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Abstract

A wealth of computational methods has been developed to address problems in systems biology, such as modeling gene
expression. However, to objectively evaluate and compare such methods is notoriously difficult. The DREAM (Dialogue on
Reverse Engineering Assessments and Methods) project is a community-wide effort to assess the relative strengths and
weaknesses of different computational methods for a set of core problems in systems biology. This article presents a top-
performing algorithm for one of the challenge problems in the third annual DREAM (DREAM3), namely the gene expression
prediction challenge. In this challenge, participants are asked to predict the expression levels of a small set of genes in a
yeast deletion strain, given the expression levels of all other genes in the same strain and complete gene expression data for
several other yeast strains. I propose a simple k-nearest-neighbor (KNN) method to solve this problem. Despite its simplicity,
this method works well for this challenge, sharing the ‘‘top performer’’ honor with a much more sophisticated method. I
also describe several alternative, simple strategies, including a modified KNN algorithm that further improves the
performance of the standard KNN method. The success of these methods suggests that complex methods attempting to
integrate multiple data sets do not necessarily lead to better performance than simple yet robust methods. Furthermore,
none of these top-performing methods, including the one by a different team, are based on gene regulatory networks,
which seems to suggest that accurately modeling gene expression using gene regulatory networks is unfortunately still a
difficult task.
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Introduction

One of the fundamental goals in computational systems biology

is to model gene expression levels, and to use such models to

predict the behavior of the cell under various external/internal

conditions. In recent years, a plethora of algorithms have been

developed towards this goal (for example, see reviews [1–7]). A

critical issue, however, is that such algorithms are often hard to be

objectively evaluated or compared [8]. DREAM, which stands for

Dialogue on Reverse Engineering Assessments and Methods, is an

annual international event aimed at providing an unbiased

platform to evaluate the strengths and weaknesses of computa-

tional methods in systems biology [8]. Each year, DREAM

organizers provide a set of challenge problems in systems biology,

e.g. to reverse-engineer gene regulatory networks or signaling

networks, and invite scientists to solve them by computational

approaches. The true solutions to the problems are held unknown

to the participants at the time of prediction, which makes the

evaluation relatively objective and unbiased [8,9].

This paper presents a winning algorithm for one of the

challenge problems, the gene expression prediction problem, in

the third DREAM (DREAM3) event. For this challenge problem,

participants are given gene expression time course data for four

different strains of S. Cerevisiae - one wild type and three deletion

strains - treated with some chemical. Participants are asked to

predict the relative expression of a small subset of genes (prediction

targets) in one of the deletion strains (prediction strain), given

complete expression data for all four strains except the expression

data for the prediction targets in the prediction strain. In addition,

the identities of all genes are disclosed, and participants are free to

use any publicly available data, such as gene expression data under

other conditions, whole-genome ChIP-chip data, and functional

annotations.

Predicting gene expression itself is of relatively low interest in

practice, as biologists can easily measure gene expression with

experimental methods such as DNA microarray or quantitative

RT-PCR. The value of this challenge, therefore, lies in finding out

whether gene expression can be accurately predicted, and what

models can do the best job in predicting gene expression. Answers

to these two questions are fundamentally important in many gene

expression-based studies. Furthermore, many methods have been

proposed for constructing gene regulatory networks [10–17],

which are bases for modeling gene expression. Results of this

challenge problem may tell us whether the current gene regulatory

network models are sufficiently accurate to make quantitative

predictions.

Popular gene regulatory network models include Bayesian

networks [10–12], Boolean networks [13], and regression/

classification-based models [14–17]. These methods can model

the expression level of a gene by the expression levels of other
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genes [10,13,15,16], by the presence or absence of TF binding

sites on its promoter sequences [12,14,17], or a combination of the

two types of information [18–20]. For this particular challenge

problem, these methods can all potentially be applied, as most of

them have been developed based on yeast data, and participants

are allowed to use additional data beyond what was provided by

the DREAM organizers.

Hypothesizing that the current regulatory network model may

not be accurate enough to make quantitative predictions (see

Discussion), I opted to use a different strategy, based on gene co-

expression networks. The intuition is that if two genes are co-

expressed in the wild type and two deletion strains, they might also

be co-expressed in the third deletion strain, given that the deleted

genes in the three deletion strains are known to be involved in

similar biological processes. Therefore, I construct a co-expression

network using a k-nearest-neighbor (KNN) method, where each

gene is connected to k other genes with whom its expression

profile is most similar. The expression of a prediction target under

a prediction condition is then estimated to be the average of the

expression levels of its k nearest neighbors, under the same

condition. Interestingly, this idea coincides with one of the simplest

missing data imputation methods [21]. Indeed, the challenge

problem is exactly an example of a missing value estimation

problem, for which many algorithms have been developed [21].

This simple method turns out to work well. Among the nine

methods that made the final predictions, it shares the ‘‘best

performer’’ honor with a much sophisticated method, which is

based on soft integration of multiple data types using elastic net

[22]. The performance of the two top-ranked algorithms is almost

identical, and is much better than that of the other participating

methods. In addition, I also proposed several alternative strategies,

all based on simple ideas for missing value imputation. These

results were not submitted to the challenge organizers officially

(but were developed without knowing the ground truth). In

particular, a modified KNN method achieved even better

accuracy than the standard KNN method. Another KNN-based

approach did not improve over the standard KNN, while a

regression-based approach had slightly lower accuracy than the

KNN-based methods. These results, together with the fact that

none of the top-performing methods are trying to explicitly

construct gene regulatory networks seem to confirm my hypothesis

that current gene regulatory models are probably not accurate

enough to model gene expression yet. In addition, the results also

suggest that simple methods should in general be preferred over

complex ones.

The remainder of this paper is organized as follows. In the next

section, I first present the challenge problem, and then describe

the prediction results I submitted to DREAM3. I also present the

results from several alternative strategies and discuss the difference

between several evaluation methods for measuring prediction

accuracy. I then discuss some lessons learned from my participa-

tion in this challenge. In the last section I describe some details of

the prediction methods and the evaluation methods.

Results

The Gene Expression Challenge Problem
In this gene expression prediction challenge, participants were

given gene expression time course data for four different strains of

S. Cerevisiae: wild type (wt), GAT1 deletion strain (gat1D), GCN4

deletion strain (gcn4D), and LEU3 deletion strain (leu3D). GAT1,

GCN4, and LEU3 are all yeast transcription factors, and have

functions in regulating nitrogen or amino acid metabolism genes

[23]. Gene expression levels were assayed in each strain from eight

time points (t = 0, 10, 20, 30, 45, 60, 90 and 120 minutes)

following the addition of 3-aminotriazole (3AT), which is an

inhibitor of an enzyme in the histidine biosynthesis pathway. Time

t = 0 means the absence of 3AT. Microarray experiments were

conducted using Affymetrix yeast genome array, with two

biological replicates per sample. The data were normalized using

the RMA algorithm [24] in the GeneSpring software. Data were

provided by Neil Clarke from Genome Institute of Singapore.

The challenge is to predict the relative expression of a set of 50

selected genes in the gat1D strain, given the complete expression

data for all four strains, except the expression data to be predicted.

The identities of all genes are disclosed, and participants are free to

use any publicly available data. According to the challenge

specification, absolute expression levels are neither required nor

desired. It is recommended that the 50 genes should be ranked

according to their relative induction or repression relative to the

expression levels observed in the wild-type parental strain in the

absence of 3AT, such that the gene with the highest induction has

a rank 1 and the gene with the highest repression has a rank 50.

Prediction Using k-Nearest Neighbors
My final submitted prediction results are based on the simplest

k-nearest neighbor (KNN) model. In this model, the expression

level of a gene is predicted by taking the average of its k nearest

genes. Similarities are measured according to Euclidean distances.

To select a k for the best model, a set of randomly selected genes is

used to estimate the prediction accuracy of each model (see

Methods for model selection and evaluation).

Figure 1(a) shows the overall gene-profile accuracy of the KNN

model on randomly chosen genes, as a function of k. (See Methods -

Evaluation Methods for definitions of gene-profile accuracy and

other accuracy scores.) As shown, the accuracy is relatively robust

for k between 10 and 30, while the best accuracy (0.744) is achieved

at k~10. This value of k is therefore used in the final model and as

a basis for the development of alternative strategy that will be

discussed later. Figure 1(b) shows the gene-profile accuracy on

randomly chosen genes for each time point. The prediction

accuracy is the lowest for the first time point, and increases

gradually with time.

Table 1 shows the prediction accuracy on the actual prediction

targets for the five top-scoring methods. As can be seen, the

method by Gustafsson and Hörnquist (referred to as GH) and

KNN have achieved the best prediction accuracy and are far

superior to the other methods. The GH method has better gene-

profile accuracy than KNN, while KNN has better time-profile

accuracy.

Figure 2(a) shows the gene-profile accuracy on real target genes

for each time point. As shown, KNN and GH have better

accuracy in nearly all time points than the other methods. On the

other hand, the results for all methods are somewhat correlated.

Similar to the results on randomly chosen genes, almost all

methods have the lowest accuracy at time point 1 (0 minute),

indicating the common difficulty for predicting gene expression at

this initial time point. Interestingly, the two top-ranked algorithms

have achieved very similar results (Pearson correlation = 0.95, p-

valuev0.0002), even though they are based on very different

algorithms and models. Another interesting observation made by

comparing Figure 1(b) and Figure 2(a) is that the prediction

accuracy on the randomly chosen genes is significantly higher than

that on the real target genes. This might be due to the fact that the

real target genes are the ones highly perturbed in this experiment,

which makes predicting their expression more difficult.

Figure 2(b) shows a histogram of the time-profile accuracy for

the 50 target genes. KNN and the GH method are the best again.

Gene Expression Prediction
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The overall time-profile accuracy for KNN and GH are 0.53 and

0.51, respectively. These two methods achieved good accuracy

(w0.5) for 66% and 56% of the genes, respectively, as compared

to below 45% for the other methods. The result of KNN is

moderately correlated with that of GH (Pearson correla-

tion = 0.52, p-value~0.0001), and weakly correlated with that of

the other three methods (Pearson correlation = 0.18, 0.38, 0.40, p-

value = 0.22, 0.006, 0.004, respectively).

Prediction Using Alternative Strategies
Besides the standard KNN algorithm, I also attempted several

alternative strategies. All alternative strategies were developed

before the gold standard data were released. These results were

not submitted to DREAM, however, for various reasons. Two of

the alternative strategies did not show better performance than the

standard KNN model when tested on randomly selected genes.

Another alternative strategy performed better than the standard

KNN on randomly selected genes, but the results were obtained a

few days after the submission deadline.

The first alternative strategy, called KNN*, is an improved

KNN method, where a different number of neighbors may be

selected for each gene. This strategy is motivated by the fact that

different prediction targets may be involved in different functional

pathways, and therefore may be co-expressed with a different

number of genes. The idea is similar to a so-called mutual nearest

neighbor method [25], where two genes are defined to be

neighbors of each other if and only if they are both within the top-

k list of the other gene. Here k is set to 20, such that in the final co-

expression network most prediction targets have around 10

neighbors, a number deemed optimal for the standard KNN

model. The actual number of connections for the 50 prediction

targets is between 3 and 12, with a mean value of 6.1. Similar

prediction results can be obtained using slightly different values of

k (see below).

The second strategy, referred to as dense subnet, is another

KNN-based method. This method first identifies the top-k

neighbors for each target gene, as in the standard KNN model.

Then a subset of these genes densely connected to one another is

selected as the true neighbors of the target gene (see Methods).

The motivation is that the dense subnetwork around the target

gene may represent a functional pathway that the target gene is in;

therefore their co-expression to the target gene may be well

extrapolated into the prediction strain. On the other hand, genes

that are top-ranked but not part of the dense subnetwork may co-

express with the target gene only under specific conditions; or the

co-expression may be due to noises in the expression data.

Therefore, they should not be used to predict the expression of the

target gene. For this strategy, k is set to 20, and the final

neighborhood size is fixed at 10, so that the results can be

compared to that of the standard KNN and KNN* models.

The third strategy is a simple linear regression model, where the

expression level of gene i at condition j is predicted by the

expression levels of the same gene i at all other conditions. The

same idea is often used for constructing gene regulatory networks,

or for imputating missing values in data [15,21].

The accuracies on randomly chosen genes for the three

alternative methods, KNN*, dense subnet, and linear regression,

are 0.755, 0.740, and 0.738, respectively, as compared to 0.744 for

Table 1. Prediction accuracy on real target genes.

Team Score Gene-Profile Accuracy Gene-Profile P-val Time-Profile Accuracy Time-Profile P-val

GH 3.25 0.563 6.5E-06 0.512 4.8E-02

KNN 3.18 0.558 1.1E-05 0.533 3.9E-02

Team 263 1.85 0.421 7.5E-04 0.112 2.7E-01

Team 297 1.68 0.333 5.6E-03 0.313 7.9E-02

Team 126 1.46 0.324 9.0E-03 0.288 1.4E-01

doi:10.1371/journal.pone.0008944.t001

Figure 1. Prediction accuracy on randomly chosen genes. (a) Gene-profile accuracy as a function of k. (b) Gene-profile accuracy for each time
point.
doi:10.1371/journal.pone.0008944.g001
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the standard KNN method. When applied to the actual test data,

the overall accuracy is consistent with the accuracy on random

genes (Table 2). KNN* significantly improved the accuracy of the

standard KNN model, for both gene profiles and time profiles.

The dense subnet model has similar gene-profile accuracy as the

standard KNN model, but significantly better time-profile

accuracy than the latter. The linear regression model has a much

worse overall accuracy than the KNN-based methods and the GH

method, mainly because of its poor gene-profile accuracy.

Figure 3(a) shows the gene-profile accuracy on the real

prediction targets at each time point for GH, KNN, and the

three alternative strategies. As shown, no algorithm is a clear

winner for all time points, and the results of the five algorithms are

highly correlated. The Pearson correlation coefficient is above

0.96 between any pair of the three KNN-based methods, and is

higher than 0.8 between any pair of the five methods. Figure 3(b)

shows the histogram of the time-profile accuracy. As shown, the

KNN* method has achieved good accuracy (w0.65) for the

highest percentage of genes (28 out of 50), as compared to 23 out

of 50 for GH or linear regression methods. Time-profile accuracies

of the three KNN-based methods are also highly correlated

(Pearson correlation coefficient = 0.74–0.90, p-valuev6E-10).

Interestingly, time-profile accuracy of the linear regression method

is more correlated with that of the standard KNN method

(Pearson correlation coefficient = 0.67, p-value~8E-8) than with

the GH method (Pearson correlation coefficient = 0.32, p-

value~0.02).

The prediction results of all three KNN-based methods are

relatively robust with respect to the parameter k. For example, in

Table 2, with the default values of k, the scores of standard KNN,

KNN* and dense subnet are 3.18, 3.41 and 3.20, respectively. In

comparison, for k~5 and k~15, the score of standard KNN is

3.31 and 3.28, respectively. For k~25 and 30, KNN* has a score

3.47 and 3.43, respectively, while dense subnet has a score 3.18 for

these two values of k.

Prediction Accuracy Measured by Other Evaluation
Methods

As shown in Tables 1 and 2, the gene-profile accuracy is usually

higher than the time-profile accuracy. This may be partially due to

a problem of the official evaluation method. The prediction results

submitted to DREAM were evaluated based on the Spearman

correlation between the real and predicted gene expressions.

Before calculating correlation, gene expression data were rank-

transformed for each time point. However, as these ranks were

obtained per time points and therefore may not be directly

comparable across time points. As a result, time-profile accuracy

may have been under-estimated.

To investigate this problem, I obtained the untransformed gene

expression data from the data provider, Neil Clarke, and compared

the prediction accuracy of the KNN* method on the real prediction

targets with four evaluation methods. The first is the official

evaluation method used by the DREAM organizers. The second

method is also based on rank-transformed gene expression data as in

the first method; however it computes Pearson correlation instead of

Spearman correlation. (This evaluation method is included only for

completeness, as it has the same problem of the official evaluation

Figure 2. Prediction accuracy on real target genes. (a) Gene-profile accuracy for each time point. (b) Histogram of time-profile accuracy. GH
and KNN have almost identical accuracy and are both superior to the other competing methods.
doi:10.1371/journal.pone.0008944.g002

Table 2. Prediction accuracy of alternative strategies.

Method Score Gene-Profile Accuracy Gene-Profile P-val Time-Profile Accuracy Time-Profile P-val

GH 3.25 0.563 6.5E-06 0.512 4.8E-02

KNN 3.18 0.558 1.1E-05 0.533 3.9E-02

KNN* 3.41 0.579 5.3E-06 0.585 2.8E-02

Dense subnet 3.27 0.566 9.0E-06 0.596 3.2E-02

Linear Regression 2.98 0.542 2.2E-05 0.524 5.1E-02

doi:10.1371/journal.pone.0008944.t002

Gene Expression Prediction
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method.) The third and fourth methods are similar to the first and

second methods, respectively, except that gene expression data are

not rank-transformed. Note that the first three evaluation methods

should result in the same gene-profile accuracy (since ranks are

obtained by comparing genes), but potentially different time-profile

accuracy. Figure 4 shows two example prediction targets where the

Figure 3. Prediction accuracy of alternative strategies. (a) Gene-profile accuracy for each time point. (b) Histogram of time-profile accuracy.
doi:10.1371/journal.pone.0008944.g003

Figure 4. Effects of different scoring methods. (a) Predicted and actual expression levels of YHI9. (b) Predicted and actual rank-transformed
expression levels of YHI9. (c) Predicted and actual expression levels of HMX1. (d) Predicted and actual rank-transformed expression levels of HMX1.
doi:10.1371/journal.pone.0008944.g004
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actual gene expression levels and the KNN* predicted expression

levels are very similar (Figure 4(a) and (c)), while the time-profile

accuracy is rather low (Figure 4(b) and (d), Spearman correlation).

Table 3 shows the overall scores as well as the time- and gene-profile

accuracies of the KNN* method, evaluated by these four methods.

Indeed, the official evaluation method resulted in the lowest

accuracy (Table 3, rank-transformed expression data and Spearman

correlation coefficient). The fourth evaluation method, which uses

Pearson correlation coefficient and untransformed data, resulted in

the highest accuracy for both time profiles and gene profiles, and the

most significant overall scores.

Discussion

In this article, I presented several simple methods for the

DREAM3 gene expression prediction challenge. I treated the

challenge problem as a missing value estimation problem rather

than a network reverse-engineering problem, and applied existing

techniques such as k-nearest neighbors or linear regression

methods to solve it. These simple methods achieved fairly good

accuracy, at least when compared with the methods used by the

other participants.

The challenge problem seemed daunting at first, especially

because the identities of all genes were given explicitly and the

DREAM organizers specifically noted that any public data can be

utilized. There are overwhelming data available for the yeast

genome, including many public microarray data, complete

promoter sequences, whole-genome transcription factor binding

(ChIP-chip) data, protein-protein interactions, just to name a few.

I decided to use only the data provided by the DREAM

organizers, because of concerns of inter-data set consistency. It is

known that, even though individual high-throughput data set is

consistent within itself, consistency between different data sets is

usually much lower, especially if they belong to different data

types. Therefore, attempting to predict gene expression data from

ChIP-chip data, or even to predict gene expression data generated

by one lab from expression data generated by a different lab, may

turn out to be difficult.

Interestingly, the method by Gustafsson and Hörnquist actually

attempted to combine multiple data sources, including ChIP-chip

data and public microarray data [22]. By carefully weighting the

relative importance of different data sets and using elastic net for

soft integration, their method performed slightly better than our

simple KNN model. Furthermore, their prediction results are

highly correlated with ours. These indicate that the additional data

had only marginal contribution towards their predictions.

Several observations made it seemingly desirable to use a gene

regulatory network to solve this challenge problem. First, the

prediction targets do not seem to be picked randomly. Using a

heatmap of the gene expression data, it can be easily seen that the

prediction target genes are highly perturbed by 3AT treatment.

Second, the three knockout genes are transcription factors, and their

binding targets can be obtained from ChIP-chip data. Finally, given

the relatively large number of available data points and the small

number of target genes, the problem size seems to be reasonable to

be handled by the existing network construction algorithms.

However, I decided not to pursue gene regulatory networks for

this problem, for reasons stated above regarding to inter-data set

consistency, and also because most network reconstruction

algorithms are model-driven, relying on simplifying model assump-

tions that are often hard to be tested or fulfilled. For example,

methods for constructing regulatory networks must make some

simplifying assumptions that may not be true. For example, most

methods assume that the mRNA level of a regulator is a true

indication of its activity, and that there is no time lag or a constant

time lag between the transcription of a regulator and the

transcription of its target genes. In reality, some regulators may be

regulated post-transcriptionally or on the protein level, with no

change on their transcriptional levels. Also, transcriptional time lags

between regulators and target genes are not constant and are

difficult to estimate in general. In contrast, the simple co-expression-

based methods that I have taken assume that gene expression levels

in the prediction strain are somewhat correlated with that in the

other strains, an assumption that can be easily tested.

It would be very interesting to know what methods the other

participants have used, especially the methods that have had

inferior performance. Unfortunately, except for the GH method

that shared ‘‘top performer’’ status with KNN, details of the other

methods are not disclosed, making it hard to speculate why the

other methods did not work well. Given that the main theme of

the challenge is to evaluate reverse-engineering methods, I suspect

some participates have attempted to construct gene regulatory

networks. Therefore, the results seem to suggest that at the current

stage, although gene regulatory networks are useful at revealing

some underlying biology, they can only provide qualitative

information. On the other hand, purely data-driven methods,

such as the ones used in this work, do not rely on complex model

assumptions, and are more useful at making quantitative

predictions.

Finally, to benefit the whole scientific community in computa-

tional systems biology, I would suggest the organizers of future

DREAM competitions to design a mechanism for all participants

to provide some key features of their methods (which can be done

in an anonymous way). For example, each participant can list the

main data types that have been used, and the main idea of the

algorithm, or a previous work with similar ideas. It is so important

to learn not only from the successes, but also from the failures.

Methods

Definitions
Let es

i denote the expression vector of the i-th probe for strain s.

The values of e for all i and s are given, except for s = gat1D,

Table 3. Accuracy of KNN* using different evaluation methods.

Expression data Correlation method Score Gene-Profile Accuracy Gene-Profile P-val Time-Profile Accuracy Time-Profile P-val

Rank Spearman 3.41 0.579 5.3E-06 0.585 2.8E-02

Rank Pearson 3.67 0.579 3.0E-06 0.627 1.5E-02

Value Spearman 3.59 0.579 3.0E-06 0.610 2.2E-02

Value Pearson 3.94 0.600 1.6E-06 0.664 7.9E-03

doi:10.1371/journal.pone.0008944.t003

Gene Expression Prediction
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i~fI1,I2, . . . ,I50g. The problem is to predict the missing data,

given the available data (as well as any public data).

Define ds
ij to be the Euclidean distance between the expression

vectors of gene i and gene j in strain s: ds
ij~Ees

i {es
j E.

Also define D~SdijT to be a n|n matrix, where dij~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dwt

ij

� �2

z d
gcn4D
ij

� �2

z dleu3D
ij

� �2
r

is the distance between the

expression vectors of gene i and gene j in the three strains having

complete data.

Prediction Models
Standard KNN model. Let Nk(i,D) be the k nearest

neighbors of gene i, defined based on the distance matrix D.

Note that, j [Nk(i,D) does not imply that i [Nk(j,D). Prediction

targets are prohibited from being selected as neighbors of other

prediction targets.

In the standard KNN model, the expression level of gene i at

time point t is estimated by the average expression level of its k
nearest neighbors:

e
gat1D
i (t)~

1

k

X
j[Nk(i,D)

e
gat1D
j (t):

Improved KNN model. In the standard KNN model

described above, the expression level of a gene is predicted by

the average of k genes. However, in reality, different genes may be

involved in different functional pathways which may have different

sizes. Therefore, I propose an improved KNN model, called

KNN*, which may select a different number of neighbors for each

gene.

Let Mk(i,D) be a subset of the k nearest neighbors of gene i
such that for any j [Mk(i,D) I have j [Nk(i,D) and i [Nk(j,D).
The graph defined by Mk(i,D) is known as mutual nearest

neighbor graph [25]. Compared to the standard k-nearest

neighbor graph, the mutual KNN requires an edge to be

confirmed by both nodes involved in the edge. As a result, each

node may end up with a different number of edges. This model

may be more realistic compared to the standard KNN model as

the former does not assume each gene to have the same number of

co-expressed genes. However, in the mutual KNN model, some

prediction targets may have no neighbors at all, which is

undesirable. Therefore, I require that each prediction target be

connected to its top three nearest neighbors as in the standard

KNN graph, regardless of their appearance in the mutual KNN

graph. In this model, the neighborhood of gene i is defined as

S~N3(i,D)|Mk(i,D). The expression level of gene i at time

point t can be estimated accordingly:

e
gat1D
i (t)~

1

jSj
X
j[S

e
gat1D
j (t)

Dense subnet model. In this model, the neighbors are

identified heuristically as follows. I first construct a standard KNN

network using all genes on the chip, with k fixed at 20. For each

target gene i, a subnetwork containing its top-20 nearest neighbor

genes is obtained from the global KNN network. I then rank the

20 genes according to their connectivity within this sub-network,

and select the 10 nodes with the highest connectivity. Since these

10 genes are all connected to the target gene i, and have relatively

more interactions within the group, they form a dense subnetwork

around gene i. Defining this set of genes as the true neighbors of

the target gene, the expression of the target gene is then predicted

by the same formula as in the standard KNN model.

Linear regression model. The linear regression model

assumes that the expression level of a prediction target in the

gat1D strain is related to its own expression levels in the other

three strains, and can be estimated by a linear combination of the

368 = 24 gene profiles from the three strains:

e
gat1D
i (t)~

X
s[fwt,gcn4D,leu3Dg

X8

k~1

as,t
k es

i (tk)zct:

For each time point t, the constants as,t
k and ct are estimated by

solving a linear regression using the genes without missing data.

Evaluation Methods
Evaluation method proposed by DREAM organizers.

The prediction results submitted to DREAM are evaluated based

on the Spearman correlation coefficient between the real and

predicted gene expression profiles. Before calculating the

correlation coefficient, the gene expression data are rank-

transformed for each time point. Specifically, for any given time

point, the prediction target with the highest induction has a rank 1

and the gene with the highest repression has a rank 50. Given the

rank-transformed gene expression, a gene profile is defined as the

ranks for all genes to be predicted at a given time point, and a time
profile is defined as the ranks for a single gene across all time

points. The gene-profile accuracy for a given time point is

defined as the Spearman correlation coefficient between the actual

gene profile and the predicted gene profile. Correspondingly, the

gene-profile p-value for a given time point is the probability that

a given or larger Spearman correlation coefficient can be achieved

by randomly ordered ranks. The overall gene-profile accuracy
is defined as the average gene-profile accuracy across all eight time

points, while the overall gene-profile p-value is defined as the

geometric mean of the individual gene-profile p-values. The time-
profile accuracy and time-profile p-value are defined

similarly, except that the measurement is based on time profiles

instead of gene profiles. The score of a prediction algorithm is

computed as 20.5log10 PGPYð Þ, where PG and PY are the overall

gene-profile p-value and the overall time-profile p-value,

respectively. A larger score indicates greater statistical significance

of the prediction.

Alternative evaluation methods. In the evaluation

method proposed by the DREAM organizers, Spearman corre-

lation coefficient is computed for rank-transformed expression

data. However, since the ranks are obtained for each time

point, they are not comparable across time points. Therefore,

the estimated time-profile accuracy may be inaccurate. To

address this problem, I propose two additional scoring

methods, using the raw gene expression data rather than the

rank-transformed expression data. The first additional method

computes Spearman correlation coefficient between the

predicted and actual raw (instead of rank-transformed) gene

expression values. The second method also relies on the raw

expression data, but computes Pearson correlation coefficient

rather than Spearman correlation coefficient. For

completeness, I also propose a method that computes Pearson

correlation coefficient between rank-transformed expression

values, which has the same pitfall as the original evaluation

methods. The impact of these different evaluation methods on

the prediction accuracy of real target genes is shown in the

Results section (Table 3 and Figure 4).

Gene Expression Prediction
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Model Selection
In the model development stage, I use randomly chosen genes

to estimate the prediction accuracy of different models and to

select the optimal model parameters. For each model, I first

randomly pick 50 genes that are not the prediction targets, and

remove their expression data in gat1D. I then predict their

expression levels using the model, and computed the overall gene-

profile accuracy. This process is repeated 10 times for each model,

and the average accuracy is used to evaluate and select models.

Only gene-profile accuracy is considered at model selection stage,

as the time-profile accuracy depends on the set of genes selected,

and therefore may not be a good indicator for the accuracy of the

real prediction targets, which may have been selected because of

their special roles under these experimental conditions.
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