [423] Ò insulin sensitivity
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islets, antioxidant effect 

Pycnogenol® 

Diabetes patients [289] ↓ blood glucose  
Hypertensive patients [289] ↓ blood pressure  
Metabolic syndrome  
patients [289] 

↓ waist circumference, improve 
lipid profile, renal and  
endothelial functions 

 

DAISY (Diabetes Autoimmunity Study in the
Young) = predisposed T1D-children [424]

Ó risk of autoimmunity against islets, antioxidant effect

Pycnogenol®

Diabetes patients [289] Ó blood glucose

Hypertensive patients [289] Ó blood pressure

Metabolic syndrome patients [289] Ówaist circumference, improve lipid profile, renal and
endothelial functions

Resveratrol

Diabetes patients [414] Glucoregulation, Ò insulin sensitivity, Ò potency of
hypoglycemic agents and antidiabetic therapies

Obeses patients [414] Ò orÓ insulin sensitivity
Ó adipocyte size
Ó or no effect on circulating inflammatory cytokines
Ò adiponectin

Overweight and obese adolescents [425] Ó insulin resistance
Ó non-alcoholic fatty liver disease (NAFLD)

NAFLD patients [426] no effect on anthropomorphic measurements, insulin
markers, lipids profile, blood pressure
Ó NAFLD ÓALT

Cardiovascular diseases [414] Ó or no effect on plasma lipid profile/Chol
Ó systolic blood pressure
Ò Flow-mediated dilatation
Ó pulse-wave velocity

Whole polyphenols diets/foods

Apple Middle-age women [419]
Men and women [418]

Ó risk T2D
Ó risk T2D

Berry Men and women [418] Ó risk T2D

Blueberry

T1D children [308] Ó HbA1c, ÒC-peptide,
Ò erythrocyte SOD

T2D patients [427] ÓFBG, Ó LDL, Ó CRP
Ó AST, ÓAST, ÓGGT

Cinnamon T2D patients [428] Ó CV risk, Ò insulin sensitivity

Curcumin
Diabetic patients [308] Improve microangiopathy

Healthy people [429] Ò HDL, Ó cholesterol,
Ó lipids peroxidation

Coffee Metabolic syndrome [430] Ó risk T2D

Cocoa drink Hypertensive patients [402] no effect on insulin resistance
no effect on blood pressure

Dark chocolate
Healthy people [400] and Hypertensive
patients [398]
Healthy people [400]

Ò insulin sensitivity, Ó blood pressure
Ò QUICKY (insulin sensitivity)
Ó HOMA-IR



Diseases 2016, 4, 24 24 of 51

Table 6. Cont.

Polyphenols Human Study Efficacy

Whole Grains rich diet Obesity and T2D patients [431] Ó risk T2D

Grape seed extract T2D patients [432] Ó glycaemia, Ó inflammation
no effect on HOMA-IR

Krill oil (rich in
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and glucose uptake in the insulin-sensitive tissues, and the modulation of hepatic glucose output 
[410]. Many polyphenols have been shown to inhibit mostly α-glucosidase activity in vitro 
(anthocyanins, catechins, flavanones, flavones, flavanols, isoflavones, phenolic acids, and 
proanthocyanidins), whereas α-amylase activity is inhibited only by phenolic acids and some 
flavonols such as quercetin, luteolin, and myricetin. As regards the various effects of polyphenols, 
very few of them are able to induce insulin secretion from cultured cells or islets isolated from 
pancreas (cyanidin and delphinidin, epicatechin and EGCG, rutin, quercetin, apigenin, etc.) and 
inhibit the sodium-dependent glucose transporter (SGLT1) and the glucose transporter GLUT2) (tea 
catechins and quercetins) [410]. Recently, Hanhineva et al. [410] listed the impacts of dietary 
polyphenols on glucose metabolism with in vitro and in vivo studies and highlight the protective 
role of dietary rich in polyphenols on carbohydrate metabolism in both animals and humans. For 
example, Rostami et al. [411] demonstrated that cocoa is effective in improving TG levels, decreasing 
blood pressure, and fasting blood sugar in T2D patients with hypertensive complications. A meta-
analysis of eleven randomized controlled clinical trials showed that resveratrol significantly 
improves glucoregulation and insulin sensitivity in diabetic patients, but not control participants 
[412]. Similar results were obtained in a second meta-analysis that included only T2D patients [413]. 
One recent review [414] reported the latest advances regarding the timing, dosage, formulation, 
bioavailability, toxicity of resveratrol in human, focusing on cancer, neurogeneration and diabetes, 
obesity, and cardiovascular diseases. Curcumin has been reported as a potent scavenger of a variety 
of ROS [415], exhibiting anti-inflammatory activity as well as antioxidant properties [416]. The 
phenolic (OH) structure of curcumin was believed to be essential for curcumin’s anti-oxidant activity 
[417]. Novelle et al. [414] concluded about difficulties of establishing a specific range of safety/efficacy 
for particular doses of resveratrol for particular populations, and many discrepancies and conflicting 
information must be resolved before recommending the use of resveratrol. Tables 6 and 7 show the 
effect of polyphenol-rich natural sources on human prevention of T2D on in vitro and in vivo models 
of diabetes and complications, respectively. 

Table 6. Beneficial effects of several polyphenol-rich natural sources on Human cardio-metabolic 
diseases. 

Polyphenols Human study Efficacy 
Single compounds 

Quercetin  
Myricetin 

different national public health 
registers [418] 

↓ risk T2D an chronic disease 

Quercetin 
Kaemferol 
Myricetin 
Apigenin 
Luteolin 

The Woman’s Health Study [419] no effect 

EGCG extract 

Overweight or obese men [420] no effect on insulin sensitivity, 
no effect on glucose tolerance, 
modest ↓ in DBP 

T2D patients [421] no effect on insulin sensitivity, 
T2D patients [408,422] no effect on HbA1c and glycaemia 

and Insulin resistance 
Lipoic acid T2D patients [423] ↑ insulin sensitivity  

Ѡ-3  
DAISY (Diabetes Autoimmunity 
Study in the Young) = predisposed 
T1D-children [424] 

↓  risk of autoimmunity against 
islets, antioxidant effect 

Pycnogenol® 

Diabetes patients [289] ↓ blood glucose  
Hypertensive patients [289] ↓ blood pressure  
Metabolic syndrome  
patients [289] 

↓ waist circumference, improve 
lipid profile, renal and  
endothelial functions 

 

) T2D patients [409] Ó blood C-peptide levels, Ó HOMA-IR, Ò HDL

Purple grape juice Coronaries patients [393] Ó ox LDL

Strawberry Obese patients [405] Ó risk factors for CVD and stroke
Ó diabetes

Tea
Middle-age women [419]
Meta-analysis [433]
Non obese people [434]

Ó risk T2D
Prevention of T2D development
Ó risk of obesity, Ó FBG

Green tea

T2D patients [435]
Borderline diabetes or diabetes [408]

Ò levels of insulin
Ó body weight and BMI
Ó blood pressure,
Óblood glucose
Ó HbA1c, ÓHOMA index

RWPs – french
Corbières AOC Healthy people [19,20] Óweight, Ó glycaemia

Hypoglycemia effect

AST, AST, GGT: transaminases; BMI: body mass index; CVD: cardiovascular disease; CRP: C-reactive
protein; DBP: diastolic blood pressure; FBG: fasting blood glucose; HOMA-IR: insulin resistance index;
NAFLD: non-alcoholic fatty liver disease.

Table 7. Beneficial effects of several polyphenol-rich natural sources on in vitro and in vivo models
of diabetes.

Polyphenols Experimental Models Efficacy

Curcumin

T2D-rats [436] ROS scavenger
Ó nephropathy

STZ-induced diabetic rats [437] Protect endothelial dysfunction in the iris :
Ó retinopathy

STZ-induced diabetic rats [438]
Improves mesenteric arteriolar function
Ó ROS artery, Ó PKC-βII
Ó glycemia

db/db mice [439] Ó glycemia, Óweight

Ob/ob mice [440] Ò glycemic control, Òinsulin sensitivity,
Ò leptin/adiponectin

Bovine aorta [441] Ó lipid peroxidation, ROS scavenger

Tea Flavonoids RINm5f (β-cells) [375]
ROS scavenger
Fer and iron scavenger
Ó ROS production

Tea EGCG

RINm5f (β-cells) [442]

Òmitochondrial activityprotect against
oxidative stress
Ò SOD activity
Ó ROS production, Ó caspase 8

ex vivo skin [443,444] protection against UV
Ò GSH, Ò GPx activity

in vitro [445]
prevention of hyperglycemia
Ò insulin activity
protection of β cells

STZ-induced diabetes in rats [446] Ó β cells lost

(OB/OB) mice [447] Ó hepatic steatosis
Ó injury in obese mice

(OB/OB) mice [448]
Ó intestinal lipid absorption, Ó body mass,
Ó lipid accumulation in liver and
adipocyte, Ò insulin sensitivity, Ò TAOC
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Table 7. Beneficial effects of several polyphenol-rich natural sources on in vitro and in vivo models
of diabetes.

Polyphenols Experimental Models Efficacy

α lipoic acid STZ-induced diabetes in rats [449]

Ó FBG, Ó HbA1c
improve dyslipidemia
Ò SOD activity, Òendogenous Vit C
ÓMDA and 4-HNE in aorta
Ó DNA damages
good vascular morphology

Procyanidin B2 (grape seed) STZ-induced diabetes in rats [450]
B-cells

Ó plasma glucose
Insulin mimetic effect

Resveratrol

Zucker fatty (ZF) rats [451] (Obese and T2D) Ó T-Chol, Ó TG

STZ-induced T2 diabetes in rats [452] delay insulin resistance
Ó insulin secretion (hyperinsulinemia)

Endothelial cells of rats [453]
Ó ROS, ÓNADPH oxidase,
Óinflammation
Ó LDL, antioxidant activity

RWPs extract ProvinolsTM Zucker fatty (ZF) rats : Obese and T2D [242]

Improve glucose metabolism
Ó plasma glucose, Ó fructosamine
Ó TG, ÓT-Chol, Ó LDL
Improve cardiac performance
(Õ left ventricular and cardiac input)
Ó peripheral arteriole resistances
Corrected endothelial dysfunction :
in aorta : Ò NO availability, Ò NO,
Ò eNOS activity, Ó O2, Ó NADPH ox
in mesenteric artery : Ò EDHF

RWPs – french Corbières AOC
STZ-induced diabetes in rats and Fructose
diet [19,20]

Óweight, Ó glycemia
Ó plasma glucose
Ó plasma lipids

RINm5f (β-cells) [442]

Òmitochondrial activity
protect against oxidative stress
Ò SOD activity
Ó ROS production, Ó caspase 8

SOD/CAT mimetics animal models of diabetic
neuropathy [263–265] improve neuropathy

translocase of inner
mitochondrial membrane Mice [263] improve nephropathy

tempol Mice SOD-knockout [264] improve nephropathy

overexpression of MnSOD Mice [262] improve retinopathy

EDHF: endothelium derived hyperpolarizing factor; FBG: fasting blood glucose; MDA and 4-HNE: lipids
peroxide; NO: nitric oxide; ROS: reactive oxygen species; SOD: superoxide dismutase; TG: triglycerids.

4.4. Current Medications

Some modern drugs are derived from traditional medicine: anti-malarials (artemisinin, quinine),
anti-asthmatics (cromolyn), anti-cancer (etoposide, vinca alkaloids), anti-coagulants (huridine),
anticholestérolémiants (Lavastatine), and analgesics (opiates) [454]. Moreover, drugs used to treat
diabetes have an antioxidant activity [16]: a scavenger of ROS and a modulator of antioxidant enzymes
activities by several mechanisms. Some of them have beneficial effects on diabetes complications
such as nephropathy—angiotensin converting enzyme inhibitor (ACEI), angiotensin receptor blocker
(ARB), and melatonin, and neuropathy and retinopathy—melatonin and α-lipoic acid. Many of them
have beneficial effects against cardiovascular diseases: caffeic acid, phenethyl ester, carvedilol, and
metformin [16]. In fact, metformin, the currently used biguanide antihyperglycemic agent, can decrease
xanthine oxidase activity and TNFα production, chelates metal ions, and inhibits AGE formation [455]
with an intracellular modulation of free radical production [72].
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5. Discussion and General Conclusion

In the last few years, there has been an exponential growth in the field of herbal medicine, and
these drugs are gaining popularity. Many traditional medicines in use are derived from medicinal
plants, minerals, and organic matter, and many conventional drugs have been derived from prototypic
molecules. The use of medicinal plants for therapeutic purposes is a practice as old as human history.
Some studies and population observations highlight a real effect of plants on health and management
of diabetes complications. Today, the WHO has listed 21,000 plants, which are used for medicinal
purposes around the world, but the expert committee on diabetes has recommended that traditional
medicinal herbs be further investigated.

Nutrition and diet quality are key elements in the acquisition, control, and potential treatment
of many chronic diseases and adverse health conditions. Higher consumption of fruits and
vegetables has been associated with a lower risk of several diseases, including cardiovascular
disease [11,12]. Increased physical activity and dietary management implemented by health-care
professionals is fundamental to initial treatment of T2D and has been recommended for a long
time by international consensus [456]. Meta-analyses of exercise and diet studies have concluded
that concentrations of HbA1c can be lowered by aerobic and resistance exercise and by dietary
intervention [457,458], more precisely, intensified, targeted, multifactorial interventions compared to
conventional intervention [459]. However, few studies have determined whether treatments affect
endothelial dysfunction and oxidative stress. If multifactorial treatment does have an effect, then
markers of endothelial dysfunction and oxidative stress would be expected to be less associated with
cardiovascular death and all-cause mortality in these patients. In fact, most of the studies have reported
the beneficial effects of natural products-rich in antioxidant activities, leading to protect vessels
against oxidative stress, loss of vascular homeostasis, and diabetic complications. Recent data have
supported that the hyperglycemic environment may be remembered in the vasculature, a metabolic
or “hyperglycemic memory” explaining the progression of diabetic vascular complications despite
normoglycemia restoration [460]. Moreover, endothelial progenitor cells as a biological marker of
peripheral artery disease [390] have highlighted a real interest in protecting the vascular arch [461].
Thus, taking all of this literature together, blood vessels could be a good marker and strategy to monitor
complications, especially in diabetes.

Observational cohort studies support that consumption of sugar-sweetened beverages, including
artificially beverages and fruit juice, are associated with incident T2D, independently of obesity.
Both were unlikely to be healthy alternatives to sugar-sweetened beverages for the prevention
of type 2 diabetes, and, under assumption of causality, there consumptions may be related to a
substantial number of cases of new onset diabetes [462]. The local food environment may influence
individual (including food choices) and community health [463]. Today, the objective is to promote
the consumption of non-industrial and natural products instead of concentrated fruit juice intake.
In fact, the association between fruits and vegetables consumption and weight development has
been summarized in the ISA-FRUIT Project of the EU from 2008, and 7/16 studies [464] and several
prospective cohort studies [296,465] and the EPIC-Norfolk Study [466] have highlighted an inverse
association between “unworked” fruits and vegetables consumption and health outcomes including
obesity, cardiovascular, and diabetes. However, others studies have not demonstrated the effectiveness
of fruits and vegetables to have health effects or to prevent chronic diseases. These results suggest that
there are sub-types within larger categories of food environments that are differentially associated with
adverse health outcomes [467]. Differences in the nutrient contents by group could explain differences
and raise difficulties of interpreting the results of different human studies. There is a need to conduct
clinical research, developing simple bioassays for biological standardization, pharmacological, and
toxicological evaluation, to study the effects of natural food on health.

It would actually be profitable to propose tables’ effects of antioxidants, with corresponding
doses and diseases treated; still, however, the study of antioxidants is very difficult and complex.
Many parameters can influence the results of clinical studies: a different design in terms of types
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and origins of antioxidants, doses, formulation, absorption, biodisponibility, and times of treatments;
the studied population, genotype sub-type of patients, types of medication, and progression of the
disease, with a time course of diabetes and complications; and the methods of assessment and their
limitations [468–470]. The international society of antioxidants in nutrition and health (ISANH) work
today to propose guidelines with all these objectives. Although the results of clinical studies about
the therapeutic use of antioxidants are quite controversial, all data reported in this review and in
others provide real hope for their use, especially in the prevention of diabetic complications. Food
is the first pillar of patient care before the introduction of medications. Wealth, nutritious additions,
and a contribution of bioactive molecules (vitamins, polyphenols, etc.) with antioxidant properties
is actually a real asset in the prevention of chronic diseases, while the importance of prevention
should not be underestimated. All publications by Dal et al. demonstrated the interest of the use of
natural antioxidants (red wine polyphenols) to prevent and treat diseases with endothelial dysfunction
related to oxidative stress [62,64,213,471,472]. Moreover, our recent works carried out on in vitro and
in vivo models of metabolic disorders have allowed us not only to involve oxidative stress in the
pathophysiology of disorders but also to demonstrate that natural antioxidant compounds help to
prevent or reduce complications (polyphenols from green tea and red wine [442,473], red cabbage,
Dal S, under publication). One study in process in the lab focusing on antioxidants in T1D seems be a
new target for the diabetic optimization of management [474].

All of our studies, and studies mentioned in this review, demonstrate the ability of antioxidants
to prevent or counteract excessive ROS production by increasing endogenous antioxidant defenses.
We think now that a new strategy might be to prevent the overproduction of ROS instead of only
scavenging the already formed ones, because of the “cardio-metabolic memory.” Today, an optimal
understanding of the beneficial mechanisms of functional products or functional foods [475] will not
allow for more personalized care, depending on the status of cardiovascular and metabolic patients.
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