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Scientific progress depends on formulating testable hypotheses
informed by the literature. In many domains, however, this model is
strained because the number of research papers exceeds human
readability. Here, we developed computational assistance to ana-
lyze the biomedical literature by reading PubMed abstracts to suggest
new hypotheses. The approach was tested experimentally on the
tumor suppressor p53 by ranking its most likely kinases, based on all
available abstracts. Many of the best-ranked kinases were found to
bind and phosphorylate p53 (P value = 0.005), suggesting six likely
p53 kinases so far. One of these, NEK2, was studied in detail. A
known mitosis promoter, NEK2 was shown to phosphorylate p53 at
Ser315 in vitro and in vivo and to functionally inhibit p53. These bona
fide validations of text-based predictions of p53 phosphorylation, and
the discovery of an inhibitory p53 kinase of pharmaceutical interest,
suggest that automated reasoning using a large body of literature
can generate valuable molecular hypotheses and has the potential to
accelerate scientific discovery.

literature text mining | automated hypothesis generation | protein–protein
interaction | p53 inhibition | kinase

Developing useful hypotheses depends on understanding and
making inferences from prior information. This is a chal-

lenge when the scale of the data exceeds human analytical
capacity, in which case computational assistance is needed. Al-
gorithms are already highly effective for reasoning and generating
solutions when this large-scale information is structured, that is,
tabulated in accessible databases (1, 2). When the information is
described by words and sentences, however, the generation of
hypotheses is more limited (3) and text-mining algorithms tend to
focus instead on the retrieval of independent facts (4). In bio-
medicine, the research literature surpasses 25 million papers. Even
restricted domains can include tens of thousands of papers. These
numbers highlight a need beyond computational search for new
reasoning and discovery applications based on integrative hy-
pothesis generation applied to text (5, 6).
Natural language processing efforts in biomedical literature

typically identify the important entities (i.e., proteins, diseases,
drugs) and their semantic relationships (7–9). This process relies
on curated dictionaries and rules-based approaches to identify and
normalize important biological entities (10). A pivotal demon-
stration of hypothesis generation from the biomedical literature
is computer-aided discovery by Swanson linking—that is, if A
causes B and B causes C, then A might cause C (11–13)—the
original example being between fish oil and Raynaud’s disease
patients (14). More broadly, mining the literature for proteins,
diseases, drugs, and their relationships allows for network-based

approaches to identify disease biomarkers (15), repurpose drugs
(16), and suggest protein function (17). In recent work (18, 19), we
developed an approach to suggest protein interactions by diffusing
information over a kinase–kinase network that was built solely
from the word context of individual proteins in the abstract in
which they appear. To measure the biological gains of the method,
we now follow on these limited and retrospective computational
studies by testing their predictions prospectively against laboratory
experiments.
The tumor suppressor p53 provides an opportune test case. It

is the most mutated gene in cancer (20–22), and over 90,000
PubMed studies detail how it responds to genomic stress to co-
ordinate cellular defenses against cancer and other diseases (22).
Almost a third of p53 paper abstracts mention kinases—a family
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of evolutionarily related proteins that regulate other proteins
through phosphorylation (23) and that are an important source
of drug targets (24). The discovery of new kinases that regulate
p53 may thus lead to additional therapeutic targets (25). How-
ever, the size of this body of literature defies human appraisal
and thus limits the scope of current scientific hypotheses (26). By
combining predictive algorithms in biology (27) with recent im-
provements in natural language processing (28, 29), we sought to
mine the biological literature and predict biological interactions
with support from retrospective computational validation (18,
19). Here, we provide experimental proof that word context in-
formation from abstracts alone is sufficient to suggest automated
hypotheses that prove correct and lead to the discovery of p53
biological interactions. In-depth molecular studies of one can-
didate kinase, NEK2, further reveal that this cancer-relevant
kinase phosphorylates p53 to negatively regulate p53 functions.

Results
Computational Methods to Identify Kinases That Phosphorylate p53.
To identify p53 kinases, a similarity network of human kinases
was built from the literature (Fig. 1 and SI Appendix). All 21
million PubMed abstracts available in January 2014 were first
searched for standard names and synonyms of kinase genes;
240,000 abstracts mentioning human kinases were found. For
each kinase entity, the collection of distinct and relevant words
contained in abstracts written about that kinase were then
counted and summarized as vectors (30). Vector comparisons
among all kinases next yielded pairwise distances by taking the
cosine similarity. These distances gave rise to a kinase–kinase
network in which edges between nodes represent significant
word content similarities of abstracts mentioning connected ki-
nases (Fig. 1). Finally, graph information diffusion (17) was
performed by globally propagating labels throughout this kinase
network from the known p53 kinase nodes to nodes lacking such
prior annotation. The result was a ranking of all kinases not
previously known to phosphorylate p53. This approach was
previously shown to be scalable, but biological evidence for p53
phosphorylation was lacking (18, 19).

Biochemical Screens to Validate Computational Predictions of p53
Kinases. To test prospective predictions of p53 kinases, 26 com-
mercially available kinases were chosen from the top-ranked and
the bottom-ranked predictions. These 26 kinases were experi-
mentally tested by two screens. First, an in vitro kinase assay was
used to measure whether a purified candidate kinase could
phosphorylate purified p53 in the test tube. Of 26 purified can-
didate kinases tested, 9 kinases exhibited high levels of p53
phosphorylation (Fig. 2A and SI Appendix, Fig. S1 and Table S1).
A second screening assay applied to the 26 candidate kinases was
a coimmunoprecipitation assay to detect those kinases that could
form a stable protein–protein interaction with p53 in human cells.
Twelve immunoprecipitated candidate kinases interacted with p53

and exhibited an intense band on the p53-containing region of the
immunoblot after p53 antibody probing (Fig. 2B and SI Appendix,
Fig. S2). These results were corroborated by reciprocal coim-
munoprecipitation assays (p53 immunoprecipitation and kinase
immunoblotting). PKN1 and NEK2 were confirmed as highly
interactive in coimmunoprecipitations (Fig. 2C).
Six kinases—NEK2, PLK1, PKN1, PKN2, PAK4, and PAK6—

were found to be positive in both the in vitro kinase and coim-
munoprecipitation screening assays (Fig. 2D and SI Appendix,
Table S1). The rank distribution of these six kinases was signif-
icantly higher than expected by chance (P value of 0.0046 by χ2
test). Likewise, a receiver-operating characteristic (ROC) curve
statistical analysis indicated a P value of 0.0048 relative to a
random distribution of true and false positives (Fig. 2E). Based
on our screening assays, the top-ranked predictions were there-
fore significantly enriched for likely p53 kinases.

NEK2 Phosphorylates p53 at Ser315 and Reduces Its Stability. The
two screening assays employed above are not definitive in cate-
gorizing a p53 kinase. We thus performed extensive experi-
mentation on one of the six candidate kinases positive in both
screening assays to more conclusively validate it. One of the
highest scoring kinases, NEK2, was chosen for further analysis
(SI Appendix, Table S1). NEK2 is an important mitosis regulator
(31) and may functionally affect p53, a cell-cycle regulator (22).
To confirm that NEK2 phosphorylates p53, we immunoblotted
in vitro kinase reaction components containing purified p53 with
or without purified NEK2 with antibodies specific for p53
phosphoserine 315 and showed a p53 phosphoserine 315-specific
band only in the presence of NEK2 (Fig. 3A). As a positive
control, we also incubated recombinant p53 with purified Aurora
kinase A (AURKA), previously demonstrated to phosphorylate
p53 at Ser315 (32). Both NEK2 and AURKA showed similar
levels of p53 Ser315 phosphorylation in vitro. This in vitro kinase
assay was repeated with phospho-specific antibodies to p53
Ser15, Thr18, Ser33, Ser37, Ser46, and Ser392, but these sites
were not phosphorylated by NEK2 in vitro (SI Appendix, Fig.
S3). Mass spectrometry (LC-MS/MS) analyses confirmed p53
Ser315 phosphorylation. Four separate NEK2-p53 in vitro kinase
reactions generated robust levels of p53 phosphoserine 315
peptides, whereas p53 incubated without NEK2 did not produce
phosphorylated peptides (SI Appendix, Fig. S4).
To demonstrate NEK2 phosphorylation of p53 in intact cells,

we transfected HCT116 (p53+/+) human colorectal cancer cells
with a LacZ expression vector, with a wild-type NEK2 vector
(WT-NEK2), or with a kinase-dead NEK2 (K37R, KD-NEK2)
vector. We immunoprecipitated p53 and performed Western
blot analysis on the immunoprecipitates with p53 and phospho-
p53 Ser315 antibodies (Fig. 3B). p53 Ser315 showed enhanced
phosphorylation in cells transfected with WT-NEK2, but not
with KD-NEK2.

Fig. 1. Computational mining of the scientific literature to build kinase–kinase relationship networks and predict kinase interactions. Model illustrating how
gene, protein, biological processes, and word entities are mined from scientific literature abstracts and compared for similarities to build a kinase–kinase network.
Graph diffusion is then used to propagate known p53 kinase information through the network to predict undiscovered kinases likely to phosphorylate p53.
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To further test whether NEK2 specifically phosphorylates p53
on Ser315, we transfected p53 S315A, S96A, and S96A/S315A
point mutant vectors (Ser96 was considered a potential NEK2
phosphorylation site after reviewing mass spectrometry results
on in vitro kinase components) into HCT116 (p53−/−) cells with
or without NEK2 expression vectors. Western blots of trans-
fected cell lysates probed with p53 phosphoserine 315 antibodies
showed that, while Ser315 phosphorylation was robust in p53
WT- and p53 S96A-transfected cells and enhanced further with
added NEK2, transfection of p53 S315A and S96A/S315A mu-
tants reduced phosphorylation at Ser315 (Fig. 3C). We also ex-
amined NEK2 inhibition on p53 protein and p53 Ser315
phosphorylation. Three different NEK2 shRNA lentiviral vec-
tors were transduced into HCT116 (p53+/+) cells, and p53 Ser315
phosphorylation was reduced relative to cells transduced with
scrambled shRNA (Fig. 3D).

AURKA, another mitotic kinase that phosphorylates p53 at
Ser315, has been shown to destabilize p53 (33, 34). To determine
whether NEK2 phosphorylation of p53 affects p53 stability, we
cotransfected p53 null HCT116 cells with WT 53 plus GFP vectors
together with empty vector, WT p53, kinase-dead mutant NEK2, or
WT AURKA vectors. One day posttransfection, transfected cell
lysates were subjected to electrophoresis followed by immunoblot-
ting with p53 and GFP antibodies. As shown in Fig. 3E, Left, both
WT-NEK2 and AURKA reduce p53 protein levels in the trans-
fected cells relative to cells transfected with empty vector or kinase-
dead NEK2, indicating that both kinases appear to reduce p53
protein stability. Moreover, the NEK2 and AURKA effects on p53
protein levels appear to be dependent on p53 Ser315 phosphory-
lation, as cells transfected with p53 S315A mutant vector show no
reduction in p53 protein levels relative to cells transfected with
empty vectors or NEK2 kinase-dead vector (Fig. 3E, Right).

A

C D
E

B

Fig. 2. Screening assays to evaluate computationally predicted kinases for p53 phosphorylation and interaction. (A) In vitro kinase assays show robust
phosphorylation of p53 by some kinases. In vitro kinase assays were performed using 5, 15, or 50 ng of the indicated kinases and 50 ng of recombinant His-
tagged p53 in the presence of 32P-gamma ATP, incubated for 15 min, and resolved by gel electrophoresis. (B) Some kinases form protein–protein interactions
with p53 in human cells. HEK293 cells were transfected with V5-tagged kinase vectors or a V5-tagged LacZ control. Posttransfection lysates were immu-
noprecipitated using anti-V5–conjugated agarose, followed by immunoblotting with anti-V5 or anti-p53 antibodies. (C) Kinases NEK2 and PKN1 form pro-
tein–protein interactions with p53 protein in human cells. NEK2 or PKN1 vectors were cotransfected into HEK293 cells with a Flag-p53 vector. Lysates were
immunoprecipitated with an anti-Flag antibody or normal IgG. Immunoblots were assayed for PKN1 and NEK2 interaction with p53 using anti-PKN1, anti-
NEK2, and anti-p53 antibodies. (D) Experimental validation screen results by in vitro kinase assays and coimmunoprecipitation assays. Of 26 kinases, 6 kinases
were positive in both assays (blue bars), 3 kinases were positive only in the in vitro kinase assay (red bars), 6 kinases were positive only in the coimmuno-
precipitation assay (green bars), and 11 kinases were negative for both assays (no bars). “Comp Rank” signifies the computational ranks provided by our
network algorithms. This distribution was significant by Fisher’s exact test (P = 0.0046). (E) The prospective validation of literature vector models with graph
diffusion to predict six potential p53 kinases. ROC curve shows these six targets in their respective ranks (P = 0.0048).
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NEK2 has been shown to regulate mitotic progression through
facilitation of centrosome duplication and spindle assembly (32).
Given that other kinases that phosphorylate p53 and facilitate
cell-cycle progression (AURKA, CDK2) also phosphorylate p53
at Ser315 (33, 34), we examined p53 and NEK2 expression in
synchronized cells released from G1 block. The HCT116 (p53+/+)
cells arrested in G1/S phase showed accumulation of p53 protein.
NEK2 protein levels were elevated in S, G2, and G2/M phases of
the cell cycle relative to unsynchronized cells, and this was cor-
related with increased p53 phosphoserine 315 levels (SI Appendix,
Fig. S5). In contrast, p53 protein levels were moderately reduced
in S, G2, and G2/M phase cell populations, consistent with NEK2
suppression of p53 function via p53 Ser315 phosphorylation. In-
terestingly, total p53 protein levels go back up in M phase while
NEK2 levels are reduced.

NEK2 Phosphorylation of p53 Is Correlated with Altered p53 Functions.
To assess NEK2 effects on p53 functions, we examined p53-
induced transactivation and p53-induced apoptosis. HCT116 (p53
WT) cells were cotransfected with a p53 promoter luciferase re-
porter construct and vectors expressing CHK1 (a p53 activating
kinase), WT-NEK2, or KD-NEK2. Luciferase activity, a proxy for
p53 transactivation, was significantly increased with p53 positive
regulatory kinase CHK1, while p53 activity was significantly re-
duced by WT-NEK2 (Fig. 4A). Kinase dead NEK2 had no effect
on p53 transcription. These results are consistent with NEK2
inhibiting p53 transcriptional activation functions.
To assess NEK2 effects on p53 transcriptional targets, we

transfected p53-null Saos-2 cells with vectors expressing LacZ,
LacZ plus WT p53, WT-NEK2 plus WT p53, or KD-NEK2 plus
p53. Quantitative RT-PCR for the p53 target genes CDKN1A
(p21CIP1), GADD45A, and FAS resulted in p53-dependent in-
duction of all three p53 target genes relative to LacZ (Fig. 4B)
that was significantly attenuated by WT-NEK2. Kinase-dead
NEK2 induced little change in p53-induced target expression.
Transduction of HCT116 (p53+/+) cells with three distinct
shRNA lentiviral vectors reduced NEK2 protein expression and
increased luciferase activity (Fig. 4C). Two of the three NEK2
shRNA-expressing lines that showed the highest knockdown of
NEK2 expression exhibited significantly elevated p21CIP1 and

FAS mRNA expression (Fig. 4D). Thus, NEK2 kinase activity
suppresses p53 transactivation function.
We also examined NEK2 effects on p53-induced apoptosis.

Apoptosis markers cleaved caspase 3 and cleaved PARP were
increased in p53-transfected Saos-2 cells, but cotransfection of p53
plus WT-NEK2 reduced levels of the two apoptosis markers (Fig.
4E). Transfection of p53 plus KD-NEK2 did not reduce apoptotic
markers. Transfection experiments in which fluorescence-tagged
p53 plus or minus WT-NEK2 vectors in Saos-2 cells were exam-
ined for p53 immunofluorescence showed cells expressing p53 and
undergoing simultaneous condensed nuclear staining (apoptosis
markers). Roughly 14% of cells transfected with p53 plus LacZ
showed apoptotic phenotypes compared with 2% of cells with
NEK2 transfected with p53, indicating that NEK2 suppresses p53-
mediated apoptosis (Fig. 4F). We also investigated whether NEK2
suppresses p53-mediated apoptosis following DNA damage.
Treatment of p53 null Saos-2 cells with 5-Gy–ionizing radiation
after transfection with p53 resulted in significantly increased
numbers of apoptotic cells relative to control transfected LacZ
cells as identified by fluorescence microscopy (SI Appendix, Fig.
S6). The number of p53-induced apoptotic cells were significantly
reduced when p53 was cotransfected with NEK2 expression vec-
tors (SI Appendix, Fig. S6). These experiments indicate that NEK2
phosphorylates p53 and functionally inhibits p53.

Discussion
This study tested experimentally multiple text-based predic-
tions of p53 kinases. An algorithm analyzed PubMed abstracts
for kinase-relevant information, from which it inferred and
ranked protein kinases by their likelihood to target p53.
Phosphorylation of p53 activity was enriched among highly
ranked kinases, including six that were positive in multiple as-
says. These six are likely to be p53 kinases, and this possibility
was further tested in depth in NEK2. This protein was already
known to affect mitosis (32), and we now have shown that it is
also a p53 kinase that suppresses one of its cell-cycle–promoting
functions.
Like the known p53 mitotic kinase, AURKA (35), NEK2

phosphorylates p53 at Ser315 and reduces p53 stability. While we
believe much of the effect of NEK2 on p53 is likely due to

Fig. 3. NEK2 phosphorylates at p53 Serine 315. (A)
Recombinant NEK2 phosphorylates recombinant p53
at Ser315 in vitro. Purified recombinant p53-GST was
incubated without kinase or with recombinant NEK2
kinase or positive control AURKA kinase for 30 min at
30 °C. Reactions were immunoblotted with the in-
dicated antibodies. (B) NEK2 overexpression induces
enhanced p53 phosphorylation at Ser315 in human
cells. HCT116 cells were transfected with lacZ, WT-
NEK2, and KD-NEK2 expression vectors, and endoge-
nous p53 was immunoprecipitated from lysates using
anti-p53 (DO-1). p53 Ser315 phosphorylation was de-
termined by immunoblot probing with a p53 phos-
phoserine 315-specific antibody. (C) Conversion of p53
Serine 315 to Alanine results in reduced p53 phos-
phorylation in the presence of overexpressed NEK2.
HCT116 p53−/− cells were transfected with WT-p53,
mutant p53 (S96A), mutant p53 (S315A), and double
mutant p53 (S96A/S315A) with or without WT-NEK2.
Cells were lysed and immunoblotted with the in-
dicated antibodies. (D) Inhibition of NEK2 expression
is associated with reduced phosphorylation of p53 at
Ser315. HCT116 cells were transduced with lentivirus
expressing nontarget control shRNA and three distinct
shRNAs NEK2. Vector-expressing cell lysates were immunoblotted with NEK2, p53 protein, and p53 phosphoserine 315-specific antibodies. (Right) Quantitation of
the blot data. *P < 0.05 (n = 2). (E) NEK2 reduction of p53 protein levels in human cells is dependent on phosphorylation of p53 Ser315. HCT116 (p53 null) cells were
cotransfected with WT p53 plus GFP expression plasmids along with empty vector or WT-p53, kinase-dead NEK2, or WT AURKA expression vectors. Transfected cell
lysates were prepared 24 h after transfection and subjected to SDS/PAGE and immunoblotting with the indicated antibodies to the right of each panel.
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phosphorylation of p53, there may be other direct effects of
NEK2 (e.g., protein–protein interactions) on p53 function as
well as indirect effects (e.g., phosphorylation of other mitotic p53
kinases) that negatively impact p53 activities in mitosis. We also
showed that NEK2 destabilization of p53 is associated with other
p53-mediated functions such as transcriptional transactivation
and apoptosis induction. As a mitotic kinase, NEK2 has been
shown to be overexpressed in many human cancers, and its
overexpression is a marker of poor prognosis in several cancer
types (36, 37). NEK2 is currently being targeted by small-molecule
inhibitors (25, 38). Comparison of the TP53 mutational status of
multiple cancer types from The Cancer Genome Atlas dataset
with NEK2 RNA expression status revealed that NEK2 over-
expression is strongly correlated with TP53mutation (SI Appendix,
Table S2), consistent with an observed inhibition of NEK2 RNA
expression in the presence of stabilized p53 (29). Thus, NEK2 and

p53 may be part of a negative feedback autoregulatory loop that
becomes dysfunctional when TP53 is mutated (SI Appendix,
Fig. S7).
More broadly, this study validates a systematic approach to

analyze and reason from unstructured data from the scientific
literature to obtain useful scientific hypotheses. This approach
has four steps: (i) it embeds (39) and compares the word content
of the full corpus of biomedical abstracts; (ii) this generates a
structured network of protein entities; (iii) in turn, this network
supports semisupervised learning (40); (iv) from which predic-
tions of specific types of protein–protein interactions follow.
Thus, the integration of text mining with network-based machine
learning has led to automated hypothesis generation. Compared
with alternative approaches such as network and protein in-
teraction analyses and amino acid sequence alignment against
unknown p53 kinases, this literature-based approach considers
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Fig. 4. NEK2 inhibits p53 transcriptional and apoptotic functions. (A) NEK2 inhibits p53-mediated transcription in luciferase assays. HCT116 p53+/+ cells
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normalized to the pGL3 + LacZ condition. The average of three experiments with SEM is plotted. (B) NEK2 inhibits transcriptional up-regulation of p53
target genes. Saos-2 cells were transfected with the indicated plasmids. Real-time PCR analysis was performed on p53 target RNAs using primers for p21,
GADD45, and FAS. Gene expression was normalized to LacZ-transfected samples (n = 3). (C) NEK2 inhibition results in enhanced p53 transcriptional
activity. HCT116 p53 WT cells stably expressing indicated shRNAs were transfected with pGL3-Luc and p53RE-Luc along with pRL-TK. p53 transcriptional
activity was plotted relative to scrambled (Scr) shRNA. The average of three experiments with SEM is plotted. (Top) Relative levels of NEK2 (lower band–
upper band is a cross-reacting non-NEK2 protein) and GAPDH loading control. (D) HCT116 p53 WT cells stably expressing scrambled shRNA, NEK2 shRNA-
1, -2, or -3 assessed for NEK2, FAS, and p21 mRNA using qPCR. Average of three experiments with SEM is plotted. (E ) Markers of p53-induced apoptosis are
inhibited by NEK2. Saos-2 cells were transfected with indicated plasmids. Lysate immunoblots were probed with indicated antibodies. (Right) Quanti-
tation of the blot data. (F ) NEK2 inhibits p53-induced apoptosis. Saos-2 cells transfected with indicated vectors were stained posttransfection with p53-
FITC antibody and DAPI nuclear stain. Green fluorescent cells were examined for nuclear damage, and percentage of apoptotic cells (hypercondensed
DAPI and FITC-stained nuclei) were quantitated relative to total fluorescent transfected cells. Asterisks (*) at the Right indicate apoptotic nuclei, and solid
triangles indicate nonapoptotic nuclei containing p53. The average percentage of apoptosis from two experiments with SEM was quantitated and is
illustrated in the graph. (Magnification: F, Right, 20×.) *P < 0.05, **P < 0.01, ***P < 0.001; NS, P ≥ 0.05.
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everything that has been published about each protein, which
may be missing in manually curated networks, amino acid se-
quence information, or experimental interaction values.
While the experimental validations presented above were

necessarily focused on a narrow context, p53 kinase activity, the
algorithms discussed here should be applicable to other proteins
of interest and are not intrinsically limited to predictions of
protein–protein interactions. For example, diffusion of time-
stamped labels on CTNNB1, GSK3β, and HIST1H3B kinase
networks resulted in top-scoring unlabeled nodes that were
enriched for relevant kinases discovered after the time stamp
(area under the ROC curve = 0.65 for CTNNB1, 0.66 for
GSK3β, and 0.68 for HIST1H3B) (SI Appendix, Materials and
Methods, Fig. S8, and Table S3), suggesting that this approach
can be used to discover kinases for other proteins that are not as
intensively studied as p53. This method has also been used to
find prion proteins associated with amyotrophic lateral sclerosis
(41). In the future, these algorithms could be expanded to
identify hidden connections among many types of biological
entities, leading to accelerated discovery in many areas of
biological science.

Materials and Methods
Please see SI Appendix, Materials and Methods, for a detailed description of
materials and methods.

To identify p53 kinases, a similarity network of human kinases was built
from all PubMed abstracts available in January 2014 that mentioned human
kinases. The abstracts for each kinase were summarized as vectors of relevant

words (30), and a cosine similarity matrix was produced for the 259 kinases
that each had 10 or more abstracts. We converted the matrix into a graph by
thresholding the kinases based on their similarity. We then used graph in-
formation diffusion (17) to globally propagate labels throughout this kinase
network from the known p53 kinase nodes to nodes lacking such prior an-
notation. This produced a ranking of all kinases not previously known to
phosphorylate p53 for functional testing (described in SI Appendix).

While it is not possible or practical to release the entire source code for
Watson for Drug Discovery, we are happy to make the latest implementation
available to any researcher who wants to try out the approach that we
describe in this paper. The URL ibm.biz/wdd-trial provides the application for
a cloud-based service that scientists and investigators can easily apply to
their own problems or use to validate our method against the example
described in a paper or any other similar example that they wish to explore.
This application is provided free of charge for a period of one month after
activation, with extensions possible upon request.
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