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Voltage-dependent anion-selective channel (VDAC) allows the exchange of small
metabolites and inorganic ions across the mitochondrial outer membrane. It is involved
in complex interactions that regulate mitochondrial and cellular functioning. Many
organisms have several VDAC paralogs that play distinct but poorly understood roles in
the life and death of cells. It is assumed that such a large diversity of VDAC-encoding
genes might cause physiological plasticity to cope with abiotic and biotic stresses
known to impact mitochondrial function. Moreover, cysteine residues in mammalian
VDAC paralogs may contribute to the reduction–oxidation (redox) sensor function based
on disulfide bond formation and elimination, resulting in redox-sensitive VDAC (rsVDAC).
Therefore, we analyzed whether rsVDAC is possible when only one VDAC variant is
present in mitochondria and whether all VDAC paralogs present in mitochondria could
be rsVDAC, using representatives of currently available VDAC amino acid sequences.
The obtained results indicate that rsVDAC can occur when only one VDAC variant is
present in mitochondria; however, the possibility of all VDAC paralogs in mitochondria
being rsVDAC is very low. Moreover, the presence of rsVDAC may correlate with habitat
conditions as rsVDAC appears to be prevalent in parasites. Thus, the channel may
mediate detection and adaptation to environmental conditions.

Keywords: VDAC, parasite, cysteine oxidation, redox sensor, environmental stress, spermatozoa

INTRODUCTION

Environmental stress of varying severity always exists in any organism’s habitat. Given the diversity
of organisms and their habitats, the diversity may be affected by different environmental conditions.
The three main types of environments can be broadly distinguished as terrestrial, aquatic, and semi-
terrestrial (semi-aquatic). The habitats available within these environments can be characterized
by a set of parameters, including light, temperature, pH, atmospheric or hydrostatic pressure,
salinity, and oxygen pressure, as well as individual combinations of these parameters (Edery, 2000;
Rothschild and Mancinelli, 2001). An environmental factor is determined as stressful based on the
organism’s tolerance against it. Abiotic factors such as temperature, radiation, oxygen pressure, and
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changes in water availability can exert stress via disturbances
in gas exchange, water management, and nutrient production
(Lesser, 2006; Lushchak, 2011; Sokolova et al., 2012; Wang and
Komatsu, 2018). Biotic factors, including predators, competitors,
and parasites (e.g., Forsman and Martin, 2009) can also be
stressful to organisms. In the case of parasites, both the internal
and external environments of a parasitic host dictate the outcome
of their infection, resistance, susceptibility, and transmission
(Prado et al., 2021). Moreover, the internal conditions of parasitic
hosts may constitute a greater constraint upon survival than
external conditions (Tinsley, 1999).

Unicellular organisms are exposed to stress conditions
through their whole surface. Multicellular organisms regulate
their response to stress in a more complex manner, but
with cell response as the basis of all response types. Many
different organisms are known for their resistance strategies to
environmental stress, which indicate efficient cellular anti-stress
mechanisms. These mechanisms may protect against intracellular
oxidative stress imposed by environmental stress conditions,
including increased temperature, not optimal oxygen pressure
or high salinity (Laksanalamai and Robb, 2004; Wang et al.,
2006; Bagnyukova et al., 2007; Sinha et al., 2013). The state of
oxidative stress threatens the functioning of whole cells, especially
that of the mitochondria. Reactive oxygen species (ROS), formed
mainly during cellular respiration performed by mitochondria,
are important signaling molecules but also markers of oxidative
stress. Their excess is dangerous due to the direct impact of ROS
or ROS-mediated regulation on cell structure and function (e.g.,
Chung, 2017).

The most common anti-oxidative stress cellular strategy
involves maintaining ROS homeostasis. Available data indicate
that the homeostasis may be provided by voltage-dependent
anion-selective channel (VDAC) (e.g., Shoshan-Barmatz et al.,
2010, 2020; De Pinto, 2021; Rostovtseva et al., 2021). This
relatively simple, monomeric β-barrel channel at the interface
between mitochondria and the cytosol is described as a
highly conserved protein of the mitochondrial outer membrane,
present in nearly all eukaryotic species examined to date
(Colombini, 2012). VDAC performs and regulates inorganic
ion and metabolite transport between mitochondria and the
cytoplasm under both physiological and pathological conditions
(Kroemer et al., 2007; Li et al., 2013; Rostovtseva et al., 2021).
The contribution of VDAC in ROS homeostasis (Reina et al.,
2010; Sanyal et al., 2020) is based on its transport of superoxide
anion (Han et al., 2003), its important role in ROS production
(Fang and Maldonado, 2018; Heslop et al., 2020), and its role
in regulating the amount and activity of anti-oxidative enzymes
(Gałgańska et al., 2008).

Voltage-dependent anion-selective channel is the most
abundant protein in the mitochondrial outer membrane and has
been relatively well studied since its discovery in 1976 (Schein
et al., 1976). As summarized by Rostovtseva et al. (2021) in
their comprehensive review, besides being a strictly regulated
transport pathway between the mitochondrion and cytosol,
VDAC also interacts with a numerous of mitochondrial and
cytosolic proteins, which makes the channel a key element in
and regulator of communications between mitochondria and

cytosol. Moreover, VDAC forms homo- and hetero-complexes
with additional functional subunits (e.g., Shoshan-Barmatz et al.,
2010, 2018). However, the identification of VDAC paralogs
indicates the presence of VDAC variants with slight amino acid
differences that undoubtedly perform specified but not yet fully
explained functions (De Pinto, 2021).

Three VDAC paralogs were identified in vertebrate
mitochondria (Sampson et al., 1997; Messina et al., 2012).
The presence of VDAC paralogs was also reported in other
multicellular organisms such as invertebrates (Sardiello et al.,
2003) and plants (Elkeles et al., 1997; Al Bitar et al., 2003;
Wandrey et al., 2004; Lee et al., 2009; Wojtkowska et al., 2012;
Hemono et al., 2020; Sanyal et al., 2020), as well as in unicellular
organisms such as yeasts Saccharomyces cerevisiae (Blachly-
Dyson et al., 1997; Di Rosa et al., 2021) and Candida glabrata
(Wojtkowska et al., 2012) and protists Trypanosoma brucei
(Flinner et al., 2012) and Cyanophora paradoxa (Wojtkowska
et al., 2012). Thus, it is assumed that VDAC-encoding genes
were duplicated independently in different lineages of eukaryotic
organisms, several times during their evolution (Sampson et al.,
1996; Saccone et al., 2003; Young et al., 2007). The resulting
VDAC-encoding gene redundancy might indicate a need to
innovate their existing function and a tendency to duplicate
genetic material, as observed in invertebrates, plants, and
vertebrates (Saccone et al., 2003). Thus, the following question
arises: could the trigger factor be oxidative stress imposed by
habitat conditions?

Identifying the function of individual VDAC paralogs is
currently one of the main topics concerning VDAC research (De
Pinto, 2021). One of the most important aspects of the research
is the study of post-translational modification of VDAC paralogs
by focusing mainly on cysteine residues. The significance of the
number of cysteine residues, as well as their localization and
oxidation state in individual mammalian VDAC paralogs, have
been indicated by the De Pinto research group (Messina et al.,
2012; De Pinto et al., 2016; Reina et al., 2020) and verified by
other researchers (Okazaki et al., 2015; Karachitos et al., 2016;
Queralt-Martín et al., 2020). The presence of ROS could result
in the variable oxidation of cysteine residues exposed to the
VDAC interior (including the flexible N-terminal region) or
present in the connection loops between 19 β-strands forming
the channel (Reina et al., 2010; Okazaki et al., 2015). As oxidative
modifications of cysteine residues in VDAC proteins are not
detected in other proteins of the mitochondrial outer membrane
(Reina et al., 2020), it has been speculated that such modifications
could have a regulatory function (including channel gating and
conductance) as well as mitochondrial ROS buffering capacity
(Okazaki et al., 2015; De Pinto, 2021).

Among the modifications occurring in cysteine residues,
disulfide bond formation was shown to affect gating properties
and conductance of VDAC (Okazaki et al., 2015; De Pinto
et al., 2016; Reina et al., 2020). Accordingly, available data on
human VDAC paralogs indicate that cysteine residues in the
flexible N-terminal region are crucial for this bond formation.
The same probably applies to Drosophila melanogaster VDAC
paralogs (Komarov et al., 2004). Therefore, the presence of
cysteine residues in the N-terminus could be a prerequisite
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for VDAC to serve as a sensor of the reduction–oxidation
(redox) state (Queralt-Martín et al., 2020). Thus, the following
questions arise: (1) is the sensor function possible when
only one VDAC variant is present in mitochondria, and
(2) is the sensor function possible for all VDAC paralogs
present in mitochondria? To answer these questions, we used
currently available VDAC amino acid sequences to analyze the
number of cysteine residues and their location, with particular
emphasis on the N-terminus. Next, we examined the relationship
between the sequences and the studied species’ ecology. The
obtained results suggest that the presence of redox-sensitive

VDAC (rsVDAC) proteins may be important for adaptation to
environmental conditions.

MATERIALS AND METHODS

Construction of the Database
UniProt (The UniProt Consortium, 2021) was used to compile a
list of VDAC paralogs of non-vertebrate and non-plant organisms
(Supplementary File 1). Next, the database was enriched with
records of paralogs from previously obtained organisms (using

FIGURE 1 | The complexity of organisms and their inhabited environment in relation to the number of VDAC variants and their cysteine residue content. (A) The
number of organisms classified in terms of complexity, inhabited environment, and the number of genes encoding VDAC proteins. (B) Classification of organisms
based on the number and localization of cysteine residues in VDAC proteins. Cys-poor: a set of organisms in which only one VDAC variant or at least one VDAC
paralog (if present) contains fewer than two cysteine residues in the primary structure; Cys-rich: a set of organisms in which only one VDAC variant or all VDAC
paralogs (if present) have more than one cysteine residue in the primary structure; N-Cys: a set of organisms in which only one VDAC variant or all VDAC paralogs (if
present) have at least one N-terminal cysteine residue; N-Cys-free: a set of organisms that have at least one VDAC variant with no N-terminal cysteine residue.
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FIGURE 2 | Selection of organisms that possess the only redox-sensitive
VDAC (rsVDAC) variant in mitochondria. The analysis indicates the number of
cysteine residues and their location in the VDAC secondary structure, as well
as the absence or presence of VDAC paralogs, that is, the presence of only
one VDAC variant (1 VDAC) or VDAC paralogs (>1 VDAC). Cys-poor: a set of
organisms in which only one VDAC variant or at least one VDAC paralog (if
present) has fewer than two cysteine residues in the primary structure;
Cys-rich: a set of organisms in which only one VDAC variant or all VDAC
paralogs (if present) have more than one cysteine residue in the primary
structure; N- Cys-free: a set of organisms that have at least one VDAC variant
with no N-terminal cysteine residue; rsVDAC, redox-sensitive VDAC.

sequences of 250–380 amino acids) and with organisms from
systematic groups missing in the list. Sequences containing
“Fragment” annotations (except of Hydra vulgaris) and those
whose amino acid sequences did not start with methionine were
removed. The list was supplemented with the VDAC sequence

predicted for the tardigrade Milnesium tardigradum, based on
data kindly provided by Felix Bemm (Max Planck Institute for
Developmental Biology, Tübingen, Germany). Finally, sequences
were blasted using Blastp to determine whether different records
for a given organism were paralogs or products of the same genes
(Altschul et al., 1997).

Prediction of the Voltage-Dependent
Anion-Selective Channel Structure
The SSPRo (Pollastri et al., 2002; Cheng et al., 2005) and
DIpro (Baldi et al., 2004; Cheng et al., 2006) servers available
at the Scratch Protein Predictor1 were used to estimate the
secondary structure of the available VDAC sequences and predict
the presence of disulfide bonds, respectively. 3D structures
were predicted by applying the Iterative Threading ASSEmbly
Refinement (I-TASSER) method (Roy et al., 2010; Yang et al.,
2015; Yang and Zhang, 2015). The predicted solutions were
visualized using YASARA.2

RESULTS AND DISCUSSION

To perform all analysis, a database (Supplementary File 1)
was built using a collection of species categorized by various
parameters, such as a type of environment (terrestrial or aquatic),
organism complexity (simple or complex), and the number
of VDAC paralogs, including the number (poor or rich) and
location (N-terminus free) of cysteine residues (Figure 1). We
assumed that a complex organism contained multiple organ

1http://scratch.proteomics.ics.uci.edu/
2www.yasara.org

FIGURE 3 | Drosophila melanogaster and human VDAC paralogs as models in studies of redox-sensitive VDAC. (A) The secondary structure of D. melanogaster
and human VDAC paralogs with cysteine residues marked in yellow. (B) The tertiary structure predicted for ubiquitously expressed D. melanogaster and human
paralogs (Dmel/porin and hVDAC1, respectively) as well as for paralogs with limited expression, mainly in D. melanogaster male reproductive tracts and human
testes (Dmel/CG17140 and hVDAC3, respectively). Cysteine residues are marked in yellow.
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systems with different functions (Novikoff, 1945). As shown
in Figure 1A, most of the studied organisms categorized
by complexity and inhabited environment possess only one
VDAC gene. This group mostly includes terrestrial and complex
organisms. Due to the lack of VDAC paralogs, various aspects
of mitochondrial functioning in these organisms depend on the
properties of only one VDAC variant. Therefore, we checked the
number of cysteine residues and their location in the secondary
structure of VDAC proteins of simple and complex organisms
(Figure 1B). We applied the following parameters to perform
the operations: one VDAC or at least one VDAC paralog (if
present) contained fewer than two cysteine residues in the
primary structure (Cys-poor) and one VDAC or all VDAC
paralogs (if present) had more than one cysteine residue in the
primary structure (Cys-rich). Moreover, the presence of cysteine
residue(s) in the N-terminal region upstream of the β1 strand was
applied as an additional parameter, as the residue is obligatory
for the possibility of disulfide bond formation in human VDAC
paralogs (Okazaki et al., 2015; De Pinto et al., 2016; Reina
et al., 2020). The results allowed us to distinguish organisms
with VDAC(s), in which disulfide bonds could potentially form.
Moreover, the possibility of this type of VDAC occurring was
more frequent in complex organisms (42%) than in simple
organisms (17%).

Next, we analyzed the interactions between the number of
cysteine residues, their location in the secondary structure, and
the number of VDAC paralogs present in the mitochondria
of studied organisms (Figure 2). We found organisms that
exclusively contained VDAC characterized by a few cysteine
residues (including those within the N-terminus). We assumed
that the number and distribution of cysteine residues allowed
for their over-oxidation and, consequently, modulation of the
channel under oxidative conditions. Therefore, we described
this type of VDAC as a rsVDAC. This term refers to data on
widely studied VDAC paralogs of humans and D. melanogaster.
The latter has four VDAC paralogs: Dmel/porin, Dmel/porin2,
Dmel/CG17140, and Dmel/CG17139. Dmel/porin is ubiquitous,
while the remaining three paralogs are expressed exclusively
in the male reproductive organ (Graham and Craigen, 2005).
The knockout of D. melanogaster VDAC-encoding genes results
in partial lethality, mitochondrial respiration defects, abnormal
muscle mitochondrial morphology, synaptic dysfunction, and
male infertility (Graham et al., 2010). All four paralogs were
expressed in yeast Saccharomyces cerevisiae cells lacking yVDAC1
(Komarov et al., 2004), and only Dmel/porin and Dmel/porin2
complemented the absence of yVDAC1. Interestingly, the
other two paralogs (Dmel/CG17140 and Dmel/CG17139) are
characterized by the presence of several cysteine residues, one of
which is located within their N-terminus (Figure 3A). Moreover,
electrophysiological analysis showed that Dmel/CG17139 does
not form a channel. Conversely, Dmel/CG17140 forms a channel
in lipid membranes, but is far less voltage-dependent, unlike
the canonical Dmel/porin or Dmel/porin2 (Komarov et al.,
2004). Thus, Dmel/CG17140 only starts to close slightly at very
high potential values (above 110 mV), whereas Dmel/porin2
closes at a potential of approximately 30 mV. Three paralogs,
namely VDAC1, VDAC2, and VDAC3, have been detected

in humans and other vertebrates. Human VDAC1 (hVDAC1)
is ubiquitous and show the highest expression level, whereas
hVDAC2 and hVDAC3 are highly abundant in the testes
(Yamamoto et al., 2006). Accordingly, VDAC3 knockout in mice
causes male infertility (Sampson et al., 2001). Although hVDAC1
and hVDAC2 can rescue the conditional lethal phenotype of
yeast cells deficient for yVDAC1, hVDAC3 is almost unable
to restore the wild-type phenotype (De Pinto et al., 2010)
when the disulfide bond between cysteine residue 2 or 8
(Cys2/Cys8), located at the N-terminus region, and Cys122
is formed (Okazaki et al., 2015). The permanently reduced
state of a cluster of close cysteine residues in hVDAC2 and
hVDAC3 has been shown to sustain disulfide bond formation
in the protein (Pittalà et al., 2020). Such a modification
alters the electrophysiological properties of the formed channel,
resulting in a lack of voltage dependence of the channel and
consequently, the channel remains open. Interestingly, swapping
the N-terminus of hVDAC1 with hVDAC3 (which eliminates the
N-terminal cysteine residues in hVDAC3) restores the canonical
activity of the formed channel and the ability to complement the
lack of yVDAC1, as well as confers resistance to yeast against
oxidative stress conditions (Reina et al., 2010).

Based on these correlating data, we assume that hVDAC3 and
Dmel/CG17140 are orthologs due to their electrophysiological
properties and tissue specificity. Both proteins were also used
as our model of the assumed rsVDAC (Figure 3B), that is,
VDAC containing multiple cysteine residues, with at least one
within the N-terminus. The N-terminus is described as the most
flexible segment of VDAC, which, in turn, facilitates interactions
with other cysteine residues under oxidative conditions (Okazaki
et al., 2015). However, it remains unclear if Dmel/CG17139
could be described as an rsVDAC. Based on the present analysis,
the secondary structure and distribution of cysteine residues
are very similar to Dmel/CG17140; however, limited available
experimental data exclude the paralog channel activity.

Numerous parasitic species were found in the group
of organisms that contained the assumed rsVDAC. As
shown in Figure 4, 28 out of 112 studied species were

FIGURE 4 | The occurrence of redox-sensitive VDAC in free-living organisms
and parasites.
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assigned to the rsVDAC group, of which 21 were parasitic
species, including obligatory ones (both internal and
external) (Table 1). This finding suggests that metabolic and
environmental conditions typical for parasitic organisms
may support the presence of only one VDAC variant,
which may be a redox sensor. In the case of free-living
organisms, we noted the presence of at least one VDAC
variant that displayed exceptionally low or no probability
of cysteine residue oxidation, excluding the function of the
redox sensor. Based on the human and D. melanogaster

TABLE 1 | List of organisms with redox-sensitive VDAC being the only VDAC
variant, classified by their lifestyle and the presence or absence of cysteine
residues in selected regions of the VDAC.

Species Lifestyle β1Cys (β7–β8)Cys β15Cys C-Cys

Steinernema glaseri Parasitic (internal) No No No No

Wuchereria
bancrofti

Parasitic (internal) Yes Yes Yes Yes

Brugia pahangi Parasitic (internal) Yes No Yes Yes

Loa Parasitic (internal) Yes Yes Yes Yes

Onchocerca
flexuosa

Parasitic (internal) Yes Yes Yes Yes

Litomosoides
sigmodontis

Parasitic (internal) Yes No No Yes

Angiostrongylus
costaricensis

Parasitic (internal) No No Yes No

Brugia malayi Parasitic (internal) Yes Yes Yes Yes

Intoshia linei Parasitic (internal) No No No No

Onchocerca
volvulus

Parasitic (internal) Yes Yes Yes Yes

Steinernema
carpocapsae

Parasitic (internal) Yes Yes No No

Brugia timori Parasitic (internal) Yes Yes Yes Yes

Enterobius
vermicularis

Parasitic (internal) No No Yes No

Ixodes scapularis Parasitic (external) Yes No Yes No

Frankliniella
occidentalis

Parasitic (external) No No Yes No

Amblyomma
aureolatum

Parasitic (external) Yes No Yes No

Rhipicephalus
pulchellus

Parasitic (external) Yes No Yes No

Haemaphysalis
longicornis

Parasitic (external) Yes No Yes No

Rhipicephalus
appendiculatus

Parasitic (external) Yes No Yes No

Ornithodoros
turicata

Parasitic (external) Yes No Yes No

Ixodes ricinus Parasitic (external) Yes No Yes No

Chilo suppressalis Free-living No No No No

Papilio machaon Free-living No No No No

Dinothrombium
tinctorium

Free-living No No Yes No

Hadrurus spadix Free-living Yes Yes Yes No

Salpingoeca rosetta Free-living No No No No

Leptidea sinapis Free-living No No No No

Operophtera
brumata

Free-living No No No No

models, we believe this type of VDAC to be the most
abundant and ubiquitous.

Marine eukaryotic organisms use redox-based mechanisms
that mediate sensing and adaptation to environmental stress
(Van Creveld et al., 2015). However, little is known about the
role of ROS in the signaling of environmental stress conditions.
ROS are toxic molecules that can cause severe damage to
cells and, therefore, are strictly regulated by a wide range of
antioxidant systems (Antonucci et al., 2021; Čapek and Roušar,
2021). However, it is crucial that a moderate amount of ROS
act as second messenger molecules in a very complex network
of signals in the cell (Tauffenberger and Magistretti, 2021).
VDAC is involved in changes in the redox states of the cytosol
and mitochondria (Gałgańska et al., 2008) and may act as a
mitochondrial oxidative marker, participating in ROS signaling
(Reina et al., 2016). Therefore, it is also possible that VDAC
participates in the sensing of environmental stress conditions.
If that is the case, the evolution of the VDAC structure would
depend significantly on the inhabited environment.

Cyanidioschyzon merolae is a unicellular extremophilic
eukaryotic organism adapted to high-sulfur acidic hot spring
habitats. This organism has only one gene encoding VDAC,
which contains four cysteine residues, all of which are located
outside the N-terminus. By contrast, the tardigrade Hypsibius
dujardini, which can survive under extreme conditions, also
has one VDAC, with the protein containing only one cysteine
residue located at the N-terminus. Both the VDAC proteins
did not qualify as rsVDAC in our analysis. Instead, the group
of organisms with the assumed rsVDAC was dominated by
parasites. Using hVDAC3 as the rsVDAC model, we verified the
presence and location of cysteine residues in assumed rsVDAC
being the only VDAC variant in mitochondria. The regions
containing cysteine residues included the N-terminus, the β1
strand, the segment containing β7 and β8 strands and the β15
strand (Figure 5A). Cysteine residues in the β1 and β15 strands
turned out to be quite common in parasites, whereas those in
the β7 and β8 segment were characteristic of internal parasites
(Figure 5B and Table 1). In hVDAC3, the β7 and β8 segment
is the location for Cys122, which is responsible for forming
disulfide bonds with the N-terminal cysteine residues (Okazaki
et al., 2015). A cysteine residue is also present in this region
of Dmel/CG17140 (Figures 3, 5A), suggesting its potential role
in redox sensitivity. Accordingly, the presence of two cysteine
residues in modified mouse VDAC1, one at the N-terminus
(Val3Cys) and the second one in β7 segment (Lys119Cys) resulted
in the formation of disulfide bond and strong deviation from the
typical native channel gating under oxidative condition (Mertins
et al., 2012). In further studies, it was demonstrated that the
N-terminal dynamics were essential for voltage gating (Zachariae
et al., 2012; Zeth and Zachariae, 2018). We also indicated the
presence of cysteine residue(s) at the C-terminus only in internal
parasites (Table 1). It should be noted that cysteine residue(s)
in the location is (or are) less common in VDAC of free-
living organisms that have only one VDAC variant meeting our
criteria of rsVDAC.

Thus, what are the features that distinguish parasites from
free-living organisms? It is suggested that hosts of parasites can
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FIGURE 5 | VDAC variants that differ in their number and location of cysteine residues. (A) Graphical representations of the studied organisms’ VDAC secondary
structure with indicated locations of cysteine residues (marked in yellow). They represent “redox-insensitive” VDAC (1–2) and redox-sensitive VDAC (3–7). (1)
Hypsibius dujardini (free-living); (2) human VDAC1; (3) human VDAC3; (4) Dmel\CG17140; (5) Aceria tosichella (free-living); (6) Folsomia candida (free-living); and (7)
Onchocerca flexuosa (parasitic, internal). (B) The percentage of studied organisms with their assumed rsVDAC, being the only VDAC variant in mitochondria,
including their lifestyle and the presence of cysteine residues in the selected regions of VDAC proteins (see also Table 1). Besides rsVDAC, A. tosichella and
F. candida possess also “redox-insensitive” VDAC.

be considered a safe environment, and the external environment
to which parasites are exposed, for example, during transmission,
as hostile ones (Tinsley, 2007). Conversely, many years of
coexistence with the host body requires suitable adaptation, such
as a strong antioxidant system, which may serve as a defense
strategy against host-generated ROS (Chiumiento and Bruschi,
2009). Perhaps the reduced imbalance between ROS generated
by the host and the antioxidant system requires the presence of
stronger redox sensors in some parasites. The same idea may

apply to mature spermatozoa enriched in rsVDAC (Reina et al.,
2016). Spermatozoa are foreign to both the male who produces
them and the female who receives them (Clark and Schust, 2013).
The organs of the female reproductive tract are subject to being
colonized by pathogens and, therefore, have developed multiple
adaptations to impede the invasion and proliferation of such
pathogens. In addition to physical (production of a cleansing
outward flow of fluid and secretion of a viscoelastic mucus) and
chemical (acidification of the vaginal fluid) impediments in the
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female tract, immunological barriers could include components
of the innate immune system, including inflammatory responses,
ROS, and antimicrobial peptides, that could potentially damage
spermatozoa (Ford, 2004; Wigby et al., 2019).

CONCLUSION

The imbalance between ROS production and antioxidant
capacity – which causes oxidative stress – is a common
feature of cells exposed to environmental stress conditions.
Our hypothesis was based on the assumption that, in some
organisms, VDAC amino acid sequences form proteins sensitive
to redox changes. Specifically, cysteine residues can potentially
be oxidized and form disulfide bonds that alter the properties
of the formed channel. The available data indicate that the bond
formation requires the presence of cysteine residue in the flexible
N-terminus. A large group of organisms, most often possessing
only one VDAC variant, do not contain this type of VDAC
that we termed “redox-sensitive.” Redox-sensitive VDACs may
form adjacent to “redox-insensitive” ones in organisms with
VDAC paralogs, such as D. melanogaster or humans. The redox-
sensitive paralogs are often expressed in specific tissues and are
not ubiquitous. Finally, our observations indicate that certain
organisms – mainly parasites – have only one, but potentially
redox-sensitive, VDAC variant. Thus, there is a possibility that
VDAC evolution may depend on environmental conditions
and that the channel may mediate detection and adaptation to
environmental stress.
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