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Abstract: Artificial intelligence-based unsupervised deep learning (DL) is widely used to mine
multimodal big data. However, there are few applications of this technology to cancer genomics. We
aim to develop DL models to extract deep features from the breast cancer gene expression data and
copy number alteration (CNA) data separately and jointly. We hypothesize that the deep features
are associated with patients’ clinical characteristics and outcomes. Two unsupervised denoising
autoencoders (DAs) were developed to extract deep features from TCGA (The Cancer Genome Atlas)
breast cancer gene expression and CNA data separately and jointly. A heat map was used to view
and cluster patients into subgroups based on these DL features. Fisher’s exact test and Pearson’
Chi-square test were applied to test the associations of patients’ groups and clinical information.
Survival differences between the groups were evaluated by Kaplan–Meier (KM) curves. Associations
between each of the features and patient’s overall survival were assessed using Cox’s proportional
hazards (COX-PH) model and a risk score for each feature set from the different omics data sets
was generated from the survival regression coefficients. The risk scores for each feature set were
binarized into high- and low-risk patient groups to evaluate survival differences using KM curves.
Furthermore, the risk scores were traced back to their gene level DAs weights so that the three gene
lists for each of the genomic data points were generated to perform gene set enrichment analysis.
Patients were clustered into two groups based on concatenated features from the gene expression and
CNA data and these two groups showed different overall survival rates (p-value = 0.049) and different
ER (Estrogen receptor) statuses (p-value = 0.002, OR (odds ratio) = 0.626). All the risk scores from the
gene expression and CNA data and their concatenated one were significantly associated with breast
cancer survival. The patients with the high-risk group were significantly associated with patients’
worse outcomes (p-values ≤ 0.0023). The concatenated risk score was enriched by the AMP-activated
protein kinase (AMPK) signaling pathway, the regulation of DNA-templated transcription, the
regulation of nucleic acid-templated transcription, the regulation of apoptotic process, the positive
regulation of gene expression, the positive regulation of cell proliferation, heart morphogenesis, the
regulation of cellular macromolecule biosynthetic process, with FDR (false discovery rate) less than
0.05. We confirmed DAs can effectively extract meaningful genomic features from genomic data
and concatenating multiple data sources can improve the significance of the features associated with
breast cancer patients’ clinical characteristics and outcomes.
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1. Introduction

Advanced hardware technologies have highly increased computational power, which makes the
implementation of computation-consuming algorithms possible. At the same time, the development
of biological technologies has greatly reduced the cost of genomic sequencing, which produced a
huge amount of high-dimensional genomic data. Under these circumstances, bioinformatics becomes
an exciting research field for researchers to explore the possibility to interpret genomic data using
advanced computational technologies [1].

Different types of high-dimensional genomic data have been associated with cancer clinical
characteristics and outcomes. The most commonly used ones are gene expression data and copy
number alteration (CNA) data [2]. The activity of gene expression in tumor tissues is quite different
from that in normal tissues [3] and has been established to have the ability to distinguish the
characteristics of cancers [4]. There are some repeated segments in normal DNA, and during the
process of cancer development, the repeated number of the segments may be changed due to abnormal
DNA replication in tumor cells. This phenomenon is called copy number alteration [5]. CNA may
result in chromosome structure changes in the forms of duplication or deletion in DNA segments.
It has been shown that CNA plays an important role in the development of many types of cancers
including breast cancer [6]. Therefore, it is highly necessary to mine the prognostic and diagnostic
significance of the genome-wide cancer genomic data. From a clinical point of view, the prognosis of
the genomic factors is always a necessary consideration because of its importance in making treatment
plans [7]. In previous studies, prognosis significance was evaluated mainly based on clinical features,
such as tumor grades and tumor subtypes [7] and molecular features, such as expression related gene
signatures (e.g., PAM50 subtypes) [8,9]. Results from these studies showed that the gene signatures
tend to have better prognosis significance than traditional pathological assessment [7]. This might
be due to the integration ability of these gene signatures. For instance, PAM50 can combine the
information from the tumor stage, tumor grade and tumor subtype together [9]. However, the known
gene signatures are only based on single genomic data source such as gene expression. This might be
not adequate since other types of genomic data such as copy number alterations should also include
important cancer prognosis information [9]. Advanced algorithms now give us new tools to explore
the possibility of integrating different data sources together. For example, Chi, et al. identified several
genes and pathways with a high prognostic significance for young breast cancer patients based on
their gene expression and copy number alteration data using a graph-based machine learning (ML)
method [9].

Traditional ML methods such as artificial neural networks (ANN) and support vector machines
(SVM) may suffer some problems in dealing with the high-dimensional, noisy and massive genomic
data [10]. Recently, a special case of ANN with more nodes and layers has emerged as an efficient
method to handle these high-dimensional and noisy data. The idea of ANN was originated from the
information processing and communication patterns in a human nervous system [11]. As the new
development of the traditional ANN, deep learning (DL) presents a large group of interconnected
artificial neurons with many more layers. Like other learning methods, DL could be implemented
in a supervised or unsupervised way, which depends on whether the input data is labeled or not.
Although both supervised and unsupervised DL algorithms have been successfully applied to the
analysis of genomic data, they could be used to solve different biology problems. Supervised learning
algorithms are often used to predict gene functions and gene-gene interactions or to identify new
driver genes [12], while unsupervised learning algorithms are often used to cluster the strong signals
in the data [13,14]. Among the unsupervised learning algorithms, autoencoder is a new technology
that uses the data itself as the learning objective or label. Therefore, it is also known as self-labeled
or self-supervised deep learning. Traditional autoencoders may face the invalid learning problem
when the number of hidden nodes is larger than the input size. To avoid this potential risk, denoising
autoencoders (DAs) came up with the solution of adding some noise into the input data on purpose.
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Vincent, et al. brought the concept of DAs into DL and built a specialized feature extraction DL
architecture [15]. The key idea of DAs as mentioned above is to add random noise into the raw data
before it is input into the network. After the encode and decode processes, the raw data would be
reconstructed from the noisy data, while the compact and efficient representations from the raw data
could be learned as well [15]. These representations are the DAs-based genomic features.

DL as a special case of ML and ANN has been applied to mine deep information from complex
genomic data and has generated interesting results [16]. Its high integration and reconstruction abilities
give us large flexibility to combine different types of genomic data to extract valuable information from
them. It has been expected that deep features extracted by DL models would perform better in clinical
association and prognosis prediction than standard gene or pathway signatures [17]. For example,
Tan, et al. reported a deep feature representing ER status and a deep feature with high prognosis
significance based on breast cancer gene expression data [13]. These deep features were constructed by
a DAs and performed better in the downstream analyses [13]. However, these studies were based on
only a single genomic source.

This study aims to extract the integrated features from both the gene expression and CNA data
by a concatenated DAs model. As a comparison, we also built a standard DAs model to extract deep
features from gene expression and CNA data separately. The comparisons were made in terms of
the performance in association analysis as well as prognosis analysis. The study design and analysis
procedures are shown in Figure 1.
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2. Materials and Methods

2.1. Data Sources

Datasets used in this study came from The Cancer Genome Atlas (TCGA) [18], which is one of
the most comprehensive genomic databases. TCGA provides 1098 breast cancer patients’ clinical
data along with their genomic data. These genomic data include gene expressions, CNA, protein
expressions, micro RNA (miRNA) expressions, and somatic mutations.

For gene expression data, the sequencing, alignment, quality control and quantification were
performed previously [18]. Using the TCGA-Assembler tool [19], we downloaded the gene expression
raw count, then filtered out unexpressed genes and those genes with a count per million (CPM) less
than 1 in 3 patients. We performed normalization of the data using Upper Quartile Fragments per
Kilobase of transcript per Million mapped reads (FPKM-UQ) [20]. FPKM-UQ is a modified FPKM
algorithm in which the total read count is replaced by the 75th percentile read count for a given sample.

Similar to the gene expression data, upstream processes of CNA data were done previously as
well [18]. Using the downloaded chromosome-region specific log2 copy number data, we calculated
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the gene-level CNA values using the TCGA-Assembler tool. Several data cleaning procedures such as
removing all-NAs were also performed to avoid potential format issues in the follow-up analysis.

After normalization and preprocessing, there were 18,163 genes from each of the 1095 patients
left for gene expression data and 23,563 genes from the 1098 patients left for CNA data. To
keep the gene dimension and scale matched in the two data sources, both of them were linearly
transformed into a range between 0 and 1, resulting in the decreasing of the data dimension to
16,197 (genes) × 1085 (patients) for both data sources.

2.2. DA Models

Two DAs models were developed using Keras [21] with Tensorflow [22] as the backend to extract
deep genomic features. One model was for feature extraction from a single genomic source, named as
one-input DAs model (Figure 2). The other, named as the two-input DAs model (Figure 3), was for
concatenated feature extraction from the integrated genomic sources.
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2.2.1. One-Input DAs Model

This architecture was composed of one input layer, one fully connected encode hidden layer with
100 nodes which were chosen to be the deep features used in this study and one decode layer which
uses the transpose of encoding layer’ weights. This procedure can be formulated as below:

encode = sigmoid (W × input + b)
decode = sigmoid (W’ × encode + b’)

(1)

where W is the weight metrics between the layers with the size of 16,197 × 100, b is the bias for each
node, and the sigmoid function is sigmoid (x) = 1 / (1 + e−x). The counterparts with the superscript
refer to the transpose metrics. A dropout layer was added after the encode layer, which randomly set
50% of the output of encode layer to 0 to prevent overfitting. The encode item was chosen to be the
activity values of the deep features in this model.

2.2.2. Two-Input DAs Model

Literally, the two-input DAs model contained two input layers, followed by one encode layer with
1000 nodes for each input layer, then followed by a concatenated layer, and another encode layer with
100 nodes which were chosen to be the deep concatenated features. Finally, there were two decode
layers. The procedure can be formulated as follow:

input1_encode1 = sigmoid (input1_W1 × input1 + input1_b1)
input2_encode1 = sigmoid (input2_W1 × input2 + input2_b1)

concate_encode1 = concatenate (input1_encode1, input2_encode1)
concate_encode2 = sigmoid (concate_W2 × concate_encode1+ concate_b2)

output1 = sigmoid (input1_W1
′ × concate_encode2 + input1_b1

′)
output2 = sigmoid (input2_W1

′ × concate_encode2 + input2_b1
′)

(2)

where input1_W1, input2_W1, and concate_W2 are the weight metrics between the layers with the size
of 16,197 × 1000, 16,197 × 1000, 2000 × 100 respectively. The input1_b1, input2_b1, and concate_b2 are
the biases for each node. The counterparts with superscript refer to the transpose metrics. A dropout
layer was added after concate_encode2 layer, which randomly set 50% of the output of that layer to 0.
The concate_encode2 was chosen to be the activity values of the deep features in this model.

2.3. Train the Models

Before the training process, the input data sets were disrupted by a noise factor of 0.25, which is
the proportion of the number of genes in the data sources. These genes were selected randomly and
their values were set to 0. The binary cross-entropy function shown below was used to measure the
difference between the input layer and the output layer:

L (input, output) = −(1/N) Σ (inputk × log(outputk) + (1 − inputk) × log(1 − outputk)) (3)

where L (input, output) is the binary cross-entropy, K is the index of batches, N is the total number of
batches. Thus, the training task is to minimize the L (input, output).

For the optimizer, e.g., the strategy to update the weights and bias so that the minima could be
found, we selected stochastic gradient descent (SGD), which has several arguments to be set freely.
After having different trials, the learning rate was finally set to 0.1; the batch size and epoch were set
to 64 and 100 respectively. The models were finally trained under the parameters mentioned above.
The activity values and weight metrics related to deep features were read out.
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2.4. Visualization and Clustering

Heatmap3 [23] was used to visualize the activity values of these deep feature sets. We used the
complete linkage function in the hierarchical clustering process and visual-guided criteria by analysis
of the dendrogram to decide the number of clusters. First, the clinical data downloaded from TCGA
were carefully scanned and the most clinical-relevant characteristics such as pathological status (T, N,
M), tumor stage, estrogen receptor (ER) status, progesterone receptor (PR) status, human epidermal
growth factor receptor 2 (HER2) status, triple negative status, and PAM50 subtypes (i.e., Luminal A,
Luminal B, Basal-like, HER2-enriched, and Normal-like) were extracted. These clinical characteristics
were shown as the sidebar of the heat map.

2.5. Association Analysis

To test whether the identified patient clusters are associated with known clinical and molecular
characteristics, we applied both Fisher’s exact test and Pearson’ Chi-square test.

Survival differences between the identified patients groups were evaluated by Kaplan–Meier (KM)
curves. Furthermore, associations between each deep feature in the three feature sets (gene expression,
CNA, the concatenated one) and patient’s overall survival was assessed using Cox’s proportional
hazards (COX-PH) model [24]. The hazard function is

h(t) = h0 (t) × exp (bx) (4)

where t represents the survival time. b is the coefficient which measures the impact of the covariate x.
Later, a risk score for each feature set was generated from the COX-PH coefficients:

r = Σ (bi × ai) (5)

where r is the risk score, bi is the coefficient from the COX-PH model and ai is the related activity value
of the given feature. Afterward, the risk scores were binarized into high-risk and low-risk groups
using R package xtile function with a prob parameter set to 0.55, which means we use the 55% quantile
as the cutoff to bin the patients into the high-risk and low-risk groups. Finally, the survival differences
between these two groups were evaluated by the KM curve.

2.6. Gene Sets Enrichment Analysis

For each of the three DAs models for gene expression, CNA and their concatenated one, we traced
back their gene-level weights based on

Wg = W × B (6)

where W is the 16,197 × 100 dimensional weights that were extracted from a given DAs model
previously. B is the vector of COX-PH coefficients. The gene-specific weights Wg were filtered by a
cutoff 0.01, which resulted in the three selected gene lists with 6954, 5381 and 6297 genes, respectively.
Finally, the three gene lists were used to perform gene set enrichment analysis (GSEA) by the Enricr
tool [25] to identify the up-regulated and down-regulated pathways. Kyoto Encyclopedia of Genes
and Genomes (KEGG) [26] and Gene Ontology (GO) [27] Biological Process 2018 version were chosen
to be the reference gene sets.

3. Results

Based on the normalized and processed breast cancer genomic data, our models were trained
and the activity values of the 100 deep features for each of the three data sets as well as the weights
matrices were extracted (Table 1). Then we clustered these activity values for each of the three data
sets. Overall, there were no clear patterns shown in the deep features from a single genomic source
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(gene expression or CNA data). However, patients were roughly clustered into 2 groups according to
the activity values of the concatenated deep features (Figure 4).

Table 1. The size and organization of deep features obtained from the models. The size and structure
of the deep features extracted from gene expression data and copy number alteration data by the two
denoising autoencoders (DAs) models.

Model Data Source Deep Features (Noise Factors = 0.25)

One-input DAs
Gene expressions Activity values 1085 × 100

weights 16,197 × 100

Copy number alterations Activity values 1085 × 100

weights 16,197 × 100

Two-input DAs Gene expressions
Copy number alterations

Activity values 1085 × 100

weights 16,197 × 100

Cancers 2019, 11, x 7 of 13 

 

Copy number alterations weights 16,197 × 100 

 
Figure 4. The clustering of activity values of concatenated deep features extracted under the noise 
factor of 0.25. The columns are the 1085 patients and the rows are the 100 deep features. The sidebar 
contains the corresponding clinical information of the patients. Values are clustered by both columns 
and rows. 

Results from the association tests between the two patient groups and their clinical 
characteristics are shown in Table 2. The two patient groups showed significant survival (Figure 5) 
and ER status difference (Table 2) with p-values 0.049 and 0.002, respectively, which mean that the 
concatenated features have learned the ER information and performed well in predicting patient’s 
prognosis. The odds ratio of ER status is 0.626, indicating that the second group tends to be 
associated with ER-negative patients. From the KM plot (Figure 5), we can see that the patients in 
Group 2 suffered from a poor prognosis, which happens to be associated with ER-negative status. It 
has been shown that ER-negative breast cancer patients usually have a poor prognosis. 

Table 2. The results of clinical association analysis. * patients were classified as young (age < 40) and 
old (age ≥ 40) groups. 

Clinical 
Characteristics Fisher’s Exact p-Value Chi-Square Test p-Value 

Pathological T 0.69 0.69 
Pathological N 0.95 0.96 
Pathological M 0.95 0.94 
Tumor Stage 0.93 0.93 

ER Status 0.002 0.002 
PR Status 1.00 0.99 

HER Status 0.43 0.44 
Age * 0.58 0.67 

Triple Negative 0.15 0.17 

Figure 4. The clustering of activity values of concatenated deep features extracted under the noise
factor of 0.25. The columns are the 1085 patients and the rows are the 100 deep features. The sidebar
contains the corresponding clinical information of the patients. Values are clustered by both columns
and rows.

Results from the association tests between the two patient groups and their clinical characteristics
are shown in Table 2. The two patient groups showed significant survival (Figure 5) and ER status
difference (Table 2) with p-values 0.049 and 0.002, respectively, which mean that the concatenated
features have learned the ER information and performed well in predicting patient’s prognosis. The
odds ratio of ER status is 0.626, indicating that the second group tends to be associated with ER-negative
patients. From the KM plot (Figure 5), we can see that the patients in Group 2 suffered from a poor
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prognosis, which happens to be associated with ER-negative status. It has been shown that ER-negative
breast cancer patients usually have a poor prognosis.

Table 2. The results of clinical association analysis. * patients were classified as young (age < 40) and
old (age ≥ 40) groups.

Clinical Characteristics Fisher’s Exact p-Value Chi-Square Test p-Value

Pathological T 0.69 0.69

Pathological N 0.95 0.96

Pathological M 0.95 0.94

Tumor Stage 0.93 0.93

ER Status 0.002 0.002

PR Status 1.00 0.99

HER Status 0.43 0.44

Age * 0.58 0.67

Triple Negative Status 0.15 0.17

Tumor Subtype 0.35 0.36
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According to the results of COX-PH models, the high-risk scores generated from each of the three
deep feature sets are all significantly associated with a poor overall survival with p-values less than
1 × 10−5 (Table 3). The concatenated features showed a higher hazard ratio (HR) with 95% confidence
interval (CI) (1.27, 1.16–1.40) than gene expression features (1.009, 1.005–1.013) and CNA features
(1.23, 1.15–1.32). These results indicated that the risk scores from the deep features, especially the
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concatenated risk score, predict patient’s poor prognosis. The similar patterns were observed in KM
plots (Figure 6), where the patient group with high-risk scores always suffered from a poor prognosis.

Table 3. Cox’s proportional hazards (COX-PH) results for risk scores.

Risk Score HR Lower.95_HR Upper.95_HR p-Value

Gene expression 1.009 1.005 1.013 1.06 × 10−5

CNA 1.23 1.15 1.32 7.86 × 10−9

Concatenated 1.27 1.16 1.40 5.62 × 10−7Cancers 2019, 11, x 9 of 13 
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Figure 6. The KM-plots for risk scores based on the deep feature sets. (A) Gene expression data; (B) 
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Figure 6. The KM-plots for risk scores based on the deep feature sets. (A) Gene expression data;
(B) copy number alteration data; (C) the concatenated data.

GSEA using the 6,297 genes selected based on the concatenated deep feature set showed
that the AMP-activated protein kinase (AMPK) signaling pathway in the KEGG family was
significantly down-regulated with a false discovery rate (FDR) less than 0.05, and several GO-based
regulation processes, such as the regulation of DNA-templated transcription, the regulation of nucleic
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acid-templated transcription, the regulation of apoptotic process, the positive regulation of gene
expression, the positive regulation of cell proliferation, and the regulation of cellular macromolecule
biosynthetic process were significantly enriched as well, with an FDR less than 0.05 (Table 4).

Table 4. The gene set enrichment analysis using Enricr.

Gene Sets p-Value Adjusted p-Value

regulation of transcription, DNA-templated 2.25 × 10−7 0.001

regulation of nucleic acid-templated transcription 6.03 × 10−5 0.04

regulation of apoptotic process 6.19 × 10−5 0.04

positive regulation of gene expression 5.89 × 10−5 0.04

positive regulation of cell proliferation 4.78 × 10−5 0.04

AMPK signaling pathway_Homo sapiens_hsa04152 6.08 × 10−5 0.018

AMPK is an important cellular metabolism and energy homeostasis regulator in mammalian
tissues. It is situated in the center of a signaling network which contains tumor suppressors such as
LKB1, TSC2 and p53 [25]. Some evidence has been reported that AMPK plays an anti-tumorigenic role
and a lot of work are ongoing to involve agonists of AMPK for cancer treatment [28]. Furthermore,
all those enriched GO regulation processes are critical as hallmarks in cancer occurrence and
progression [29].

4. Discussion

In building the DA model, one of the key parameters we need to set up is the noise level used to
partially destroy the inputs. We tried to add different levels of noise (e.g., 0%, 10%, 25% and 50%) into
the DA model. Similar to the observations made by Vincent et al. [15], we also found that the more
noise was added the better the network learns dependencies between the features. With low noise
levels, the learned features do not stand out. As we set the noise level at 0.25, denoising training can
capture more distinctive deep features.

Comparing with conventional breast cancer biomarkers, such as CA15-3 for measuring how breast
cancer treatment is working and looking for cancer that has come back or recurred, after treatment [30],
and NCC-ST-439 for measuring breast cancer progression [31], the explanation of the deep genomic
features or biomarkers from the DA model for breast cancers is more complicated. Each of the extracted
deep features is a high-level summary of the raw features or conventional biomarkers. These high-level
features or biomarkers can be more robust against noise in the conventional biomarkers. Furthermore,
these high-level features can potentially significantly improve the breast cancer outcome prediction by
integrating information from both breast cancer histology images and genomic biomarkers [32]. The
extracted features based on the proposed deep learning model can be also used to predict the statuses
of malignancy, relapse, and reactivity for anticancer if the related data sources are available. We will
explore the method in other large data sets and cancer types in the future. This can further validate the
usefulness of the method for risk stratification of cancer patients.

In order to extract robust deep features using the proposed DA model, we took a strategy to add
noise into the input genomic data by the partial corruption of the input pattern. It is expected that the
learned deep features from the partially destroyed inputs can yield almost the same representation of
the raw genomic data. In order to further boost the performance of using the learned deep features
to predict breast cancer outcome or traits, another interesting strategy is to incorporate the prior
knowledge about breast cancer hallmarks, which can be represented by a few molecular or signaling
networks [33], into the deep learning procedure. This can be potentially implemented in different
ways. For example, the interaction information among different genes or mutations collected in the
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molecular or signaling network databases can be used to assign the weights in different layers of the
network among different neurons. We will explore the interesting strategy in future studies.

5. Conclusions

In this study, we showed that unsupervised DAs as an effective model to extract meaningful
deep genomic features from either single- or multi- genomic sources from breast cancer patients.
These features were significantly associated with the breast cancer ER status and had the prognosis
significance. We also showed that the concatenated deep features were enriched by breast cancer
relevant pathways.

This study can be improved in two potential ways. The first one is to develop new DAs model
structures such as stacking more layers into DAs or adding a regression layer to make it supervised [34].
The second one is to combine all types of possible data sources together, such as somatic mutation
data, protein expressions, miRNA expressions, etc. We will explore these ideas in future analyses.
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DL Deep learning
CNA Copy number alteration
DAs Denoising autoencoders
TCGA The Cancer Genome Atlas
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COX-PH Cox’s proportion hazard
OR Odds ratio
AMPK AMP-activated protein kinase
FDR False discovery rate
GSEA Gene sets enrichment analysis
ML Machine learning
ANN Artificial neural network
SVM Support vector machine
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miRNA Micro RNA
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