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Abstract

Input data acquisition and preprocessing is time-consuming and difficult to handle and can have 

major implications on environmental modeling results. US EPA’s Hydrological Micro Services 

Precipitation Comparison and Analysis Tool (HMS-PCAT) provides a publicly available tool to 

accomplish this critical task. We present HMS-PCAT’s software design and its use in gathering, 

preprocessing, and evaluating precipitation data through web services. This tool simplifies 

catchment and point-based data retrieval by automating temporal and spatial aggregations. In a 

demonstration of the tool, four gridded precipitation datasets (NLDAS, GLDAS, DAYMET, 

PRISM) and one set of gauge data (NCEI) were retrieved for 17 regions in the United States and 

evaluated on 1) how well each dataset captured extreme events and 2) how datasets varied by 

region. HMS-PCAT facilitates data visualizations, comparisons, and statistics by showing the 

variability between datasets and allows users to explore the data when selecting precipitation 

datasets for an environmental modeling application.
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1. Introduction

Precipitation data are critical inputs required in environmental modeling, including 

hydrologic, water quality, climate, atmospheric deposition, erosion, and agricultural models. 

Precipitation is governed by complicated nonlinear and extremely sensitive atmospheric 

physical processes (B’ardossy & Plate, 1992) and has significant variability over space and 

time (Krajewski et al., 2003). Inability to represent spatial rainfall produces uncertainties 

with streamflow and non-point source pollution modeling (Shen et al., 2012). Studies have 

reported precipitation input as the main source of uncertainty in calibrating a watershed 

hydrology model (SWAT) (Cao et al., 2018; Chaplot et al., 2005; Hernandez et al., 2000; 

Tuo et al., 2016). It is therefore both crucial and challenging to have an accurate 

representation of precipitation for environmental modeling.

Traditionally, three mechanisms provided precipitation data for environmental modeling: 

rain gauges, weather radar, and satellite-based sensors (Sikorska and Seibert, 2018); each 

has its strengths and weaknesses. Rain gauge data are often referred to as the most accurate 

representation of precipitation at a precise location (Kim et al., 2014; Price et al., 2014). 

Observational rain gauge data may have missing values due to station maintenance or 

equipment malfunctions, as well as inaccuracies from sampling errors, calibration 

uncertainty, or random errors. Due to low spatial uniformity, an assumption is made that 

rainfall amounts over an area are represented by a single gauge station. Radar data provide 

spatially distributed precipitation data on a much finer scale (Gao et al., 2017). Bias in radar 

datasets stems from signal blockage by topographic effects, bright band contaminations, 

range dependency, and radar calibration errors. Satellites are the only way to retrieve 

globally homogenous estimations of precipitation (Tapiador et al., 2012). Gauge data tend to 

underestimate precipitation events while radar and satellites can misinterpret hail as heavy 

rainfall (Awange et al., 2016; Kidd and Huffman, 2011; Tapiador et al., 2012). Precipitation 

data types mentioned above vary in degree of temporal and spatial resolution; underlying 

assumptions and methods (e.g., sampling frame, how data are interpolated); data quality; 

units; timespan of record; data dissemination methods; data formats; ways missing data are 

handled; standard versus local time; and temporal aggregations. The inherent tradeoffs of 

individual datasets are often overlooked (Bishop and Beier, 2013; Daly et al., 2007). 

Furthermore, deviations of up to 300 mm have been reported in estimated annual 

precipitation between multiple datasets (Sun et al., 2017). These deviations can impact the 

output of hydrologic, climate, agricultural, and other types of models used to influence best 

management practices, regulations, and decision making. Since selection of precipitation 

data has crucial effects on model performance, the choice of precipitation data needs to 

come from an intentional and informed decision.

Modelers currently spend significant time retrieving precipitation data directly from source 

websites and preprocessing the data before model input. Barriers in data retrieval can 
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include difficulty collecting input data from different sources, incompatibility of data 

formats, lack of available data products, and limitations of computing resources (C. Zhang et 

al., 2019). These can cause multiple data requests, time-consuming downloads, and 

preprocessing procedures for one source, which must be repeated for every dataset used in a 

modeling project. When multiple precipitation datasets are used in calibration and 

validation, the performance of hydrological models is improved (Finger et al., 2015). 

Process-based models requiring large amounts of data are used less often due to data 

restrictions and data processing limitations (Fatichi et al., 2016). Spatial and temporal 

resolutions of current datasets limit modeling efforts due to the level of detail in available 

data and computing resources (Regan et al., 2019). In addition, each dataset has its own 

format, resolutions, units and timespan, making it difficult to compare them quickly.

To simplify data gathering, web services provide raw water quality data through online 

script requests and programming packages like the Water Quality Data Portal (https://

www.waterqualitydata.us/portal/). Unfortunately, there is still a need to process and format 

the data once downloaded. Most existing models lack built-in data provisioning services and 

it is difficult for users without expert knowledge to obtain data due to the complexity of 

some web service interfaces and protocols (Huang et al., 2011). Data provisioning is not 

usually a seamless part of environmental models and exists as external components or 

services. Phuong et al. (2019) presented an open source python library to help ease gridded 

dataset availability and preprocessing. Use of web services, however, make it possible to 

integrate data provisioning programmatically as part of the modeling process or workflow. 

Most data acquisitioning projects involve interaction between data services, model services, 

and an application that integrates the services (Carlson et al., 2014). Interaction of services 

may require a strong background in computer science or customized programming language 

scripts that cannot be widely accessed or reused, hindering the reproducibility of a scientific 

study (Samourkasidis et al., 2019). A primary constraint on efficient use of models is 

provisioning data from disparate data sources and services (Carlson et al., 2014).

Discovering, preprocessing, and evaluating precipitation data often constitute a necessary 

and significant part of environmental modeling. Obtaining multiple precipitation datasets is 

costly in time and resources, and the problem is amplified when decisions need to be made 

on the selection of a data source. The goal of this study is to introduce and demonstrate the 

United States Environmental Protection Agency’s (US EPA) Hydrologic Micro Services 

Precipitation Comparison and Analysis Tool (HMS-PCAT) for precipitation data 

provisioning and analysis. We present (1) the design, available precipitation data sources, 

data processing operations, and strengths and limitations of the precipitation tool as a data 

web service, and (2) how the tool can gather and compare different precipitation sources 

across the conterminous US. This online tool automatically retrieves, processes, compares, 

and visualizes precipitation time-series data at point or catchment locations using methods 

that eliminate the need for interaction between user and computer code. Many studies have 

compared gridded precipitation datasets to gauge data for use in modeling projects (Behnke 

et al., 2016; Gao et al., 2017; Muche et al., 2019; Sun et al., 2017). Oftentimes, one chooses 

a gridded dataset that best matches local station data. HMS-PCAT provides visual and 

statistical comparisons of precipitation sources to inform modelers about datasets to use in 

environmental modeling projects. In a demonstration of the tool, we showcase its ease of use 

Sitterson et al. Page 3

Environ Model Softw. Author manuscript; available in PMC 2021 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://www.waterqualitydata.us/portal/
https://www.waterqualitydata.us/portal/


by downloading data and performing additional comparisons. We used the tool to investigate 

the differences and variability between datasets and regions in the US. Threshold values 

indicating light, wet, heavy, and very heavy precipitation intensities, as well as the 

differences in maximum values, were explored to analyze the ability to capture extreme 

events across multiple datasets. This data retrieval and evaluation tool will aid in gathering 

and preprocessing precipitation input data for environmental modeling projects.

2. Hydrologic Micro Services description

Historically, legacy models have worked independently to solve specific questions. Most do 

not have efficient automated input data provisioning services, resulting in modelers having 

to spend more time on input data gathering and preprocessing rather than analyzing outputs. 

Environmental modeling is moving forward to meet the needs of multimedia platforms and 

interoperability between new data and models. To understand why results differ between 

models, transparency of the methodology and reproducibility of data are needed. We 

developed a hydro-informatics platform called Hydrologic Micro Services (HMS) to address 

the importance of interoperability, transparency, reproducibility, and efficiency in 

environmental modeling (Parmar et al., 2018).

HMS was created to break down barriers of old models and datasets that are constrained by 

legacy formats and connect them to newer formats, advanced models, and workflows. The 

motivation was to address problems of the hydrology and water quality modeling 

community. We developed HMS for users in private, public, and academic sectors at the 

local, state, and federal levels. The HMS platform is a collection of hydrology and water 

quality data provisioning web services and modeling components. Data provisioning web 

services purvey raw data through online script requests for hydrologic parameters including 

precipitation, air temperature, solar radiation, soil moisture, evapotranspiration, surface and 

subsurface flow, and runoff. A component is a distinct software module that users can 

incorporate and link into existing models. For example, components that have been 

incorporated and compiled into HMS include Normalized Difference Vegetation Index 

(NDVI), sediment diagenesis, eutrophication, and kinetic transformation of nutrients and 

chemicals. HMS enables users to rapidly characterize the hydrology of a watershed, 

reducing their time on data gathering and preprocessing, and easily parameterize model 

workflows. A web service of the HMS platform is the Precipitation Comparison and 

Analysis Tool (HMS-PCAT), which is the focus of this paper. HMS-PCAT provides an 

intuitive online interface for precipitation data source exploration and data download, 

irrespective of computing platforms or coding languages (Parmar et al., 2018).

HMS-PCAT facilitates precipitation data access, retrieval, preprocessing, and comparison 

statistics computations for environmental modeling so more time can be spent analyzing 

model results. The tool is a workflow composed of web services provided by HMS that 

automates accessing and downloading precipitation time-series data from their original 

sources and compiles comprehensive statistics and metadata. We developed HMS-PCAT to 

harmonize precipitation data from multiple sources with different data retrieval protocols, 

formats, spatial and temporal resolutions, and time references. The following sections 

introduce the software design, precipitation data sources that were implemented, how the 
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data is processed automatically, and challenges we faced while creating the tool. HMS-

PCAT provides precipitation information to fill knowledge gaps for effective water resource 

management.

2.1. Software design

We designed and developed HMS-PCAT as an assembly of data provisioning web services 

that provide a consistent way to access precipitation data across disparate sources with 

different formats, resolutions, and access protocols. HMS-PCAT is accessible by browser 

and integrates internal and external web services to provide data processing, geospatial, and 

statistical computations that create an accessible database (Fig. 1). The underlying web 

services have been implemented as Representational State Transfer Application 

Programming Interface (RESTful API) over Hyper Text Transfer Protocol (HTTP). This 

approach allows components to communicate over standard internet protocols by removing 

obstacles associated with heterogenous programming languages and operating systems. The 

tool’s browser-based user interface was built with standard programming languages (HTML/

JavaScript/CSS). The user interface implements several cases for pulling and comparing 

precipitation data. Each case requires three types of inputs: location, temporal extent and 

aggregation level, and gridded-data source for comparison. Upon receiving this input from 

the browser- based website, each aspect of the input object is validated for accuracy by the 

HMS server and a task is created. The HMS server distributes the information to appropriate 

internal services to pull data from external cloud services (Fig. 1). The internal services 

perform a series of operations on the data including: unit and time zone conversions, 

aggregation of data into the requested time interval, management of missing data, 

calculations of relevant statistics, and compiling of metadata. A database temporarily stores 

the data until retrieval is finished. Final numerical analysis and comparisons are performed 

before the time series dataset is returned to the web browser. The interoperable and readable 

time series output file can be downloaded as JavaScript object notation (.JSON) or a comma 

separated value (.CSV) file or viewed through the user interface as an interactive line graph. 

Downloading time series data allows users to transfer data across multiple models and 

infrastructures, as well as edit and perform additional statistical analyses or interpretations.

2.2. Precipitation Data Sources

Data from federal agencies such as NASA, NOAA, and USDA are frequently cited as 

sources of precipitation data used in environmental modeling (Behnke et al., 2016; Gao et 

al., 2017; Golden et al., 2010; Muche et al., 2019). Five precipitation datasets; four 

interpolated and gridded, and one set of collected data, of the conterminous US are 

implemented in HMS-PCAT (Table 1). Additional datasets will be added in later 

development of the tool. Spatial coverage and grid resolutions of the precipitation data 

sources are shown in Fig. 2. A brief description of each precipitation source implemented in 

HMS-PCAT is presented below.

2.2.1. NLDAS and GLDAS—The North American Land Data Assimilation System 

(NLDAS) combines North American radar data, Climate Prediction Center gauge data, and 

satellite data from the Climate Prediction Center Morphing Technique (CMORPH). NLDAS 

has an hourly time step with data across North America available from 1981 to the present, 
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with a maximum time lag of four days (Rodell, 2019). The Global Land Data Assimilation 

System (GLDAS) combines satellite data and ground-based observational data covering 

Earth between 90° north and 60° south (Rodell, 2019). GLDAS data are given every 3 h and 

take at least a month to process. GLDAS data exist in two different time ranges: Version 1.0 

contains data from 1948 to 2010, and Version 2.0 containing data from 2010 to the present. 

If a data request covers both ranges, HMS-PCAT will gather both versions and combine the 

data. Both NLDAS and GLDAS data are provided in the Greenwich Mean Time (GMT) 

zone, which is then converted to local time in the HMS-PCAT algorithm. NLDAS is 

provided in kg m−2 h−1, which HMS-PCAT converts to mm h−1, given the conversion that 1 

kg m−2 is equivalent to 1 mm of water thickness. Units for GLDAS are provided in kg m−2 s
−1, which is aggregated into three hourly data. Both NLDAS and GLDAS data are summed 

to provide daily output in mm d−1. Both sources are publicly available on the NASA web 

service via “hydrology data rods”, which are large volumes of organized time series data in 

an American Standard Code for Information and Interchange (ASCII) text format (https://

disc.gsfc.nasa.gov/information/tools?title=Hydrology%20Data%20Rods). Data can be 

obtained from both NLDAS and GLDAS by querying data rod access endpoints with a 

designated request, using location, time span, and the desired dataset variable as parameters.

2.2.2. PRISM—The Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) provides climatology information by combining ground gauge stations from 

multiple sources and radar products based on digital elevation models. Data cover the 

contiguous US from 1981 to 2017. The database is updated yearly by adding data for the 

complete year. The data are provided in JSON format with default units of mm d−1 in the 

local time zone (Daly et al., 2008). PRISM data are dispensed as a layer containing all data 

within user-specified spatial extents, making data download and extraction slow. HMS-

PCAT calls a web service hosted by Colorado State University for downloading PRISM 

precipitation data as a data rod at a specific location for a faster process (http://

csip.engr.colostate.edu:8083/csip-climate/m/prism/1.0).

2.2.3. DAYMET—The Daily Surface Weather and Climatological Summaries (DAY-

MET) is a dataset of rain gauge data interpolated and extrapolated by the DAYMET 

algorithm (Thornton et al., 2017). The interpolation provides data over Canada, Mexico, the 

United States of America, and Puerto Rico. Daily rainfall is rounded to the nearest whole 

number provided in mm d−1 and is available from 1980 to the latest full year. The extra day 

in leap years are omitted. Data are obtained as a CSV file from a NASA-hosted web service 

by querying a web service with the desired dataset, location, and timespan (https://

daymet.ornl.gov/single-pixel/api/data).

2.2.4. NCEI—This dataset from the National Center for Environmental Information 

(NCEI) provides precipitation data collected and recorded at land-based rain gauge stations 

from the Global Historical Climate Network-Daily (GHCN-D) and the Cooperative 

Observer Network (COOP). NCEI has access to about 53,000 stations worldwide, some with 

data going back as far as 1901 (NOAA, 2017). Start and end years for NCEI stations depend 

upon the specific station. The temporal resolution is hourly, with units in mm and data are 

provided by the station latitude and longitude point. As part of quality control, a flag is 
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placed where there is a missing measurement or data quality inconsistency. NCEI data are 

obtained in JSON format, using the Climate Data Online web service by issuing a request 

along with an access token parameter unique to the user (https://www.ncdc.noaa.gov/cdo-

web/webservices/v2#gettingStarted). Tokens are required by NCEI to access any datasets, 

which can be specified in the request, along with the station ID and time span.

2.3. Data processing

Data processing steps in HMS-PCAT are important for ensuring an accurate comparison of 

datasets. Location, temporal resolution, and time series format for each dataset must be 

consistent to relate precipitation data. The processing workflow within HMS-PCAT involves 

minimal user input with automated discovery, retrieval, and evaluation of precipitation data 

on the software side. The user inputs a location and date range, then chooses a temporal 

aggregation method and desired gridded data sources (Fig. 3). Additional details on input 

combinations are discussed later. The tool lets users save time on data retrieval and data 

processing by automating the procedure as follows:

1. Validates user input and sends requests to source websites

2. Pulls data for location and specified time period

3. Aggregates data into specified temporal aggregation algorithms (daily, monthly, 

annual, extreme event) in local time zone and flags missing data

4. Merges all individual datasets into one data file

5. Computes statistics and metadata

6. Provides data visualizations on web page

7. Formats data for export or incorporation into other modeling components

Location input can be retrieved by (1) National Hydrography Dataset (NHDPlus V2) 

catchment identifier (COMID) or (2) NCEI gauge station identifier (Station ID). If Station 

ID or COMIDs are unknown, a hyperlink is provided to a nationwide map where this 

information can be obtained (Fig. 3). Different combinations of inputs determine how HMS-

PCAT processes data. The combinations for location inputs are: (i) COMID is provided and 

the nearest (to catchment centroid) NCEI station is used, along with gridded data at 

catchment centroid location; (ii) COMID is provided, with nearest NCEI station used with 

spatially aggregated gridded data for the catchment; (iii) COMID and specific NCEI station 

are provided with gridded data at the catchment centroid; or (iv) COMID and specific NCEI 

station are provided with spatially aggregated gridded data for the catchment. For spatial 

aggregation of gridded data, an external service call is made to the EPA Waters cloud service 

(https://www.epa.gov/waterdata/waters-web-services) to obtain a polygon shapefile for the 

catchment corresponding to the provided COMID. The polygon shapefile is overlaid on the 

respective grid of the data source and a calculation to provide area averaged data is made. 

For options (i) and (ii), the search range is expanded until a station with data are found if the 

closest NCEI station does not have precipitation data for the specified time-period. The 

system gives an error if no suitable station is found within one latitude/longitude degree.

Sitterson et al. Page 7

Environ Model Softw. Author manuscript; available in PMC 2021 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://www.ncdc.noaa.gov/cdo-web/webservices/v2#gettingStarted
https://www.ncdc.noaa.gov/cdo-web/webservices/v2#gettingStarted
https://www.epa.gov/waterdata/waters-web-services


Temporal resolution varies from one data source to another, as shown in Table 1; thus, a 

temporal aggregation algorithm is necessary to compare data sources one-to-one. The 

temporal aggregations automatically format the data to cover complete years within the 

specified start and end year, and include daily, monthly, annual, or extreme precipitation 

event (Fig. 3). If the extreme precipitation event is chosen, two user specified threshold 

values are required: one for rainfall accumulation for the previous five days and one for the 

sixth day amount. In all temporal aggregations, data covers January 1st of the start year to 

December 31st of the end year.

To format the data, HMS-PCAT software builds a request to external web services using 

unique access tokens to identify and pull data using the location and start/end dates. The 

request is processed, and a time series is produced by shifting time data to the local time 

zone if required. Time series from other data sources are unified with the NCEI time series. 

Missing or invalid data are flagged and given a −9999 value and formatted into a data 

structure. Statistical calculations are automated using the Math.NET library. Flagged 

missing data points are excluded from all datasets in the comparison statistics. These 

calculations and missing or invalid data flags are documented in the tool metadata for 

transparency. To create a time series output, a column was generated for each dataset and a 

row for each temporal aggregation specified. Metadata is at the end of the time series which 

includes the summary statistics performed on the time series. The time series is exportable 

as JSON or CSV.

2.4. Challenges

HMS-PCAT addresses many difficulties modelers face in recovering and handling 

precipitation data. We were confronted with a series of challenges in the creation of this tool. 

The US EPA firewall prohibits certain external website domains from being accessed (Fig. 

1). This required a firewall exception to be made by our IT services, so that data source 

websites could be accessed. HMS-PCAT has a limited number of precipitation data sources 

(Table 1). Each data source has its own limitations and challenges associated with its 

integration into HMS-PCAT. Some are not publicly available, are not formatted as web 

services, or do not have the necessary metadata information. Another challenge we 

encountered was source websites that limit the number of data requests that can be 

completed within a given time range. Delay functions and unique access tokens were used to 

meet website conditions. Examples are the large requests for GHCN-D data covering 

multiple years which are broken up into smaller delayed requests and combined 

programmatically in HMS-PCAT.

The data processing workflow in HMS-PCAT is affected by inconsistency in how 

precipitation sources handle leap years and missing data. For leap years, data obtained from 

NLDAS, PRISM, and NCEI provide all 366 days, while GLDAS requests contain data for 

February 29th and eliminate December 31st to maintain 365 days. DAYMET simply ignores 

the leap day and treats the leap year as having only 365 days. To maintain 366 days per leap 

year for each data source, HMS must adjust the leap year data to include February 29th and 

append a zero-value day to December 31st. By addressing this, data aggregation becomes 

more streamlined and datasets can be compared more accurately. Dealing with missing 
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values and how they are represented in each data source is challenging because users want a 

seamless time series. Adding a −9999 value to every missing or invalid data point in each 

dataset addresses discrepancies among precipitation sources.

3. PCAT demonstration

HMS-PCAT can be used to download data for a time series analysis, data visualization, and 

comparison for initial observations, and as decision support when choosing a precipitation 

dataset. The tool accesses precipitation data from external websites, performs temporal 

aggregations; computes statistics; produces tables and graphs for data visualization; and 

prepares data files for user download or integration with other existing services. One 

example of using HMS-PCAT for a dataset retrieval and comparison tool across the 

conterminous US is described in the following sections.

3.1. Study area

We investigated precipitation data over the conterminous US and divided the study area by 

climatic regions according to Bukovsky (2011) (Fig. 4). These regions are simplified from 

Ricketts et al. (1999) ecoregions, and capture important features in regional climate and 

topography (Bukovsky, 2011). They have been used previously to evaluate precipitation and 

temperature data sources over the conterminous US (Behnke et al., 2016; Kampe et al., 

2010). Seventeen NCEI gauge stations closest to the Bukovsky region’s centroid are used in 

our demonstration. Selected stations are Global Historical Climate Network-Daily (GHCN-

D) gauges, with more than 100 years of precipitation data. Except for one station 

(USC00057656 Silverton, CO in the South Rockies which had 11.27% missing days), all 

had a minimum of 90% daily records of precipitation data for the reference period (Table 2). 

The reference period chosen is from January 1981 to December 2017 (37 years) given 

constraints of the gridded datasets.

3.2. Results

Results of using HMS-PCAT to retrieve, compare, and evaluate data from multiple sources 

are presented, as well as examples of downloading the processed data. HMS-PCAT gathered 

all five precipitation sources for each location in Table 2. Data from each region was 

downloaded as a. CSV and combined in a database for additional analysis to demonstrate the 

ease of working with preprocessed data. Comparison statistics calculated by HMS-PCAT 

were extracted from the metadata and validated with external code and data visualizations 

for a regional analysis. The large amounts of data retrieved and downloaded were also 

investigated for variations in regions and datasets on their ability to capture a range of 

precipitation intensity events.

3.2.1. HMS-PCAT data visualization—Data was retrieved using HMS-PCAT by the 

NCEI Station ID and the start and end date for our reference period, with a daily 

aggregation, and choosing all sources for comparison. As a result of the HMS-PCAT web 

service, Fig. 5 is a screenshot of the output provided, including the metadata, an interactive 

time series graph, a table of summary statistics, and the Pearson’s correlation matrix for data 

visualization and comparison. Metadata includes the location where the data was pulled and 
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the number of missing data points. The time series graph shows values recorded by each 

dataset on a given day. Statistics on the datasets include standard deviation, mean, median, 

and percentile values (75th, 95th, and 99th). The Pearson’s correlation coefficient matrix 

demonstrates the linear comparison of the precipitation datasets and does not put weight on 

a ‘reference’ dataset. The heat map of correlation coefficients shows the degree of 

correlation between any two datasets. From these results, we can evaluate variation among 

datasets and start to make decisions on appropriateness of each dataset for a project.

3.2.2. Regional variation—Using the HMS-PCAT data download capability, we 

compared different regions and distinguished the variability of precipitation datasets in 

diverse environments. Of the 17 regions, 11 showed PRISM and NCEI having the highest 

Pearson’s correlation coefficient (above 0.8) from 1981 to 2017 (Figure A1 in Appendix). 

Three regions showed NCEI and DAYMET with the highest correlation. In some regions all 

datasets showed a similar relationship with a correlation of over 0.5 (Fig. 6A the Pacific NW 

region); other regions indicated that some datasets were vastly different from others in their 

ability to record values (e.g., Fig. 6B shows the correlation between NCEI and NLDAS is 

0.19 in the Mid-Atlantic region). The Mid-Atlantic and Appalachian regions had a similar 

relationship with the lowest dataset correlations. Other regions showed higher correlations 

between two gridded datasets, DAYMET and GLDAS. An example is the South Rockies 

region shown in Fig. 6C. The Southern Rockies NCEI gauge station had the highest 

elevation at 2830.1 m and the largest number of missing days (1524 out of 13,514).

3.2.3. Extreme events—To check how well the precipitation datasets capture extreme 

weather conditions, five climate indices (CLIMDEX) described by X. Zhang et al. (2011) 

were used: the single day maximum value recorded, and the number of days precipitation 

(P) is considered light (P < 1 mm), wet (P ≥ 1 mm), heavy (P ≥ 10 mm), and very heavy (P ≥ 

20 mm). These climate indices are commonly used to analyze climate variability (Alexander 

et al., 2006; Behnke et al., 2016; Donat et al., 2013; Muche et al., 2019; Sillmann et al., 

2013). The number of days precipitation classified as light, wet, heavy, very heavy, and the 

maximum value recorded is shown in Fig. 7. By showing each dataset, one can see 

variability in days recorded across the US. DAYMET recorded no days <1 mm, while other 

datasets show more data in this range. PRISM, NLDAS, and GLDAS had a higher 

percentage of data recorded in this range than NCEI in all regions. NLDAS has slightly 

more days recorded as wet, while DAYMET recorded more heavy days compared to the 

other datasets. The Deep South and the Southeast region recorded the most days with very 

heavy precipitation events.

The maximum value recorded is also an indicator of extreme events. Fig. 7E shows the 

maximum daily value recorded by each data source for each region. The same shade of red 

across each row indicates the ability of each dataset to capture the maximum value. The 

Great Lakes region had the greatest variation in maximum recorded event. NCEI recorded 

178 mm as the maximum, DAYMET 126 mm, NLDAS 62.4 mm, GLDAS 102 mm, and 

PRISM 172 mm; this is a difference of 115.6 mm between greatest and lowest maximum 

recorded for the region. The Great Basin and Pacific NW regions showed the least difference 

between the dataset’s maximum recorded value.
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4. Discussion

HMS-PCAT provides easy access to multiple precipitation datasets, both gauge station and 

gridded in one location. This tool is both powerful and efficient for users acquiring data. 

HMS-PCAT software finds the location of gauge stations or catchment identifiers and 

pinpoints its grid for each gridded dataset. The tool pulls the precipitation data from a web 

service, then aggregates the datasets into one file. Quick data comparison on the webpage 

can determine which datasets closely match, using a summary statistics table, Pearson’s 

Correlation Matrix, and an interactive times series plot. Data visualizations and dataset 

statistics are provided on the output page with an option to download the data for further 

analysis. One can use this tool to decide the most appropriate dataset to use, to quickly 

compare datasets, and to gather data for environmental modeling. HMS speeds up data 

gathering by automating tedious discovery, retrieval, and processing procedures. One major 

advantage of HMS-PCAT is that users do not have to maintain and update each resource. 

Using this tool can significantly benefit scientists dealing with data acquisition who are not 

skilled programmers.

We evaluated HMS-PCAT by showing the amount of data it can handle, as well as an 

analysis on the data it produces. We took a closer look into variations of 17 different regions 

within the US and evaluations of precipitation intensity events recorded by each dataset.

4.1. Regional variation

As one would expect, there are regional differences in rainfall amounts. Orographic and 

topographic effects complicate climatic processes in mountainous regions. High elevations 

can be quite different from low elevations and the differences cannot be captured in coarse 

spatial resolutions (Guan et al., 2005). The Mid-Atlantic and Appalachian regions had the 

lowest correlation coefficients, which could be caused by the Appalachian Mountains 

affecting weather patterns. Gridded datasets with fine spatial resolution (PRISM and 

DAYMET) in these regions showed a higher correlation than coarser datasets (NLDAS and 

GLDAS). Spatial resolution may also play a role in the ability to correlate with other 

datasets. PRISM and DAYMET were the highest resolution datasets and showed high 

correlation with NCEI in the Pearson’s matrix (refer to appendix Figure A1); similar results 

were shown in Muche et al. (2019). NLDAS showed low correlations across each region, 

even though it does not have the coarsest resolution. Results of NLDAS bias were shared by 

Behnke et al. (2016). The Pacific NW was the only region with all datasets above a 

correlation coefficient of 0.5 for the reference period.

Interpolation methods of gridded datasets involving gauge data can skew data toward gauge 

records. DAYMET and PRISM were originated using station data (Daly et al., 2002; 

Thornton et al., 1997, 2017). Similar observations have been made between station data and 

PRISM data (Golden et al., 2010; Muche et al., 2019). Having gridded data align with 

station records can benefit users wanting to fill missing data points. Datasets that are not 

independent may introduce unwanted bias in the comparison, which is why we also showed 

general trends in evaluating threshold values and maximum values.
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4.2. Extreme events

Variability between datasets in recording rainfall intensity can have major impacts on model 

results for streamflow and erosion calculations. The maximum daily rainfall amount is 

useful in engineering applications and can show long-term changes in extreme events when 

analyzed on an annual basis (X. Zhang et al., 2011). The Great Lakes region had the greatest 

inconsistency between datasets in maximum recorded amount. How well extreme events are 

captured differs by dataset estimation techniques and methodology. Days with P > 0 and P < 

1 mm, differ dramatically by dataset. DAYMET is unable to account for these low rainfall 

events because the internal algorithm either assumes the day was dry or was rounded to 1 

mm. NCEI had a low percentage of data in this range which is likely due to estimation of 

rainfall amounts by observer bias as described by Daly et al. (2007). The forcing generation 

technique for radar-rainfall estimations used in NLDAS and GLDAS can contribute to the 

high number of days recorded with P < 1 mm (Luo, 2003).

Miscalculations by rain gauges during heavy precipitation events may be due to water loss 

from wind and erratic behavior of mechanical aspects of the gauge (Lanza and Stagi, 2008; 

Molini et al., 2005). Rain gauges frequently underestimate rainfall during large storms (Price 

et al., 2014; Radcliffe and Mukundan, 2017). Gauge stations often include observer bias in 

recorded values through favoring or avoiding some precipitation quantities (Daly et al., 

2007). The South Rockies had the most missing days in the NCEI dataset, which could 

account for low correlations. Regions with low rainfall have gridded datasets that closely 

match the observed dataset, while regions with high rainfall do not agree with the observed 

dataset which can be due to datasets misinterpreting heavy rainfall events.

The Pacific NW is a wet region and has more ‘heavy’ days than the Southwest region which 

is more arid. The Pacific NW had more days considered light, wet, and heavy than the 

Southeast and Deep South regions (Fig. 7), but the overall cumulative sum for those regions 

is higher than the Pacific NW (Figure A2 in Appendix). This results from the amount and 

magnitude of very heavy days. The single day maximum for the Pacific NW is expressively 

lower than the southern regions’ magnitude (Fig. 7). Heavy daily rainfall is a common 

occurrence in the eastern half of the US (Behnke et al., 2016).

5. Conclusion

HMS-PCAT offers a standardized interface for simple access to multiple precipitation 

datasets to save time and resources and to increase the efficiency and quality of modeling 

projects. The tool is publicly available at https://qed.epacdx.net/hms/workflow/

precip_compare/ and provide an email address to request a user ID. We will continue to 

update the HMS platform to provide additional services and components as research and 

development continues. HMS-PCAT can be used as a data evaluation tool for data source 

selection by showing comparison statistics between datasets on a web interface. Being able 

to quickly view multiple precipitation datasets and their summary statistics can enable users 

to make well informed decisions on selecting their data source for research or modeling 

projects. Further applications of the tool and its use in environmental modeling will be 

investigated. HMS-PCAT overcomes challenges faced when retrieving and processing 

precipitation data. It aids in improving environmental modeling efforts related to water 
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resource research by providing public access to multiple precipitation datasets in an 

interoperable format and automates data processing and calculations.
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Appendix

Supporting Material for Regional Variation

HMS-PCAT gathered five precipitation sources (NCEI, NLDAS, GLDAS, DAYMET, 

PRISM) in 17 locations for the 1981 to 2017 reference period. Data were evaluated through 

external code. Data visualizations on variations between precipitation datasets for regions of 

the United States were performed. In support of results in section 3.2.2, the variation 

analyses for all regions are presented.
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Fig. A1. 
A Pearson’s correlation matrix for each of the 17 regions studied. Pearson’s correlation 

coefficient matrix demonstrates the linear comparison of the precipitation datasets. Darker 

red indicates a high correlation between two datasets while darker blue shows low 

correlations.
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Fig. A2. 
Cumulative sum graphs of precipitation in each region, starting at year 1981 and going to the 

end of 2017. NCEI is shown in blue, DAYMET is green, NLDAS is red, GLDAS is purple, 

and PRISM is yellow.
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Fig. 1. 
Infrastructure diagram of the web services in HMS-PCAT. The web client communicates 

with internal services to pull data from external cloud services. Pulled precipitation data are 

compiled and temporarily stored in a database before final analysis is performed on the data 

and sent back to the web client.
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Fig. 2. 
Spatial resolution of precipitation datasets used in HMS-PCAT showing DAYMET at 1 km, 

PRISM at 4 km, NLDAS at 0.125-degree, and GLDAS at 0.25-degree grids in the state of 

Vermont, USA. NCEI GHCN-D gauge station locations are shown as points. Image based on 

Golden et al. (2010).
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Fig. 3. 
Screenshot of the HMS-PCAT user interface for data request and processing. Data will be 

pulled and compared to the selected NCEI station ID for the start and end year for each data 

source selected on a daily time step.
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Fig. 4. 
The 17 Bukovsky regions of the conterminous US and the point locations of GHCN-D 

stations closest to the region centroid utilized in this demonstration of HMS-PCAT.
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Fig. 5. 
Output page screen shot of HMS-PCAT showing data and results pulled from all five sources 

at the Pacific NW region station ID GHCND:USC00351862 from January 1981 to 

December 2017.
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Fig. 6. 
The Pearson’s correlation matrix calculated by HMS-PCAT shows how each dataset 

compares to others in the Pacific NW (A), Mid-Atlantic (B), and South Rockies (C), 

respectively, from right to left.
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Fig. 7. 
Data from HMS-PCAT were used to calculate the total number of days out of the 37-year 

(13,514 day) time frame for threshold values of precipitation (P). CLIMDEX threshold 

indices are categorized by precipitation as (A) light, P <1 mm; (B) wet, P ≥ 1 mm, (C) 

heavy, P > 10 mm, and (D) very heavy days, P > 20 mm. Single day maximum precipitation 

value recorded in mm is shown in panel E.
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