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Immune checkpoint inhibitors (ICI) revolutionized the field of immuno-oncology and
opened new avenues towards the development of novel assets to achieve durable
immune control of cancer. Yet, the presence of tumor immune evasion mechanisms
represents a challenge for the development of efficient treatment options. Therefore,
combination therapies are taking the center of the stage in immuno-oncology. Such
combination therapies should boost anti-tumor immune responses and/or target tumor
immune escape mechanisms, especially those created by major players in the tumor
microenvironment (TME) such as tumor-associated macrophages (TAM). Natural killer
(NK) cells were recently positioned at the forefront of many immunotherapy strategies, and
several new approaches are being designed to fully exploit NK cell antitumor potential.
One of the most relevant NK cell-activating receptors is NKG2D, a receptor that
recognizes 8 different NKG2D ligands (NKG2DL), including MICA and MICB. MICA and
MICB are poorly expressed on normal cells but become upregulated on the surface of
damaged, transformed or infected cells as a result of post-transcriptional or post-
translational mechanisms and intracellular pathways. Their engagement of NKG2D triggers
NK cell effector functions. Also, MICA/B are polymorphic and such polymorphism affects
functional responses through regulation of their cell-surface expression, intracellular
trafficking, shedding of soluble immunosuppressive isoforms, or the affinity of NKG2D
interaction. Although immunotherapeutic approaches that target the NKG2D-NKG2DL
axis are under investigation, several tumor immune escape mechanisms account for
reduced cell surface expression of NKG2DL and contribute to tumor immune escape.
Also, NKG2DL polymorphism determines functional NKG2D-dependent responses, thus
representing an additional challenge for leveraging NKG2DL in immuno-oncology. In this
review, we discuss strategies to boost MICA/B expression and/or inhibit their shedding and
propose that combination strategies that targetMICA/Bwith antibodies andstrategies aimed
at promoting their upregulation on tumor cells or at reprograming TAM into pro-inflammatory
macrophages and remodeling of the TME, emerge as frontrunners in immuno-oncology
because they may unleash the antitumor effector functions of NK cells and cytotoxic CD8 T
cells (CTL). Pursuing several of these pipelines might lead to innovative modalities of
immunotherapy for the treatment of a wide range of cancer patients.
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INTRODUCTION

The therapeutic alternatives to treat tumors received a
formidable boost when immune checkpoint inhibitors (ICI)
were developed (1). These assets revolutionized the field of
immuno-oncology (I-O), leading to successful treatment of
liquid and solid tumors. ICI are monoclonal antibodies (mAb)
whose mechanism of action involve the blockade or interference
with cell surface receptors that mediate inhibitory signals in cells
of the immune system, mainly T lymphocytes but also natural
killer (NK) cells (2, 3). However, ICI also have a dark side that
comprises a low frequency of responding patients, their adverse
effects (4) and, more recently described and still ill-characterized,
the occurrence of hyper-progression of the tumor (5–7). An
additional promising option is to combine ICI with other anti-
tumor compounds. Combination of anti-CTLA4 and anti-PD-1
or anti-PD-L1 mAb has shown promising results in several
tumors (8). Moreover, novel strategies, molecular targets and
cell-based therapies keep emerging as alternatives to improve the
efficacy of the treatment options for cancer patients, positioning
the field of I-O at the top in the investment and competition for
academic institutions and pharmaceutical/biotech companies.
NK CELLS AT THE FOREFRONT IN
IMMUNO-ONCOLOGY

NK cells and CTL constitute the most relevant effector cells that
mediate tumor cell elimination through their cytolytic activity
and a proinflammatory function. Cytolytic activity is exerted
though the secretory pathway and the expression of death
receptors (9). Inflammatory activity is exerted through the
secretion of cytokines, mainly IFN-g and TNF, and
chemokines such as CCL5, XCL1 and XCL2 (10, 11). Evidence
obtained some years ago (12), and recent studies that established
that NK cell frequency, infiltration and function are associated
with improved patient survival (13–16) demonstrated that NK
cells play a crucial role in tumor immunity. Remarkably, although
NK cells were considered rapid but short-lived responders to
virus-infected and tumor cells, this idea has been challenged by the
identification of NK cells that undergo clonal expansion and
acquire features of long- lived memory cells, a hallmark of
adaptive T and B lymphocytes. The molecular and cellular
mechanisms that drive adaptive NK-cell expansion and activity
are being elucidated (17). These concepts strengthened even more
the interest in exploiting NK cells´ immunotherapeutic potential
to combat cancer in oncologic patients (18, 19).

Furthermore, NK cells became progressively positioned at the
forefront of current immunotherapy strategies (18, 19). Many
new compounds, including but not limited to mAb are being
developed to fully exploit their antitumor potential (20). Also, it
is currently possible to produce large amounts of NK cells
suitable for adoptive transfer to patients. A recapitulation of
NK cell-based therapies in I-O indicates that most of these
approaches fall within one of the following categories: a) in vitro
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expansion and activation; b) adoptive transfer of allogeneic NK
cells; c) generation of chimeric antigen receptor modified NK cells
(CAR-NK) and d) administration of mAb or other bioactive
compounds that regulate NK cell activity against tumors (21).
Some success in the treatment of liquid tumors has been achieved
using these NK cell-based strategies (22–27). While in vitro
expansion and activation of autologous NK cells, and adoptive
transfer of allogeneic NK cells have yielded variable degrees of
success with liquid tumors, high hopes have been put on the
generation and use of CAR-NK. This is because CAR-NK cells
have several advantages over CAR-T cells such as a shorter half-life
(and a subsequent better opportunity to control eventual side
effects), a lack of induction of cytokine release syndrome (CRS,
often severe and/or fatal in patients that received CAR-T cells), and
the possibility of preparing off-the-shelf CAR-NK cells for the
treatment of multiple patients (28–30). However, the landscape is
quite different for solid tumors mostly because NK cells must face
the formidable task of overcoming the immunosuppressive TME to
avoid becoming exhausted and dysfunctional (31, 32). Also, even if
NK cell can overcome this hostile environment, their weak capacity
to infiltrate solid tumors is another of the reasons that explain the
low success ofNKcell-based therapies to treat solid tumors (28, 29).
Thus, adoptive transfer of NK cells might require the combination
with additional strategies to bolster an effective anti-tumor NK cell
function. Combination with ICI emerge as attractive possibilities
but, in viewof our current knowledge about dysfunctional NKcells,
other molecules such as TIM-3, TIGIT and LAG-3 are taking the
center of the stage in I-O, as their blockade, knock down or knock
out results in a better tumor eradication in different models (33).

The possibility of promoting NK cell effector functions
through immunotherapeutic manipulation is further supported
by data that indicate that NK cells respond to ICI. Single-cell
RNA sequencing (scRNAseq) data indicate that tumor NK cell
infiltration is associated with better patient outcomes in several
different cancer types (13, 15) and that NK cell infiltration
contributes to a robust ICI response (10, 14). Also, scRNAseq
and CYTOF revealed that ICI induced a significant remodeling
of lymphoid and myeloid cells in the TME, and this effect was
dependent on IFN-g (34). Accordingly, there is a considerable
interest in harnessing antitumor NK cell effector functions
through the development of novel cancer immunotherapies (21,
35). Many companies currently have NK cell pipelines in their
portfolios mainly intended to foster NK cell effector functions in
cancer patients using novel ICI or immunomodulatory agents
(35–37). However, these strategies face the challenge of having to
overcome the decline in NK cell activity due to tumor immune
escape mechanisms. In addition, in ccRCC, an RNAseq analysis
demonstrated that expression of NK cell-associated receptors and
molecules, and some other ligands recognized by these receptors
affect overall survival (38). These findings sustain the necessity of a
deeper exploration of the TME as a major contributor to NK
cell (dys)function and the characterization of tumor-specific
factors and mechanisms that regulate NK cell activity.
Additionally, a big question is whether it is feasible to
reinvigorate dysfunctional tumor-infiltrating NK cells (TINK) or
July 2021 | Volume 12 | Article 713158
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to eliminate/deplete them and create a niche for the recruitment of
newly activated, fully functional NK cells through the
administration of immunotherapeutic agents to the patient.
THE NKG2D RECEPTOR AND
ITS LIGANDS

NK cells detect tumor cells through a collection of germline-
encoded activating receptors whose actions are counterbalanced
by another group of inhibitory receptors (28, 39, 40). Thus, NK
cells develop effector functions when signals triggered by
activating receptors override signals triggered by inhibitory
receptors. NK cell activity is also regulated by cytokines,
especially those produced by myeloid cells such as IL-12, IL-
23, IL-27, IL-15, IL-18 and TGF-b (41–44) and by agonists of
several Toll-like receptors (TLR) such as TLR3, TLR7 and TLR9
that are expressed by NK cells (45–47). Therefore, the integration
of activating and inhibitory signals present in their environment
dramatically determines NK cells’ capacity to mobilize
effector functions.

Besides CD16 (FcgIIIa receptor) that recognizes Fc fractions
of several IgG subclasses and is responsible for the antibody-
dependent cell-mediated cytotoxicity (ADCC) (48), the Natural
Cytotoxicity Receptors (NCR) NKp30 (CD337, the product of
the ncr3 gene), NKp44 (CD336, the product of the ncr2 gene),
NKp46 (CD335, the product of the ncr1 gene) and NKp80 (the
product of the klrf1 gene), together with DNAM-1 (CD226) and
NKG2D (CD314, the product of the klrk1 gene) emerged as a
major activating receptors (17, 37, 49–52). In vivo blockade of
NKG2D or NKG2D knock out mice leads to an increased
susceptibility to spontaneous tumor development and tumor
progression (53, 54). Therefore, efforts are underway to capitalize
on NKG2D ligands (NKG2DL) as molecular targets in I-O. In
humans, 8 different NKG2DL have been described (51, 55). The
first known NKG2DL were the proteins encoded by the MHC
class I-chain related genes A and B (MICA andMICB), also called
PERB11.1 and PERB11.2 respectively (56, 57). Both genes map
within the MHC, are highly polymorphic (58, 59) and the alleles
are expressed in a codominant manner (60). The MICA and
MICB proteins encoded by most alleles consist of three
extracellular domains, one transmembrane domain and a
cytoplasmic tail. An exception is the MICA*008 allele (the
most frequent in different populations) that harbors an
insertion in exon 5 that introduces a shift in the reading frame,
encoding a truncated protein with a partial transmembrane
domain and no cytoplasmic tail. Nonetheless, MICA*008 is
stably expressed on the cell surface of different cells. MICA
and MICB are also highly glycosylated. Due to their polymorphic
nature, MICA and MICB constitute targets of the immune
response against allogeneic transplants and patients with
kidney, hearth and lung transplant rejection exhibit anti-
MICA/B Ab in serum (61–66).

Although the significance of the polymorphism of MICA and
MICB remains ill-defined, associations between alleles and
autoimmune diseases and cancer has been widely reported
Frontiers in Immunology | www.frontiersin.org 3
(67–75). Also, a differential regulation of cell surface
expression of MICA isoforms has been observed upon
infection with cytomegalovirus (76), suggesting that resistance
to infectious agents could be a driving force for the selection of
several MICA alleles in the population. Dimorphism at position
129, which maps to the a2 domain of MICA, affects NKG2D
recognition. Alleles with Met at position 129 trigger stronger
NKG2D signaling and subsequent NKG2D-dependent effector
functions than alleles with Val, but, at the same time, MICA-
129Met isoforms promote a more intense downregulation of
NKG2D than MICA-129Val isoforms (77). MICA-129Met
homozygosity confers susceptibility to inflammatory bowel
disease (78), while MICA-129Val homozygosity leads to faster
progression of multiple myeloma (MM) (79) and also plays a role
in susceptibility for breast cancer development (80). Therefore,
although the majority of the polymorphic positions in MICA are
not exposed to its contact area with NKG2D (58, 81), such
polymorphism may affect other aspects of MICA and determine
the chances of success of strategies aimed at leveraging MICA as
molecular target in I-O.

The existence of MICA-null haplotypes in individuals
without particular susceptibility to infectious or autoimmune
diseases or cancer indicates some redundancy in the biological
function of MICA (82–85). Likely, this is because there are
additional ligands for NKG2D. Besides MICB, which shares a
homology of above 80% with MICA, currently we know six
additional NKG2DL but with a homology with MICA and MICB
that is below 25%. These additional NKG2DL are members of the
UL-16 binding protein (ULBP) family, also known as Retinoic
Acid Early Transcripts (RAET) 1. Therefore, they were named
ULBP-1 (or RAET1I), ULBP-2 (or RAET1H), ULBP-3 (or
RAET1N), ULBP-4 (or RAET1E), ULBP-5 (or RAET1G) and
ULBP-6 (or RAET1L) (51, 55, 86–89).

It has been considered for some time that MICA and MICB
are not expressed or are weakly expressed in normal cells with
very few exceptions such as the luminal side of the intestinal
epithelium (56, 90–93). However, it was observed later
that MICA and MICB transcripts could be detected in most
normal tissues with the exception of the central nervous system
(94). However, as NKG2DL experience post-translational
modifications that regulate their expression as cell surface
molecules (95–97), their cell surface expression on normal cells
remains controversial. We demonstrated that premalignant
quiescent melanocytic nevi, benign lesions of the skin and
normal skin do not express MICA, in opposition to a primary
recently diagnosed melanoma (98). Also, expression of MICA/B
in many tumors and normal epithelia was recently reported, but
with a predominant intracellular localization and low cell surface
expression (99). The reasons for these discrepancies are not quite
well understood but different technical approaches to assess cell
surface MICA expression may produce discrepant results. As
MICA colocalizes with some intracellular markers, these results
indicate that there is an intracellular pool of MICA. Moreover,
cell surface expression should be better analyzed by flow
cytometry instead of tissue microscopy to generate compelling
information. Accordingly, we observed that several melanoma
July 2021 | Volume 12 | Article 713158
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cell lines and metastatic melanomas display an intracellular pool
of MICA but only some of them exhibit cell surface MICA (100).

MICA is expressed in a wide variety of tumors (91, 101–110).
RNA sequencing (seq) data indicate that MICA is the NKG2DL
that exhibits the highest expression in, from example, lung,
colorectal, stomach, liver and breast cancers (111). Also, MICA
exhibits a very low tumor mutational burden, suggesting that its
expression is not subject to DNA editing to confer some kind of
adaptive advantage to tumors. Although over-expression of
NKG2DL may represent a valid strategy to limit tumor
progression (112–114), tumors display escape strategies that
subvert the biological function of NKG2D (115, 116). The
underlying mechanisms involves the proteolytic shedding of
MICA and other NKG2DL induced by tumor-secreted
metalloproteases (MMP) (115–117) or secretion in exosomes
(118). Released soluble MICA (sMICA) and soluble MICB
(sMICB) can thereafter bind to NKG2D and induce its down-
modulation and degradation, subverting NKG2D-dependent
effector functions of NK cells and facilitating tumor immune
escape (110, 115, 116). This dual role of MICA/B is schematically
represented in Figure 1. However, recent data indicates that the
suppressive activity of sMICA on NK cells is not due to the
down-regulation of NKG2D but to a blockade of NKG2D by
sMICA (119). In addition, other mechanisms account for low cell
surface expression of MICA and impaired recognition by
NKG2D, as we have demonstrated previously (100).

The different UBLP or RAET1 also have been shown to be
over-expressed on tumors (mainly on leukemic blasts) and
Frontiers in Immunology | www.frontiersin.org 4
mobilize NKG2D-dependent NK cell effector functions (110,
120–126). These additional NKG2DL, unlike MICA and MICB,
consist of two extracellular domains. ULBP-4 and ULBP-5 also
carry a transmembrane domain and a cytoplasmic tail. However,
ULBP-1, ULBP-2, ULBP-3 and ULBP-6 are anchored to
glycosylphosphatidylinositol (GPI) of the cell membrane (127)
and ULBP-5 can also generate a GPI-anchored form (128). Also,
ULBP can generate soluble forms with immunosuppressive
activity due to a shedding process mediated by MMP, by
phosphatidylinositol phospholipase C or in exosomes (129–132).

Moreover, NKG2D plays an important role during
immunosurveillance in patients with acute myelogenous
leukemia (AML) (133). AML mortality is mostly due to
recurrence caused by chemotherapy-resistant leukemia stem
cells (LSC), which, in contrast to bulk AML cells, are highly
leukemogenic in immunodeficient mice (134). NKG2DL are
broadly expressed on patient-derived bulk AML cells but not
on LSC. However, when LSC differentiate into mature AML cells,
they upregulate NKG2DL expression, and these NKG2DL-
expressing AML cells, in opposition to LSC, become
susceptible to NK cells in vitro. Therefore, LSC may preclude
NK cell effector functions through suppression of NKG2DL
expression and contribute to the AML burden through a
continuous differentiation into NKG2DL+ AML blasts. Hence,
therapy-induced upregulation of NKG2DL in LSC from AML
may promote the reinstatement of susceptibility to NK cells.

The reason for the multiplicity of NKG2DL remains
speculative. Although all of them seem to be over-expressed by
FIGURE 1 | Dual role of MICA/B as target molecule for immunosurveillance by NK cells and as mediator of tumor immune escape. MICA/B expressed on the cell
surface of tumor cells can be recognized by NK cells through NKG2D and promote a cytotoxic response that leads to tumor cell elimination (immunosurveillance).
However, MICA/B can associate with the ERp5 chaperone and, through a proteolytic cleavage mediated by ADAM10, ADAM17 and MMP14, generate sMICA/B that
promote NKG2D down-regulation and impairment of NK cell-effector functions, thus facilitating tumor immune escape (immunoevasion).
July 2021 | Volume 12 | Article 713158
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different tumor cells, more knowledge has been obtained for
MICA and MICB. These two NKG2DL also stand out because
potential therapeutic strategies targeting MICA and MICB but
not therapeutic strategies targeting UBLP emerged during the
last years. Therefore, we focused this review mainly on MICA
and MICB as targets in I-O.
THE PROBLEM OF THE TME AND TAM AS
TUMOR PROTECTIVE SHIELD

Given the formidable challenge of overcoming the
immunosuppressive TME to leverage NK cell-based
immunotherapies for solid tumors (28, 29), it becomes
necessary to elucidate the regulatory circuits that shut down
NK cell effector functions in this particular niche. NK cells can
function as drivers of tumor inflammation, which leads to tumor
immune cell infiltration and promotes the conversion of “cold”
tumors into “hot” tumors, subsequently conferring better
responsiveness to ICI (10). NK cells´ critical functions to
induce an effective tumor immunity depend on a successful
crosstalk with conventional dendritic cells (cDC1) and the
production of the chemokines CCL5 and XCL1, and that
tumor-derived prostaglandin E2 (PGE2) interferes with this
reciprocal stimulatory loop (11). In addition, early
accumulation of IFN-g-producing TINK promote the
remodeling of the TME and unleash CTL-mediated tumor
eradication, a circuit that is interfered by tumor-derived
prostaglandin E2 (PGE2) acting via EP2 and EP4 receptors on
NK cells (135). Moreover, only tumors responsive to ICI
exhibited an inflammatory gene expression signature after ICI
treatment accompanied by increased infiltration by NK cells that
displayed an activated phenotype and produced IFN-g, and that
were critical for this response (136).

Moreover, additional mechanisms and mediators that affect
NK cell recruitment, activation and display of optimal effector
functions against solid tumors in the TME are known (137–
141). TGF-b is a major negative regulator of NK cell effector
function and tumor elimination ability (142–148). In LNT-229
glioma cells, it has been observed that an autocrine circuit that
involves TGF-b and MMP production promotes shedding of
MICA and ULBP-2 and negatively affects the expression of
these NKG2DL on the tumor cell surface (149). TGF-b also
negatively affects expression of NKp30 and NKG2D on human
NK cells stimulated with IL-2 and NK cell-mediated
cytotoxicity (150). TGF-b also impacts on NK cell
metabolism, inducing a reduced glycolysis and oxidative
phosphorylation that dampens NK cell effector functions
(151). These effects can be mediated by different forms
(soluble or membrane-bound) of TGF-b produced by
regulatory T cells (152, 153), anti-inflammatory macrophages
(44, 154) or by myeloid-derived suppressor cells (MDSC)
(155). Consequently, it has been suggested that novel
therapies that interfere with TGF-b may trigger NKG2D-
dependent NK cell-mediated tumor elimination (143).
Frontiers in Immunology | www.frontiersin.org 5
Among them, bintrafusp alfa (M7824, a bifunctional fusion
protein targeting TGF-beta and PD-L1) and galunisertib have
shown promising results . Bintrafusp al fa has been
demonstrated to revert TGF-b-mediated suppressive effects
on NK cells and is currently explored in different clinical trials
(156). Galunisertib, a SMAD2 inhibitor, has been shown to
facilitate NK cell activation and effector function against
neuroblastomas, and enhance ADCC by dinutuximab (157).
Also, it has been observed recently that glioblastomas are
infiltrated by NK cells that display an altered phenotype and
impaired effector functions. Moreover, treatment of mice
engrafted with glioblastoma stem cells (GSC) with allogeneic
NK cells and galunisertib or Ly2019761 prevented the
development of such dysfunctional NK cells and allowed a
better control of tumor growth, indicating that TGF-b was
responsible for this effect (158). These data highlight that the
TME strongly affects NK cell effector functions and that they
can be reinvigorated by therapeutic intervention. MDSC also
produce indoleamine 2,3-dioxygenase (IDO), and enzyme that
catabolizes tryptophan and participates in a metabolic pathway
that generates kynurenine, and this pathway impairs NK cell
effector functions (159, 160). Another soluble mediator that
blunts NK cell effector function is PGE2, which is abundant in
the TME of several tumors (11, 161–168).

Another factor that contributes to NK cell dysfunction is
chronic stimulation. Mice with ubiquitous enforced expression
of MICA that triggered chronic stimulation through NKG2D
exhibited NK cells with reduced expression of NKG2D, and these
NK cells exhibited an impaired NKG2D-dependent NK cell-
mediated cytotoxicity and accelerated growth of a MICA-
expressing melanoma (169, 170). In humans, it has been
observed that chronic HCMV infection leads to an increased
frequency of CD57+NKG2C+ peripheral blood NK cells (PBNK)
that display rapid and robust effector function upon
restimulation. However, their chronic stimulation induced high
expression of the co-inhibitory receptors LAG-3 and PD-1, and
these chronically stimulated NK cells were dysfunctional due to
epigenetic reprograming and alterations in DNA methylation
(171). Therefore, chronic stimulation of NK cells through several
activating receptors, including NKG2D, leads to a functional
impairment that can impact negatively on NK cell-
mediated immunosurveillance.

TAM constitute major components of the TME and players
of tumor immune escape. Strategies aimed at targeting TAM to
promote their elimination or reprogramming may lead to better
clinical outcome especially in patients with solid tumors (172).
Interference with TAM-mediated immunosuppression targeting
the scavenger receptor MARCO with a blocking mAb lead to
decreased tumor vascularization, metabolic reprogramming of
TAM, and an efficient activation of NK cell cytotoxic effector
functions, and this effect also synergized with ICI (173).
Therefore, targeting TAM can improve tumor immunity
through restoration of NK cell activation and effector
functions, further supporting the idea that strategies that
convert “cold” tumors into “hot” tumors through manipulation
of TAM and NK cells might constitute forefront strategies in I-O.
July 2021 | Volume 12 | Article 713158
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NK CELL REINVIGORATION THROUGH
TARGETING CO-INHIBITORY RECEPTORS

The possibility to phenotypically characterize dysfunctional
TINK generated a renewed interest in targeting co-inhibitory
receptors to reinvigorate NK cells in cancer patients using
current or novel ICI (174). Targeting the PD-1/PD-L1 axis,
CD96 (TACTILE), NKG2A, TIGIT, TIM-3 and LAG-3 have
emerged as forefront alternatives because they are usually over-
expressed in dysfunctional NK cells (33, 52, 175–179). Although
the revolution in I-O achieved with ICI was originally attributed
to an enhanced T cell-mediated antitumor response, increasing
evidence demonstrates that NK cells also express PD-1 and PD-
L1, and that they constitute targets of ICI that results in a
reinvigoration of anti-tumor NK cell effector functions. ICI
induced a CTL- and NK cell-mediated tumor growth control
accompanied by a weakened suppressive immune cell infiltrate
in the TME in a murine model of glioblastoma (180). Moreover,
increased frequencies of PD-1+ NK cells with heightened
expression of PD-1 were observed in PBNK and TINK from
patients with several gastrointestinal tumors, and higher
expression correlated with impaired survival in some cases.
These NK cells exhibited impaired IFN-g production and
degranulation, after in vitro exposure to ICI led to a functional
reinvigoration, and in vivo treatment with ICI of nude mice
xenografted with a human esophageal squamous cell carcinoma
caused NK cell-dependent delayed tumor growth (181). TINK
from transplantable, spontaneous, and genetically induced
tumors also contained a high frequency of PD-1+ NK cells and
suppressed IFN-g production and cytotoxicity in vitro but ICI
treatment resulted in a restoration of NK cell response that was
essential for the therapeutic effect ICI (182). ICI also exert effects
beyond their blocking activity as an anti-PD-L1 mAb such as
avelumab, but no atezolizumab, can trigger ADCC by PBNK
from healthy donors against triple negative breast cancer
(TNBC) tumor cell lines in vitro (183). Also, ADCC triggered
by anti-PD-L1 mAb against multiple carcinoma cell lines could
be enhanced by histone deacetylase inhibitors (HDACi) because
they augmented the expression of PD-L1, NKG2DL and other
NK cell activating ligands and death receptors on target cells
(184). Chemotherapeutic agents can increase the susceptibility of
nasopharyngeal carcinoma cell lines to NK cell-mediated
cytotoxicity, and such effect was enhanced by an anti-PD-1
blocking mAb because the chemotherapeutic agents also
stimulated up-regulation of PD-1 on NK cells and PD-L1 on
the target cell lines (185). In head and neck cancer patients,
PBNK contain a higher frequency of PD-1+ cells, and ICI
treatment with an anti-PD-1 mAb promotes heightened
cetuximab-mediated NK cell activation (186). In non−small
cell lung cancer patients, TINK exhibit functional defects
accompanied by a higher frequency of PD-1+ cells, while
in vitro treatment with ICI reverted such NK cell dysfunction (187).

Targeting other co-inhibitory receptors on NK cells is also
under investigation. TIGIT is a co-inhibitory receptor that
emerged as ICI candidate because it is over-expressed on
Frontiers in Immunology | www.frontiersin.org 6
exhausted TINK and tumor-infiltrating T cells and is
responsible for such functional exhaustion. Blockade of TIGIT
induced a NK cell reinvigoration, restored an efficient tumor
immunity, and also enhanced the efficacy of therapy with ICI
against PD-L1 (188). CD96 is another co-inhibitory receptor
expressed on NK cells that, through binding to CD155 expressed
on tumor cells, limits NK cell effector functions (189). Patients
with hepatocellular carcinoma that present reduced disease-free
survival have dysfunctional (exhausted) TINK with a higher
frequency of CD96+ cells and increased expression of CD96,
but blockade of CD96 restores NK cell-mediated effector
functions (190). NKG2A is another inhibitory receptor that
associates with CD94 and negatively regulates NK cell
functions. High expression of NKG2A and of its ligand HLA-E
can be detected in tumor tissue of hepatocellular carcinoma
patients, and NKG2A-expressing TINK exhibit features of
exhausted cells and are associated with a poor prognosis (191).
NKG2A and HLA-E are overexpressed in several other human
cancers including head and neck, colorectal, ovarian,
endometrial and cervical cancers. Blocking NKG2A with
Monalizumab (a humanized anti-NKG2A mAb) enhances
tumor immunity in combination with ICI against PD-L1 by
promoting NK cell and CTL cell effector functions in mice and
humans and enhances ADCC in combination with Cetuximab
against a head and neck carcinoma cell line, indicating that its
mechanism of action directly impacts on NK cell effector
functions (192–194). Also, patients with chronic lymphocytic
leukemia (CLL) exhibit an upregulation of LAG-3 on leukemic
blasts, NK cells and T lymphocytes, accompanied by high
amounts of soluble LAG-3 (sLAG-3) in plasma, that correlated
with impaired outcome. However, in vitro exposure of peripheral
blood mononuclear cells to relatlimab, an anti-LAG-3 blocking
mAb under evaluation in several clinical trials, depleted leukemic
cells and restored NK cell- and T cell-effector functions (179).
Conversely, the use of a blocking mAb against the inhibitory
receptors KIR2DL1, KIR2DL2 and KIR2DL3 named Lirilumab
(195, 196) did not show the expected clinical efficacy (197, 198),
indicating that target co-inhibitory receptors need to be
carefully selected.

Altogether, the described evidences demonstrate that NK cells
are dysfunctional in cancer patients and that their reinvigoration
appears as feasible, and these findings are motorizing the
development of novel ICI aimed at leveraging NK cell
mediated effector functions (177). However, targeting co-
inhibitory receptors has a dark side as treatment with ICI can
trigger many cytokine-mediated immune-related adverse events
(irAE) that can be severe and require interruption of ICI
treatment and/or complementary treatment with other
compounds (199–203). Moreover, the description of patients
with accelerated tumor growth after treatment with ICI
(hyperprogression) due to ill-defined mechanisms is an
additional concern (5–7). These drawbacks are further
complicated by the lack of validated predictive biomarkers that
would permit the selection of patients that optimally respond
to ICI with minimal or no irAE and no hyperprogression
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(204, 205). Therefore, the development of novel ICI against
additional target molecules requires a deep risk mitigation to
avoid irAE and hyperprogression.
THE OPPORTUNITY FOR THE NKG2D-
NKG2DL AXIS IN IMMUNO-ONCOLOGY

ADCC is one of the major NK cell-mediated effector functions
and therapeutic efficacy of several mAb currently used to treat
cancer patients depend on their ability to induce ADCC (48, 183,
206–215). Therefore, selection of appropriate molecular targets
expressed by tumor cells is a crucial step towards the
development of successful immunotherapies to treat cancer
patients. As MICA is the NKG2DL more widely overexpressed
in tumors, it is reasonable to consider MICA as a frontrunner
candidate as target molecule for I-O strategies. A seminal finding
about MICA as target in I-O came from the observation that
some melanoma patients that received ipilimumab (an anti-
CTLA4 mAb) and autologous tumor cells engineered to
produce GM-CSF, spontaneously developed anti-MICA Ab
that promoted clearing of sMICA from plasma and
opsonization of tumor cells for dendritic cell cross-
presentation. These effects were associated with a restoration of
the expression of NKG2D on NK cells and CTL, a recovery of
NKG2D-dependent NK cell effector functions and a better
outcome (216, 217). Later, it was observed that MM patients,
in contrast to patients with monoclonal gammopathy of
undetermined significance (MGUS), also exhibit high titers of
anti-MICA Ab that antagonize with the suppressive effects
of sMICA and stimulate dendritic cell cross-presentation of
malignant plasma cells (108). The serendipitous appearance
of anti-MICA Ab with a therapeutic effect prompted us to
develop a strategy to actively induce such Ab. To this end, we
generated a chimeric protein consisting of the ectodomain of
MICA fused to a bacterial immunogenic protein that exhibits
adjuvant properties (Brucella lumazine synthase, BLS), used this
chimeric protein (named BLS-MICA) for the induction of anti-
MICA Ab in tumor-bearing hosts, and investigated their
therapeutic activity and mechanism of action. BLS-MICA
elicited high titers of anti-MICA Ab in mice that in vitro
recognized MICA naturally expressed on the cell surface of
human tumor cells and on MICA-transduced mouse tumor
cells. Prophylactic active immunization with BLS-MICA
significantly delayed the growth of MICA-expressing tumors in
part due to the ability to promote scavenging of sMICA from
mouse sera. Passive immunization experiments demonstrated
that such effect was mediated by anti-MICA Ab that mediated in
vitro and in vivo ADCC, and that tilted the balance of tumor-
infiltrating cells towards an anti-tumoral/pro-inflammatory
phenotype characterized by an increased presence of TAM
with an M1-skewed phenotype and antigen-experienced CTL
(111). Therefore, immunization with BLS-MICA induced
therapeutic anti-MICA Ab that constitute a “two-in-one”
strategy as they promote tumor elimination by ADCC and
Frontiers in Immunology | www.frontiersin.org 7
interfere with a tumor immune escape through scavenging
of sMICA.

Targeting the NKG2D pathway has also been approached
using different chimeric proteins where the ectodomain of MICA
was fused to single chain Fv (scFv) against other molecules that
promoted NK cell-mediated anti-tumor effects (218–220).
Although these approaches have shown some preliminary
interesting effects, compared to anti-MICA Ab-based strategies,
they only promote the bridging between NK cells and tumor cells
and do not target, for example, suppressive sMICA, which limits
their competitive landscape.

In addition, several anti-MIC mAb also are showing
promising preclinical results. A mAb that targets sMICA
(B10G5) demonstrated therapeutic effects, alone or combined
with an anti-CTLA-4 mAb in mice challenged with MIC
transgenic TRAMP (transgenic adenocarcinoma of the mouse
prostate) cells. The mechanism of action of this mAb involves
ADCC that results in a revitalization of CTL- and Th1-mediated
anti-tumor immunity, and remodeling of the TME (221, 222).
Other anti-MICA/B mAb that target the a3 domain and inhibit
proteolytic shedding were generated. One of these mAb (7C6)
inhibited MICA and MICB shedding by human cancer cells,
delayed the growth of mouse melanoma and colon carcinoma
engineered to express MICA, reduced human melanoma
metastases in a humanized mouse model and its mechanism of
action involves the stimulation of NKG2D- and CD16-
dependent NK cell-mediated effector functions (223). Also,
7C6 acts synergistically with the HDACi panobinostat through
stabilizing tumor cell surface MICA/B expression (224) and
exhibits synergy with human cytokine-induced NK cells (CIK)
in vitro (225). A different humanized anti-MICA/B mAb
stimulates NK cell-mediated cytotoxicity in vitro against
primary hepatocellular carcinoma cells (226). In addition, three
novel mAb (5E10, 7G10 and 6E1) that recognize the a3 domain
of MICA interfere with the immunosuppressive activity of
sMICA on human NK cells and stimulate their activation in an
Fc-dependent manner due to the formation of immune
complexes with sMICA (119). Additionally, the therapeutic
efficacy of mAb-mediated neutralization of sMICA (222) or
MICA shedding (223) has been shown to negatively affect
tumor growth in mouse models.

Accordingly, Ab that target MICA/B should trigger ADCC
against MICA/B-expressing tumor cells to stimulate tumor cell
elimination and, simultaneously, promote the formation of
immune complexes with sMICA/B to facilitate their clearance
by macrophages and interfere with the tumor immune escape
mechanism mediated by sMICA/B. Such Ab will likely display
therapeutic activity in patients with tumors that express MICA/B
on their cell surface, tumors that shed significant amounts of
sMICA or both. This therapeutic opportunity for anti-MICA/B
Ab is schematically represented in Figure 2. Currently, we
cannot anticipate if Ab-based therapies against MICA/B may
trigger antigen down-modulation on tumor cells and/or the
selection of resistant tumor cells that lost expression of
NKG2DL because of a selective killing of tumor cells that
express the target molecule. We also cannot anticipate if Ab
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against NKG2DL promote off target and side/unwanted effects in
humans. Also, currently there is not a good estimate about the
relative relevance of tumor cell surface-expressed MICA/B vs
sMICA/B during tumor immunity. The relative expression of
MICA/B on the tumor cell surface and the shedding of sMICA/B
will probably vary from tumor to tumor and be associated with
the ability of each tumor to produce sMICA/B (either by the
action of MMP or released in exosomes) and to sustain cell
surface MICA/B expression in an immunocompetent host (to
resist NK cell effector functions). Therefore, targeting both forms
of MICA/B (soluble or cell surface-expressed) with Ab-based
strategies emerges as a “two-in-one” strategy that can boost
ADCC (immunosurveillance) and that can interfere with the
immunosuppressive effect of sMICA/B (tumor immune escape).

Targeting NKG2DL has also been addressed using chimeric
antigen receptor (CAR) T cells (CAR-T) or NK cells (CAR-NK).
The similarities and differences in using CAR-T or CAR-NK cells
have been reviewed recently and one aspect that stands out is that
CAR-NK cells appear superior to CAR-T cells to treat
hematological malignancies (30). Notably, a big success
represents the use of CAR-NK cells directed against CD19, as
they induce tumor regression without the development of major
toxic effects in the majority of patients with relapsed or refractory
Frontiers in Immunology | www.frontiersin.org 8
CD19-positive leukemias or lymphomas (24). However,
treatment of solid tumors with CAR-T or CAR-NK cells has
not yielded the expected results, mainly because they must face
the immunosuppressive TME (29). Some CAR-T cells
engineered to express NKG2D with increased effector
functions against cell lines in vitro and against xenografted
human or syngeneic mouse tumor cell lines in vivo have been
developed (227–238). Also, CAR-NK cells that express the
ectodomain of human NKG2D fused with DAP12 exhibit
augmented NK cell-mediated cytotoxicity against several solid
tumor cell lines in vitro and mediate a therapeutic effect in vivo in
NSG mice challenged with human tumor cell lines. Moreover, in
three human patients with colorectal cancer, these CAR-NK cells
mediated tumor regression and patient improvement,
highlighting their potential therapeutic utility in solid tumors
(239). Although clinical trials for CAR-T and CAR-NK are
underway. we don´t know their outcome yet (details can be
found at clinicaltrials.gov searching for “CAR-T cells” or “CAR-
NK” cells and “NKG2D”). Nevertheless, problems and
disadvantages of the CAR-T or the CAR-NK cell approaches
are the necessity of promoting the correct migration of the
injected cells to the tumors, the long-term persistence of these
cells with preserved anti-tumor effector functions, the risk of
FIGURE 2 | Therapeutic opportunity for anti-MICA/B Ab. Administration of anti-MICA/B Ab may trigger CD16-dependent ADCC by NK cells when these Ab
recognize cell surface-expressed MICA/B, contributing to tumor cell elimination. Ab that do not interfere with the binding of NKG2D to MICA/B also would trigger
NKG2D-dependent NK cell-mediated cytotoxicity, further contributing to tumor cell elimination. Moreover, recognition of sMICA/B by these therapeutic anti-MICA/B
Ab would lead to the formation of immune complexes that would be removed by macrophages upon recognition through CD16, CD32 and CD64. This scavenging
of sMICA/B will consequently interfere with tumor immune escape (immunoevasion).
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inducing off target effects, the elevated cost of these alternatives,
and the fact that they do not target sMICA/B and consequently,
their biological activity may also become vanished in patients
with high sMICA/B. In addition, CAR-T cells have the risk of
inducing CRS. Therefore, approaches that target the NKG2D-
NKG2DL axis, especially MICA/B, with Ab appear superior or
with better chance to move to the clinic.
RATIONAL DESIGN OF COMBINATION
THERAPIES THAT TARGET THE NKG2D-
NKG2DL AXIS

The current trend towards the use of combination therapies with
ICI (240) certainly creates a new landscape to capitalize the
therapeutic utility of anti-MICA/B Ab through combination with
other agents. Leveraging MICA/B in I-O represents a promising
alternative, but these strategies must face the formidable task of
having to overcome the suppressive TME including the negative
regulatory circuits imposed by TAM. Among recently emerged
combination therapies to treat cancer patients, small molecules
are taking the center of the stage (241). Several therapies
targeting selected molecules and/or mechanisms can be
envisaged to be rationally combined with Ab against MICA/B
and, consequently, leverage the therapeutic effect of these anti-
MICA/B Ab. These strategies would convert “cold” tumors into
“hot” tumors through manipulation of NK cell effector functions,
the TME (242) and/or TAM (243). In addition, administration of
IL-15 leads to huge NK cell expansion in human patients, a fact
that might exploit the immunotherapeutic potential of NK cells
further (244). Promising candidates that could be combined with
anti-MICA/B Ab are described in the following sub-sections.

Drugs That Can Promote Upregulation of
MICA/B on Tumor Cells
NKG2DL expression is controlled by the DNA damage response
pathway (DDR) (245), but epigenetic remodelers such as HDACi
also triggered upregulated expression of MICA/B (246, 247). Some
HDACi such as Trichostatin A (TSA), suberanilohydroxamic
acid (SAHA or vorinostat), PXD101 (belinostat), LBH589
(panobinostat) and LAQ824 (dacinostat) are broad spectrum
HDACi; others such as valproic acid (VPA), sodium butyrate
(NaB), trapoxin and apicidin exhibit specificity for certain groups
of HDAC; and others such as MS-275 (entinostat) and FR901228
(romidepsin, depsipeptide or FK228) exhibit high specificity for
certain HDAC (248, 249). HDACi exert antiproliferative effects
through the induction of cell-cycle arrest, apoptosis, and
autophagy, but it has been observed that TSA (247, 250–253),
SAHA (247, 254–257), belinostat (247), VPA (246, 251, 252, 254,
258–270), NaB (251, 252, 255, 257, 258, 261, 271), romidepsin
(247) and entinostat (255, 257, 269) trigger up-regulation of
MICA/B in different cell lines derived from liquid and solid
tumors. In most cases, it was demonstrated that HDACi induce
upregulation of MICA/B accompanied by a higher NKG2D-
dependent, NK cell-mediated cytotoxicity against HDACi-
treated tumor cells (246, 247, 250, 251, 253, 255, 257–259,
Frontiers in Immunology | www.frontiersin.org 9
261–266, 271). In other cases, NKG2D-dependent, CD8 T cell-
mediated (260) or gd T cell-mediated cytotoxicity (270) against
HDACi-treated tumor cells was observed. Cooperative effect
between HDACi and other compounds such as hydroxyurea
(263), gemcitabine (268), All-Trans-Retinoic Acid (ATRA) (260)
to promote increased expression of MICA/B was also observed.
Moreover, impaired NK cell recognition of vemurafenib-treated
BRAFV600E mutant melanoma cells is due to a drug-induced
down-regulation of MICA and CD155, while treatment with
NaB promotes a recovered surface expression of MICA and NK
cell degranulation (272). However, most studies were performed
in vitro, and only tumor cells were exposed to HDACi. Studies in
xenografted immunodeficient mice injected with human tumor
cell lines demonstrated that treatment with TSA or VPA and
HDACi-mediated upregulation of MICA/B resulted in a delayed
tumor growth when they were adoptively treated with cytokine-
induced killer cells (251) or with NK-92 cells (266). Moreover,
chronic exposure to vorinostat and HDACi-mediated
upregulation of MICA/B resulted in a reduced tumorigenic
capacity of human colon adenocarcinoma cells xenografted in
nude mice (256). Besides, several deleterious effects of HDACi on
NK cells were described, such as downregulation of activating
receptors and a negative impact on NK cell effector functions (252,
254, 267, 269). Therefore, a delicate selection of HDACi with
selective specificity for certain HDAC may lead to an up-
regulation of MICA/B without compromising NK cell´s ability
to detect tumor cells and mobilize effector functions. Accordingly,
VPA down-regulated NKG2D expression and NK cell
degranulation but entinostat, which is highly selective for class I
HDAC, induced an up-regulated expression of NKG2D and
increased NK cell degranulation (269). Moreover, apicidin has
been shown to promote the upregulation of ADAM10, one of the
MMP involved in MICA/B shedding (273). Therefore, HDACi
may induce heightened expression of MICA/B but some of them
also increase the amount of sMICA/B. Overall, integrating data
about the effect of HDACi on MICA/B expression, on NKG2D
expression and on NK cell effector functions, and taking into
consideration the few HDACi approved for the treatment of
human patients, vorinostsat, belinostat and entinostat emerge as
frontrunners to be used to induced heightened expression of
MICA/B and sensitize tumor cells to anti-MICA/B Ab.

Upregulation of MICA/B expression can also be achieved
with Bortezomib, a proteasome inhibitor that is used to treat
patients with MM. MM results from the progression to
malignancy of MGUS and MICA expression on malignant
plasma cells is higher in MGUS than in MM. However, MM,
but not MGUS patients exhibit high sMICA, which is associated
with lower expression of NKG2D and NK cell dysfunction in
MM patients. Bortezomib promoted upregulated expression of
MICA in some MM cells and enhanced the therapeutic effect of
anti-MICA Ab that these patients generated spontaneously.
Therefore, Bortezomib can cooperate with anti-MICA Ab to
exert a therapeutic effect (108). Increased expression of MICA
upon in vitro or ex vivo exposure of MM cells to Bortezomib,
accompanied by a subsequent stimulation of NK cell effector
functions was also observed by other authors (274, 275).
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The effect of Bortezomib on MICA expression was also detected
on melanoma cell lines (100) and B cell acute lymphocytic
leukemias (265), while this drug also promoted the
upregulation of MICB on human lung cancer, hepatoma and
melanoma cell lines, resulting in an improved NKG2D-
dependent NK cell-mediated cytotoxicity (276, 277).

Other drugs used to treat patients with cancer such as
sorafenib and sunitinib (278) and 5-fluorouracil (279) affect
MICA/B expression. Also, doxorubicin and melphalan, two
drugs used to treat patients with MM, induced the expression
of MICA/B on cell lines and patient-derived plasmablasts
through activation of the DDR pathway, and this effect
stimulated heightened NK cell degranulation (274). Another
drug that induced MICA/B expression is temozolomide
(TMZ), a drug used in some patients with glioblastomas. TMZ
upregulated the expression of MICA/B in vitro and in vivo in
murine and human glioblastoma models, and this effect
faci l i tated a NGK2D-dependent el imination of the
glioblastoma cells (280).

In summary, several drugs currently used to treat patients
with different types of cancer might stimulate upregulation of
MICA/B which may lead to a subsequent increased sensitivity of
tumor cells to the therapeutic effects mediated by anti-MICA/B
Ab (ADCC through CD16) and to NK cells through NKG2D.
The search for assets that promote upregulated expression of
MICA is particularly relevant because tumors evolve under
immunological pressure of the host, and such pressure may
promote the emergence of tumors with low cell surface
expression of MICA/B. Also, MICA/MICB exhibit a very low
mutational burden (https://portal.gdc.cancer.gov/), indicating
that drug-induced enforced MICA/B expression on tumor cells
and targeting with Ab would hardly face the problem of the
emergence of escape variants. These effects of DDR inducers,
HDACi and proteasome inhibitors on MICA/B expression and
their impact on the efficacy of anti-MICA/B Ab are schematically
depicted in Figure 3 and several candidate drugs that are
approved, in phase II or late-stage clinical are listed in Table 1.

Blockers of Shedding of MICA/B
Shedding of MICA/B depends on proteolytic cleavage mediated
by several MMP such as ADAM10, ADAM17 and MMP14 (117,
301, 302) or secretion in exosomes (118, 301). Therefore,
blocking the shedding of MICA/B would interfere with the
tumor immune escape driven by these soluble forms of MICA/
B, resulting also in a restoration of cell surface expression of
MICA/B and improved NKG2D-dependent NK cell effector
functions (251, 279, 303). Increased cell surface expression of
MICA/B would also likely contribute to a better responsiveness
to anti-MICA/B Ab and enhanced ADCC. Therefore, MMP
inhibitors (MMPI) constitute attractive candidates, which is
further supported by the finding that mouse prostate tumors
engineered to express a shedding-resistant noncleavable MICB
did not grow when implanted into SCID mice but treatment of
the animals with an NKG2D blocking mAb led to the
development of tumors (304). Several MMPI such as MMPI-I
(116, 305), MMPI-II (117), MMPI III (117, 271), MMPI-IV
Frontiers in Immunology | www.frontiersin.org 10
(306), batimastat or BB94 (117, 307), GW280264X (117, 301),
GI1254023X (117), ilomastat or GM6001 (117, 301, 308),
URB597 (309), periostat or doxycycline (310) and some
ADAM-10 selective inhibitors (311, 312) can inhibit MICA/B
shedding in vitro, resulting in a heightened cell surface
expression of the NKG2DL and an increase in NK cell-
mediated cytotoxicity. However, among these compounds, only
periostat is currently in clinical trials for different types of tumors
(313). An alternative approach to inhibit MICA/B shedding is
the use of the 7C6 mAb (223) and the 6E1 mAb (119), both of
which recognize the a3 domain of MICA/B, inhibit their
proteolytic shedding, and lead to increased cell surface
expression of MICA/B. Moreover, the B10G5 mAb inhibited
the shedding of MICB but its effect on cell surface expression of
MICB remains unknown (281, 282). Overall, pharmacologic or
mAb-mediated inhibition of MICA/B shedding constitutes
another opportunity to combine with anti-MICA/B Ab to
induce improved ADCC and tumor cell elimination, as
depicted schematically in Figure 4 and mentioned in Table 1.

Synthetic Lethality Inducers That Target
Poly(ADP-Ribose) Polymerase 1
Synthetic lethality inducers such as olaparib, rucaparib,
niraparib, talazoparib, veliparib and others exert a therapeutic
effect due to their ability to inhibit PARP1, a key enzyme in DNA
repair and the preservation of genome integrity (283, 314).
However, PARP1 inhibitors also can foster tumor immunity
because they activate the cyclic GMP–AMP synthase (cGAS)–
stimulator of interferon (IFN) genes (STING) pathway in tumor
cells (315, 316). Thus, there are many efforts underway to explore
the combination of PARP1 inhibitors with ICI in cancer patients
(284, 317–320). PARP1 inhibition has also been demonstrated to
affect the NKG2D/NKG2DL axis because PARP1 is involved in
the repression of NKG2DL (mainly MICA and MICB) in LSC in
patients with AML. Pre-treatment of AML cells with the PARP1
inhibitor AG-14361 resulted in a reduced leukemogenic activity
in NSG mice, and administration of AG-14361 to NSG mice
xenografted with human AML followed by administration of
human NK cells, inhibited leukemogenesis in an NKG2D-
dependen manner (133). Therefore, inhibition of PARP1
unleashes NKG2DL expression on AML cells that in turn
become more susceptible to NKG2D-dependent, NK cell-
mediated effector functions and efficient tumor cell
elimination. PARP1 inhibition with olaparib also increases
dendritic cell (DC) activation and CTL infiltration in mouse
BRCA1-deficient ovarian tumors (315) and in triple negative
breast cancer cells (285) through activation of cGAS–STING in
tumor cells. Combination of PARP inhibition and CSF-1R
blockade enhanced anti-tumor immunity and prolonged
survival of BRCA-deficient tumors in vivo, indicating that
PARP inhibition affects TAM suppressive activity in the TME
(321). In addition, combination of cetuximab (anti-EGFR) or
avelumab (anti-PD-L1) with olaparib demonstrated that PARP1
inhibition fosters NK cell-mediated ADCC (322). Overall, these
results provide a solid rationale for the development of
combination therapies between PARP1 inhibitors and Ab that
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target MICA/B, as depicted schematically in Figure 5 and several
candidate drugs that are approved, in phase II or late-stage
clinical are listed in Table 1.

Agonists of STING
Downstream effects of PARP1 inhibition involves the activation
of the cGAS-STING pathway (285, 315), and STING enhances
NK cell activation and tumor immunity through the production
of type I IFN (323–326). Thus, agonists of STING may
reconfigure the TME into a proinflammatory milieu and
promote the conversion of “cold” tumors into “hot” tumors in
part due to an effect on TAM repolarization (327–330). STING
Frontiers in Immunology | www.frontiersin.org 11
activation also cooperates with ICI to foster antitumor immunity
(331–333) via TAM reprogramming (333). Also, STING agonists
can stimulate NK cell-mediated clearance of CD8 T cell-resistant
tumors (325) and mobilize tumor-infiltrating myeloid cells to
produce IFN-b which in turn activates NK cells (286). In
addition, the HDACi entinostat triggers up-regulated
expression of MICA/B on tumor cells (255, 257, 269) and
activation of STING (334). Therefore, its therapeutic effect
could be due to a remodeling of the TME due to a STING-
mediated proinflammatory response with an associated
repolarization of TAM, and the induction of the expression of
MICA/B that would promote improved NKG2D-dependent NK
FIGURE 3 | Leveraging anti-MICA/B Ab therapeutic efficacy through combination therapies with DDR inducers, HDACi and proteasome inhibitors. The use of DDR
inducers, HDACi and proteasome inhibitors may lead to an increased MICA/B synthesis, reduced degradation, and its consequent accumulation on the cell surface.
This effect may result in an improved CD16-dependent ADCC of anti-MICA/B Ab, and a recovery of NKG2D-dependent NK cell-mediated cytotoxicity against tumor
cells, facilitating the reinstatement of an efficient tumor cell elimination.
July 2021 | Volume 12 | Article 713158

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fuertes et al. Leveraging NKG2D Ligands in Immuno-Oncology
TABLE 1 | Approved, phase II and late-stage clinical drugs that might be combined with anti-MICA/B Ab.

Category Drug/asset Indication Status References Reported
expression
of MICA/B1

HDACi SAHA (vorinostat) Advanced NSCLC FDA
approved

(245, 252–
255)

+

PXD101
(belinostat)

Relapsed or refractory PTCL FDA
approved

(245) NF2

MS-275
(entinostat)

BC (NCT03538171 and NCT02115282) Late-
stage
clinical

(253, 255,
267)

+

LBH589
(panobinostat)

MM FDA
approved

(222) +

FR901228
(romidepsin,
depsipeptide or
FK228)

CTCL and PTCL FDA
approved

(245–247) NF (CTCL)
NF (PTCL)

Proteasome
inhibitor

Bortezomib MM FDA
approved

(99, 107,
263, 272–

275)

+

Synthetic lethality
inducers (PARP1
inhibitors)

Olaparib OC, BC, PanC ProC FDA
approved

(281–285) + (OC)
+ (BC)
+ (PanC)
+ (ProC)

Rucaparib OC, ProC FDA
approved

(281, 282) + (OC)
+ (ProC)

Niraparib OC, fallopian tube, and primary peritoneal cancer FDA
approved

(281, 282) + (OC)

Talazoparib BC FDA
approved

(281, 282) +

Veliparib (ABT-
888)

BC (NCT02163694, NCT02032277), OC (NCT02470585), Squamous NSCLC
(NCT02106546), Non-squamous NSCLC (NCT02264990), GB (NCT02152982)

Late-
stage
clinical
trial

(281, 282) + (BC)
+ (OC)
+ (NSCLC)
+ (GB)

STING agonist ADU‐S100/
MIW815

HNSCC (NCT03937141) Phase II (286—289) +

DDR and ICD
inducers

5-fluorouracil CRC, BC, Gastric Adenocarcinoma, Pancreatic Adenocarcinoma. FDA
approved

(277) + (CRC)
+ (BC)
+ (GC)
+ (PanC)

Doxorubicin MM, Primary BC, ALL, AML, HL, NHL, Wilms’ tumor, BC, NB, STS, OS, OC, BlC,
TC, GC and LC

FDA
approved

(272, 290–
293)

+ (MM)
+ (BC)
+ (ALL)
+ (AML)
NF (HL)
NF (NHL)
+ (WT)
+ (NB)
+ (STS)
+ (OS)
+ (OC)
+ (BlC)
+ (TC)
+ (GC)
+ (LC)

Melphalan MM FDA
approved

(272) +

Temozolomide
(TMZ).

GB FDA
approved

(278) +

Epirubicin BC FDA
approved

(294) +

Oxaliplatin CRC FDA
approved

(294–297) +

(Continued)
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cell effector functions and ADCC mediated by anti-MICA/B Ab.
Several available STING agonists such as cyclic dinucleotides
(CDN) and their derivates (2´,3´cGAMP, 3´,3´cGAMP, cAIM-
derived CDN, cGAMP-derived and others) are currently being
tested as monotherapy or in combination with other assets (335).
Additional promising STING agonists with antitumor activity
have been developed, one of which can be administered orally
Frontiers in Immunology | www.frontiersin.org 13
(287, 336). Also, as the activation of cGAS/STING pathway
induces the up-regulation of mouse NKG2DL (289), STING
emerges as another attractive molecular target in I-O to leverage
NKG2D-dependent NK cell-mediated anti-tumor effects, and to
be combined with Ab against MICA/B to manipulate the TME
and catalyze tumor immunity, as depicted schematically in
Figure 5 and mentioned in Table 1.
TABLE 1 | Continued

Category Drug/asset Indication Status References Reported
expression
of MICA/B1

AXL inhibitor Bemcentinib
(BGB324)

TNBC and IBC (NCT03184558), LC and NSCLC (NCT03184571), AML and MDS
(NCT02488408, NCT03824080), NSCLC (NCT02424617), Mel (NCT02872259),
PanC (NCT03649321) , MMeso (NCT03654833)

Phase II (298–300) + (BC)
+ (LC)
+ (NSCLC)
+ (AML)
+ (MDS)
+ (Mel)
+ (PanC)
+ (MMeso)
July 2021
 | Volume 12 |
1Reported expression of MICA/B analyzed by immunohistochemistry and/or flow cytometry in primary tumors.
2NF, not found.
ALL, acute lymphoblastic leukemia; AML, acute myeloblastic leukemia; BC, breast cancer; BlC, bladder cancer; CRC, colorectal cancer; CTCL, cutaneous T-cell lymphoma; GB,
glioblastoma; GC, gastric cancer; HL, Hodgkin lymphoma; HNSCC, head and neck squamous cell carcinoma; IBC, inflammatory breast cancer; LC, lung cancer; Mel, melanoma; MM,
multiple myeloma; MMeso, malignant mesothelioma; NB, neuroblastoma; NHL, non-Hodgkin lymphoma; NSCLC, non-small cell lung carcinoma; OC, ovarian cancer; OS, osteosarcoma;
PanC, pancreatic cancer; ProC, prostate cancer; PTCL, peripheral T-cell lymphoma; STS, soft-tissue sarcoma; TC, thyroid carcinoma; TNBC, triple-negative breast cancer.
FIGURE 4 | Leveraging anti-MICA/B Ab therapeutic efficacy through combination therapies with pharmacologic inhibition of MMP or with mAb that block MICA/B
shedding. Inhibition of MMP with small molecules (detailed in the figure) may prevent MICA/B shedding and lead to a subsequent accumulation of MICA/B on the cell
surface. A similar effect can be achieved using mAb that interfere with MICA/B shedding. In both cases, inhibition of MICA/B shedding may lead to an improved
CD16-dependent ADCC of anti-MICA/B Ab, and a recovery of NKG2D-dependent NK cell-mediated cytotoxicity against tumor cells.
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Drugs That Induce Immunogenic
Cell Death
Drugs that induce ICD such as anthracyclines (doxorubicin,
epirubicin, oxaliplatin and others) can trigger an effective
antitumor immune response that suppresses tumor growth in
mice because they make tumor cells immunogenic. This process
involves the mobilization of calreticulin (CRT) to the tumor cell
surface, the secretion and extracellular accumulation of ATP and
Frontiers in Immunology | www.frontiersin.org 14
several alarmins such as HMGB1 and annexin A1, and the
production of type I IFN which, acting together, contribute to
the inflammatory response that remodels the TME, suppress
TAM and negatively affect tumor growth (290–293, 295, 337–
339). ICD can also be induced by other immunomodulatory
compounds such as agonists of RIG-I (340, 341) or STING (288,
342) because they promote the release or expression of several
DAMP by tumor cells. ICD treatment of tumors not only turns
FIGURE 5 | Leveraging anti-MICA/B Ab therapeutic efficacy through combination therapies with pharmacologic PARP1 inhibitors or STING agonists. The use of
PARP1 inhibitors can promote tumor cell death and unleash the activation of STING. Immunogenic cell death and STING activation induce the remodeling of the
TME, resulting in a heightened production of IFN-b by DC and CTL-mediated tumor eradication, and a reprogramming of TAM into pro-inflammatory macrophages.
These pro-inflammatory macrophages, instead of inhibiting NK cells, might now promote efficient NK cell effector functions. In addition, PARP1 inhibition and STING
activation might promote increased expression of MICA/B, resulting in an improved CD16-dependent ADCC of anti-MICA/B Ab, and a recovery of NKG2D-
dependent NK cell-mediated cytotoxicity against tumor cells. Together, these effects may contribute to foster an efficient tumor cell elimination.
July 2021 | Volume 12 | Article 713158
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them intrinsically more immunogenic. Oxaliplatin also promotes
the production of T-cell-recruiting chemokines by TAM,
resulting in superior CAR-T cell infiltration, remodeling of the
TME, and an improved response to ICI (296). Accordingly,
many clinical trials currently explore ICD-triggering
compounds, alone or combined with ICI, to foster tumor
immunity through the stimulation of the immunogenicity of
dying tumor cells (294). Moreover, oxaliplatin itself stimulates
the upregulation of MICA/B on cancer cells and susceptibility to
NK cell-mediated cytotoxicity (297). Therefore, ICD inducers
might also be combined with anti-MICA/B Ab to enhance
ADCC against MICA/B expressed on tumor cells mediated by
NK cells and to prevent their exhaustion through an effect that
involves the remodeling of the TME with an associated
repolarization of TAM. Moreover, NK cells can themselves
promote ICD of tumor cells (343), ICD and NK cell-mediated
tumor elimination might be therapeutically amplified to promote
a self-perpetuation of the antitumor immune response. For
example, CRT exposure on AML blasts is associated with
better NK cell-mediated cytotoxicity, and this effect depends
on CD11c+CD14high cells that become better “helpers” for NK
cell activation upon exposure to CRT (337). These concepts
indicate that NK cells, through the induction of ICD of tumor
cells, can spark-ignite a whole TME remodeling that involves
TAM reprograming. Therefore, strategies that potentiate NK
ICD and NK cell effector functions such as the use of ICD
inducers combined with anti-MICA/B Ab appear as promising
alternatives to reinstate tumor immunity, as depicted
schematically in Figure 6 and several candidate drugs that are
approved, in phase II or late-stage clinical are listed in Table 1.

Molecules That Target TAM
TAM reprogramming into proinflammatory macrophages restores
NK cell effector functions in vitro and in vivo (301–305). To
capitalize on TAM reprogramming, several alternatives are being
explored. Besides STING agonists and ICD inducers, as discussed
earlier, there are additional emerging alternatives. Tyro, Axl and
MerTK receptor tyrosine kinases (TAMRTK) constitute important
players for the homeostasis of the immune response because they
participate in the resolution of inflammation, contribute to the
clearance of apoptotic cell debris, the restoration of vascular
integrity and regulate the magnitude of the immune response
(344). Therefore, interference with TAMRTK function can lead to
chronic inflammatory and autoimmunity. Cancer cells coopt
regulatory circuits evolutionarily generated to maintain tissue
homeostasis in order to resist growth under immunological
pressure and promote tumor immune escape. Accordingly,
altered expression and signaling of TAMRTK is involved in
tumor progression (298, 300) and inhibition of TYRO3 conferred
responsiveness to ICI because TYRO3 promotes the development
and accumulation of suppressive TAM (345). Also, blockade of
MerTK on TAM triggered P2X7R-dependent activation of STING
by tumor-derived cGAMP, stimulated a type I IFN response that
reshaped the TME, promoted T cell activation and synergized with
ICI, contributing to an efficient antitumor immunity (346).
Accordingly, Tyro3 or MerTK inhibition interferes with
Frontiers in Immunology | www.frontiersin.org 15
suppressive circuits that are driven by the TME and TAM.
Therefore, efforts are being made to develop TAMRTK inhibitors
(298–300, 347). Also, it has been demonstrated that TAM exhibit
upregulated expression of folate receptor beta (FRb) within the
TME, and that targeting FRb+ TAM with folate coupled to a TLR7
agonist reduced their immunosuppressive activity, stimulated CD8+

T-cell infiltration and repolarized macrophages into
proinflammatory cells, which negatively impacted on tumor
growth and metastasis, and improved overall survival (348).
Overall, these results indicate that targeting TAM with TAMRTK
inhibitors or other compounds emerge as promising alternatives to
reinstate tumor immunity either used as monotherapy or combined
with ICI (347). In addition, combination of Tyro3 or MerTK
inhibition with anti-MICA/B Ab might synergistically reprogram
immunosuppressive TAM, interfere with NK cell exhaustion, and
potentiate tumor immunity. Overall, these results provide a solid
rationale for the development of combination therapies between
pharmacologic reprogramming of TAM and Ab that target MICA/
B, as depicted schematically in Figure 7 and mentioned in Table 1.
CONCLUDING REMARKS

NK cells are currently an important component of several pipelines
in different pharma/biotech companies aimed at exploiting their
therapeutic potential in I-O. Some initial success in the treatment of
liquid tumors has been achieved, but solid tumors represent another
level of difficulty imposed, among other factors, by the necessity to
overcome the suppressive TME in which TAM play a major role.
Also, the selection of novel target molecules and therapeutic
modalities in I-O is another critical aspect. In this review, we
revised data that position MICA and MICB as attractive targets in
I-O to leverage NKG2D-dependent NK cell-mediated anti-tumor
effects and catalyze tumor immunity. Ab-based strategies emerge as
superior to cell-based alternatives because they appear safer, cheaper
and of wider application than cell-based therapies such as CAR-T
cells or CAR-NK cells. However, as MICA and MICB are
polymorphic, therapeutic Ab should target monomorphic/
conserved regions. Cell surface MICA/B can be targeted with Ab,
either monoclonal or polyclonal, to promote tumor cell elimination
through ADCC. Moreover, their soluble counterparts involved in
tumor immune escape can be targeted with Ab to promote
clearance of immune complexes by macrophages and reinstate
tumor immunity. Thus, Ab-based strategies constitute “two-in-
one” therapeutic options that might be further fostered through
combination with other assets, in a field where combination
strategies are taking the center of the stage. Current evidence
indicates that such anti-MICA/B Ab can be either monoclonal or
polyclonal (for example, induced by immunization with
immunogens such as BLS-MICA). Along this review, we
presented frontrunner alternatives to combine with these anti-
MICA/B Ab such as the use of drugs that can promote
upregulation of MICA/B on tumor cells, blockers of sMICA/B
shedding, synthetic lethality inducers that target PARP1, agonists of
STING, drugs that induce ICD and molecules that target TAM.
Directly or indirectly, all these strategies leverage MICA/B in I-O.
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Overall, most of these strategies may contribute, in a direct or in an
indirect manner, to tumor elimination through restoration of NK
cell activation and effector functions, and to subsequently convert
“cold” tumors into “hot” tumors. Also, some of the discussed
strategies such as the use of drugs that trigger upregulation of
MICA/B, that promote a remodeling of the TME and/or that affect
TAM may also foster CAR-T/CAR-NK cell-based therapies aimed
at targetingMICA/B. A central question that remains unanswered is
whether it is better to reinvigorate dysfunctional TINK or to
eliminate/deplete them and create a niche for the recruitment of
Frontiers in Immunology | www.frontiersin.org 16
newly activated, fully functional NK cells through the
administration of immunotherapeutic agents to the patient. In
any case, pursuing the addressed pipelines might lead to
innovative modalities of immunotherapy for the treatment of a
wide range of cancer patients. Moreover, although we focused the
state of the art and perspectives on the control of primary tumors
and considering that NK cells also play an important role in the
detection and eradication of tumor cells within the circulation and
limiting metastasis (349–351), the approaches proposed may also
impact on the ability of NK cells to suppress metastasis.
FIGURE 6 | Leveraging anti-MICA/B Ab therapeutic efficacy through combination therapies with ICD inducers. The use of ICD inducers can promote immunogenic
tumor cell death with the subsequent expression of CRT and annexin 1 on the tumor cell surface, and the secretion of ATP and alarmins such as HMGB1. Together,
these effects result in the remodeling of the TME and a reprogramming of TAM into pro-inflammatory macrophages. These pro-inflammatory macrophages, instead
of inhibiting NK cells, might now promote efficient NK cell effector functions such as improved CD16-dependent ADCC of anti-MICA/B Ab, and a recovery of
NKG2D-dependent NK cell-mediated cytotoxicity against tumor cells. Together, these effects may contribute to foster an efficient tumor cell elimination.
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195. Romagné F, André P, Spee P, Zahn S, Anfossi N, Gauthier L, et al. Preclinical
Characterization of 1-7F9, a Novel Human anti-KIR Receptor Therapeutic
Antibody That Augments Natural Killer-Mediated Killing of Tumor Cells.
Blood (2009) 114:2667–77. doi: 10.1182/blood-2009-02-206532

196. Kohrt HE, Thielens A, Marabelle A, Sagiv-Barfi I, Sola C, Chanuc F, et al.
Anti-KIR Antibody Enhancement of Anti-Lymphoma Activity of Natural
Killer Cells as Monotherapy and in Combination With anti-CD20
Antibodies. Blood (2014) 123:678–86. doi: 10.1182/blood-2013-08-519199

197. Korde N, Carlsten M, Lee M-J, Minter A, Tan E, Kwok M, et al. A Phase II
Trial of pan-KIR2D Blockade With IPH2101 in Smoldering Multiple
Myeloma. Haematologica (2014) 99:e81–3. doi: 10.3324/haematol.
2013.103085

198. Carlsten M, Korde N, Kotecha R, Reger R, Bor S, Kazandjian D, et al.
Checkpoint Inhibition of KIR2D With the Monoclonal Antibody IPH2101
Induces Contraction and Hyporesponsiveness of NK Cells in Patients With
Myeloma. Clin Cancer Res (2016) 22:5211–22. doi: 10.1158/1078-0432.CCR-
16-1108

199. Kang JH, Bluestone JA, Young A. Predicting and Preventing Immune
Checkpoint Inhibitor Toxicity: Targeting Cytokines. Trends Immunol
(2021) 42:293–311. doi: 10.1016/j.it.2021.02.006

200. Dougan M, Pietropaolo M. Time to Dissect the Autoimmune Etiology of
Cancer Antibody Immunotherapy. J Clin Invest (2020) 130:51–61.
doi: 10.1172/JCI131194
Frontiers in Immunology | www.frontiersin.org 23
201. Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chávez A, Keegan N,
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