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Abstract
Although correlation network studies from co-expression analysis are increasingly popular,

they are rarely applied to proteomics datasets. Protein co-expression analysis provides a

complementary view of underlying trends, which can be overlooked by conventional data

analysis. The core of the present study is based onWeighted Gene Co-expression Network

Analysis applied to a glioblastoma multiforme proteomic dataset. Using this method, we

have identified three main modules which are associated with three different membrane

associated groups; mitochondrial, endoplasmic reticulum, and a vesicle fraction. The three

networks based on protein co-expression were assessed against a publicly available data-

base (STRING) and show a statistically significant overlap. Each of the three main modules

were de-clustered into smaller networks using different strategies based on the identifica-

tion of highly connected networks, hierarchical clustering and enrichment of Gene Ontology

functional terms. Most of the highly connected proteins found in the endoplasmic reticulum

module were associated with redox activity while a core of the unfolded protein response

was identified in addition to proteins involved in oxidative stress pathways. The proteins

composing the electron transfer chain were found differently affected with proteins from

mitochondrial Complex I being more down-regulated than proteins from Complex III. Finally,

the two pyruvate kinases isoforms show major differences in their co-expressed protein net-

works suggesting roles in different cellular locations.

Introduction
Large-scale quantitative proteomic analysis acquired under different conditions has been used
to gain deeper insight into protein function and regulation [1, 2]. One widely used approach
consists of comparing the level of expression of a given protein between different conditions
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and to determine whether or not the difference between the various groups is meaningful
based on statistical analysis [3]. The following step, which consists of assigning a biological
function context to the proteomics data or identifying key molecular targets, remains a chal-
lenging task. Correlation within gene expression (i.e. co-expression analysis) has been used to
extract biologically meaningful information from different data sets [4, 5], but has rarely been
used on proteomics data with the exception of the work of Gibbs et al 2013 [6].

Here, we have used different topologically-based strategies to divide the main list of identi-
fied proteins into different modules by first using a Weighted Gene Co-expression Network
Analysis (WGCNA) developed by the Horvath group [7, 8]. These modules were, in turn,
separated and broken down into clusters and sub-clusters using MCODE [9] and hierarchical
clustering was applied to the protein expression patterns. As these approaches rely solely
on expression profiles without priory functional knowledge, we then employed several
knowledge-based tools to both verify and assign biological relevance to the observed sub-clus-
ters of data. We compared the protein-protein interaction networks generated de novo using
WGCNA against predicted networks for the same subset of proteins using STRING [10, 11]
which clearly shows a significant overlap between the WGCNA analysis of the proteomics data
and STRING.

In this study, we present a protein co-expression analysis of the dataset for glioblastoma
multiforme previously acquired and published by Deighton et al. [12]. Our new findings sup-
port these previous observations. In addition to the previous findings from this study, we have
highlighted three major modules of co-expressed proteins that are associated with specific
membrane structures; the mitochondria, the endoplasmic reticulum (ER), and vesicle mem-
branes. We show that within these modules, we can generate protein networks, which are simi-
lar to protein interaction networks predicted by data-mining from the literature without using
an immunoprecipitation approach or native gel separation.

In addition to a major disruption of the Electron Transfer Chain (ETC) observed in the
tumour samples, we show that the proteins composing each of the main ETC complexes (Com-
plex I to IV) are mostly co-expressed but that each of the complexes are affected differently. In
the ER, the unfolded protein response as well as the oxidative stress pathway are up-regulated.
Furthermore, two isoforms of Pyruvate kinase (PKM) (isoform M1 and isoform M2) were dif-
ferentially co-expressed with a high PKM2/PKM1 ratio supporting aerobic glycolysis (a hall-
mark feature of cancer) at the expense of oxidative phosphorylation (most likely inefficient due
to the disruption of the ETC). While the M2 isoform seems poorly co-expressed with other
proteins, the M1 isoform is part of a more defined network which is involved in ion transport,
cellular response to insulin stimulus, glutamate secretion as well as syntaxin binding. In this
study, we show that the use of a weighted protein co-expression analysis provides a level of
information about protein interaction networks which is not possible to obtain using a stan-
dard data analysis approaches.

Methods
The data used were the quantitative proteomics data from a glioblastoma multiforme study
conducted by Deighton et al. [12]. All protein identities are publically available through PRIDE
(http://www.ebi.ac.uk/pride) PRD000620 and the label-free quantitation output presented in
S1 Table. In that study, 6 controls and 6 tumour samples were used. A mitochondrial extraction
was performed, the samples were trypsinised, followed by a shotgun proteomics analysis. The
quantitative analysis was performed using Progenesis (Non Linear Dynamics, UK). The MS
data for this present study were searched against a human RefSeq database (34 284 sequences)
using Mascot (version 2.4.1), Matrix Sciences), with a significance threshold p< 0.05 in

Protein Co-Expression Analysis of GlioblastomaMultiforme

PLOSONE | DOI:10.1371/journal.pone.0161828 August 29, 2016 2 / 22

http://www.ebi.ac.uk/pride


addition to peptide ion score cut-off of 20. Each analysed protein needed at least 2 identified
peptides. Conversion from RefSeq to gene symbol was performed using the biological DataBase
network (bioDBnet) [13].

Label-free intensity data were ArcsinH transformed prior to analysis as log transform of 0 is
not ideal. A simple trait matrix was built as follows; the parameter “state” was a single number
defined as “1” for disease and “0” for control. The RWGCNA package [7] was used to perform
the analysis of the data set. The Topological Overlap Matrix (TOM) was created using a cut
height of 0.25 and a minimummodule size of 30. The analysis produced five modules, identi-
fied with different colours (‘brown’, ‘turquoise’, ‘blue’, ‘grey’ and ‘yellow’) with the ‘grey’mod-
ule containing all proteins that were not sorted to any of the other modules shown in Table 1.
A hard threshold approach was used for comparison purposes where:

aij = corr(proti, protj)
β The correlation aij between the ArcsinH intensity of the protein proti

and protj is measured. The factor β is a thresholding parameter, for hard thresholding, we used
a β of 1 only for validation purposes (for FDR evaluation by comparing the same dataset
against a randomised one). For the remainder of the study, we used a β of 10, justified from S1
Fig which corresponds to the lowest value showing a good scale-free topology.

Selected groups of proteins were exported to the online Gene Ontology enRIchment anaLy-
sis and visuaLizAtion tool (GOrilla) [14] with the gene names of each individual module used
as a target set and those of the remaining modules used as a background set for the enrichment.
The network data were exported to Cytoscape v3.2.1 [15], with the corresponding WGCNA
function [8] where they were visualised. “Hub” clusters were defined using MCODE v1.4.1 [9].
Default suggested parameters were used.

Protein interaction networks for each module were generated from co-expression similarity
using WGCNA. The same set of proteins was then clustered into a network using STRING v10
using specific confidence parameters presented in table [10, 11]. The two generated networks
were then compared using “Network Analysis Tool” (NeAT) [16] with default parameters, ran-
domisation was based on the Erdos-Renyi method. The WGCNA networks were used as the
‘Query’ networks and those from STRING as the ‘Reference’ networks. For both network
types, different cut-off points were tested and are described in Table 2.

Table 1. GO term enrichment assignments for the five main clusters.

Module GO GO Term Description P-value FDR

Category q-value

Blue Process GO:0022900 electron transport chain 1.04E-26 2.98E-23

Function GO:0008137 NADH dehydrogenase (ubiquinone) activity 3.74E-15 4.85E-12

Component GO:0044455 mitochondrial membrane part 2.93E-25 2.10E-22

Brown Process GO:0006397 mRNA processing 4.28E-08 2.44E-04

Function GO:0003676 nucleic acid binding 7.16E-11 9.29E-08

Component GO:0005783 endoplasmic reticulum 1.06E-06 7.62E-04

Turquoise Process GO:0007268 synaptic transmission 4.89E-08 2.79E-04

Function GO:0030276 clathrin binding 5.95E-05 3.86E-02

Component GO:0097458 neuron part 4.80E-14 3.45E-11

Yellow Process NO ENRICHMENT FOUND

Function NO ENRICHMENT FOUND

Component GO:0005739 mitochondrion 4.37E-10 3.14E-07

Grey Process NO ENRICHMENT FOUND

Function NO ENRICHMENT FOUND

Component NO ENRICHMENT FOUND

doi:10.1371/journal.pone.0161828.t001
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Hub proteins were associated with proteins having a number of interactions which was two-
fold greater than the standard deviation above the average number of interactions found in a
specific module (i.e. z-score above 2). A hierarchical clustering of protein intensity was applied
on the largest clusters generated from MCODE for each of the module networks using R ver-
sion 3.1 GPLOT package and Ward’s method. Sub-clusters were then generated and their
nature analysed using ToppCluster [17] for comparative analysis. Additionally, the clusters
were analysed using the database of differentially expressed proteins in human cancers,
dbDEPC 2.0 [18]. Fig 1 illustrates the overall data analysis platform used for this work and the
number of proteins associated to each of the modules.

Results

Defining the different modules
It has been previously described that peptide and protein interaction networks possess a scale-
free network topology similar to those found in gene co-expression networks [6, 19]. The glio-
blastoma dataset from Deighton et al. [12] is composed of a set of 799 proteins identified with
at least two peptides (presented in S1 Table). As shown in S1 Fig, a power of β = 10 has been
extracted from the original data and used for further analysis.

The overall data analysis strategy used in this work is presented in Fig 1. A series of data
analysis tools, based on either network topology characteristics or literature knowledge was
used to cluster groups of proteins. One possible concern with the use of the Deighton et al (10)

Table 2. Different cut-off combinations for comparing between networks generated usingWGCNA and STRING prediction.

WGCNA STRING

Module name1 Cut-off2 Cut-off3 P-value4 Jaccard5

Brown 0.3 0.4 1.40E-32 0.0871

0.7 5.50E-20 0.081

0.2 0.4 6.10E-63 0.1029

0.7 4.00E-53 0.0693

0.1 0.4 3.50E-47 0.0681

0.7 1.40E-40 0.0377

Turquoise 0.3 0.4 1.20E-12 0.048

0.7 2.10E-11 0.0289

0.2 0.4 1.70E-15 0.0455

0.7 1.60E-13 0.024

0.1 0.4 2.30E-14 0.0427

0.7 4.00E-11 0.0206

Blue 0.3 0.4 0.00E+00 0.2209

0.7 0.00E+00 0.1767

0.2 0.4 6.00E-289 0.1631

0.7 2.40E-221 0.1137

0.1 0.4 1.20E-154 0.1206

0.7 5.30E-141 0.078

1) Different Modules extracted using WGCNA.

2) Threshold values for pair-wise protein co-expression (Pearson correlation^10).

3) Confidence score cut off to generate protein-protein network in STRING (http://string-db.org/).

4) p-value calculated for the overlap of the 2 protein networks (fromWGCNA and from STRING) using NeAT.

5) Jaccard similarity coefficient: size of the intersection divided by the size of the union of the sample sets

doi:10.1371/journal.pone.0161828.t002
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dataset for network analysis is its rather small size (a 2 group comparison with 6 replicates
only) where normally datasets of at least 25–30 samples are commonly used for co-expression
analysis (4). We have estimated the false discovery rate (FDR) by using a permutation
approach as described elsewhere [20, 21]. Hierarchical clustering of the pair wise correlation

Fig 1. Workflow illustrating the analysis performed.On the left, the step-wise protein list fragmentation is illustrated. On the right, the different
bioinformatics tools used are described. The number of proteins per group are presented and coloured using theWGCNA colour coding. The
names associated to the sub-clusters are illustrated on the right side of each sub-Clusters.

doi:10.1371/journal.pone.0161828.g001
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coefficient was evaluated first using a thresholding parameter of β = 1, shown in Fig 2A each
row and column are represents proteins, the colour purple is associated with clusters having a
high correlation coefficient, and white is associated to a high anti-correlation coefficient.

Fig 2. Evaluation of the confidence in the protein pair-wise measured correlation coefficient. Fig 2A hierarchical clustering of the protein
pair-wise correlation coefficient for a β = 1; in Fig 2B, correlation coefficient evaluated after intensity randomisation for a β = 1. Fig 2C Distribution
of the correlation coefficient from direct correlation in turquoise (extracted from Fig 2A) or after intensity randomisation in blue (extracted from Fig
2B). Fig 2D is the ratio false positive hits versus measurements obtained in the dataset. A correlation coefficient of 0.754 and above indicates
positive correlation while -0.728 and less for negative correlation corresponds to a ratio of false positive below 5%. In Fig 2E the same
measurements as in 2C in the case of a soft threshold β = 10. In Fig 2F, a false positive rate equal to or below 5% corresponds to a value of
0.0993 and above.

doi:10.1371/journal.pone.0161828.g002
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Protein intensities were also randomly permutated and the same clustering method was used
once again (shown in Fig 2B). As expected, a significant decrease in the level of correlation is
observed. The plot of the distribution of the correlation coefficients for both datasets (the direct
dataset and the randomised one) is shown in Fig 2C. The randomised dataset is centred around
0 (blue) while the normal dataset (turquoise) exhibits two distributions roughly centred on 0.5
and -0.5 associate to either correlated or anti-correlated pairs or proteins, respectively. We
have evaluated the FDR for different correlation coefficients and a FDR of 5% was calculated
for a correlation coefficient of 0.754 and above and values of -0.728 and less for meaningful
anti-correlation (Fig 2D). A similar calculation was performed using a β = 10 (Fig 2E), a FDR
of 5% was found for value an aij of 0.0993 and above (Fig 2F).

The initial analysis was based on the WGCNA package for R [7, 8]. Fig 3 shows the Topo-
logical Overlap Matrix (TOM) plot applied to the dataset from Deighton et al. [12]. Each row
and column represents proteins. The colours red and yellow indicate the high and low
weighted correlation values, respectively, and are assigned by the TOM-based dissimilarity
between each protein co-expression level. Each of the five modules, represented by the col-
oured bar on the top and left of the matrix (blue, yellow, brown, turquoise, and grey), are asso-
ciated to set of proteins sharing a high value for co-expression level. Only 18 proteins did not
cluster into a module and were allocated to the grey module. The turquoise module is the larg-
est one, containing 272 proteins, followed by the blue module with 256 proteins, the brown
module with 177 proteins, and the yellow module with 76 proteins (illustrated in Figs 1 and 3).

Similar to gene expression patterns, proteins within a given module are co-expressed with
higher correlation than with proteins from different modules. We then asked if those proteins
which are part of the same cluster share some similarities in terms of biological function. To
address this, we performed a Gene Ontology (GO) enrichment analysis for each module. The
proteins from each cluster were analysed using Gorilla.

Table 1 shows the results of the GO enrichment analysis. Both, the yellow and the grey mod-
ules do not show any major functional enrichment. On the other hand, the three other modules
clearly show significant GO terminology enrichment. They represent primarily three different
components, the blue module being associated with the mitochondrial membrane part (q-
value of 2.10e-22), the brown module being associated with the ER (q-value of 7.62e-4) and the
turquoise module being associated with the neuronal part/membrane vesicles (q-value of
3.45e-11), suggesting that the proteins from a given cellular location have similar function and
display a higher degree of co-expression.

The five main protein modules were then correlated to phenotype data (trait matrix) to high-
light possible trends. This step was performed in order to identify possible links between the clus-
ters of proteins and higher-level information. The phenotype information is presented in S2 Table.
Fig 4 is a heatmap showing the correlation between the five modules and three different traits. The
traits used for correlation were general traits (age and gender of patient taken fromDeighton et al.
[12] and state (extracted from S2 Table). The numbers within the heatmap squares show Pearson
correlation coefficients quantifying the correlation between the modules and the phenotype traits.
The numbers in brackets are the respective p-values and corrected p-values, respectively.

In the two modules having the lowest functional information (yellow and grey), no signifi-
cant correlations were found. No significant correlation was found with Age and Gender for
any of the modules. The brown module (ER) is anti-correlated to both the blue (mitochondrial
membrane) and turquoise modules (membrane vesicles). The brown module shows a high
level of correlation with the state (i.e. control = 0, tumour = 1) (r = 0.93). These results indicate
that the proteins within the brown module are mostly up-regulated in glioblastoma tumour
samples. The turquoise module shows strong anti-correlation with state whereas the blue mod-
ule shows a similar, but less pronounced anti-correlation with the state.
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Validating the protein networks generated fromWGCNA
High values of co-expression between two proteins may be predictive of protein- protein inter-
actions. In order to assess the validity of the interactions generated with the presented analysis,
the networks that were generated using WGCNA were compared with networks of known
interactions obtained from STRING for the same protein dataset. The statistical comparison
between the two different approaches was performed using the Network Analysis Tool NeAT
(see Materials and Methods section for detailed description). Table 2 shows the results of the
comparison betweenWGCNA and STRING outputs for different threshold values. The Jaccard
coefficient was used to determine the similarity between two sample sets.

Fig 3. Clustering of the proteomic label-free analysis of glioblastomamultiforme. The data shows five major
clusters. The clustering heatmap was created using a soft thresholding of β = 10 on the entire proteomics dataset. Data
clustering and module membership generation are described in Materials and Methods. The scale ranges from yellow to
red, with yellow demonstrating low topological overlap and red representing high topological overlap.

doi:10.1371/journal.pone.0161828.g003
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A combination of different parameter thresholds for both the WGCNA analysis and
STRING was tested in order to optimise the best overlap of the two independent approaches to
predict protein-protein interactions (illustrated in Table 2). The parameter threshold for
WGCNA is the minimal threshold Pearson’s correlation coefficient of co-expressed paired pro-
teins. The STRING score is defined as the confidence in the interaction between two protein
nodes. Different combinations of parameters have been used and their effect on network over-
lap (Jaccard coefficient) and prediction quality (shown by p-value) is shown in Table 2. In addi-
tion, we have evaluated the similarity between the STRING output and a randomised pairing
(using the same node but having randomised the same number of edges predicted by WGCNA
for a given cut-off). The chosen combination of cut-off was based on several factors including
minimal p-value and Jaccard score as shown in Table 2 and the highest difference in p-value
obtained between the WGCNA and a randomised similar data set against STRING.

The best threshold combination appears to be 0.3 (associated to a FDR of 0.5% and less) for
WGCNA and 0.4 for the confidence score generated by STRING (expressed as 0.3/0.4 pair in the
text), which gives the higher Jaccard value for the blue and turquoise modules. On the other hand,
for the brown module the optimal threshold combination seems to be 0.2 for WGCNA(which is
associated to a FDR of 1% and less) and 0.4 for the confidence score in STRING (0.2/0.4 pair).
However, more pronounced differences betweenWGCNA prediction and a random dataset were
observed with a cut-off of 0.2/0.4 for the brown and turquoise modules. We have calculated a p-
value of 6e-289 for the blue module against STRING, whereas a randomised dataset under the
same condition had a p-value of 1.2e-13. In the brownmodule, we measured a p-value of 6.1e-63,
whilst a random dataset generated a p-value of 9.1e-9. In the turquoise module we observed
1.2e-12 whilst a randomised dataset generated a p-value of 3.3e-7. Although low p-values were
observed with randomised datasets using STRING, they were largely different from what was pre-
dicted with the real dataset. Those highly significant p-values for the random datasets are a

Fig 4. Data-trait correlation between the first principal component (Eigengene) of eachmodule (y-
axis) and the clinical traits (x-axis). All positive correlations are shown in red and the negative correlations
are shown in blue. The correlation coefficients between cells are shown and p-values are displayed within
brackets below the correlation coefficient itself. The modules with the lowest and highest significant p-values
are the brown, the turquoise, and the blue module.

doi:10.1371/journal.pone.0161828.g004
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consequence of a high ratio of number of edges versus nodes. The higher this ratio, the less of an
effect the edge position randomisation has on the predicted network.

In general, the number of interactions predicted by WGCNA was significantly higher com-
pared to what has been reported in STRING. The resulting outcomes are densely interconnec-
ted protein networks. In order to reduce the dimensions of the three main large modules
identified and extract more subtle information regarding their nature, we used other topologi-
cal based tools. MCODE [9], a tool that identifies highly interconnected nodes within a com-
plex network, was used to isolate smaller groups of proteins (which will be referred to as a
“cluster”) within each of the three main modules (blue, brown and turquoise module) and
identify key highly connected proteins (i.e. Hubs). For each module, a major dense cluster was
identified and several minor clusters were also generated (Figs 5, 6 and 7).

Partitioning the modules; cluster and sub-clusteranalysis
Figs 5–7 show network representations of each module. Figs 5A, 6A and 7A are the global net-
works for the brown, blue and turquoise modules, respectively. Coloured in purple are the
highly connected hub proteins for each module (the blue module has no identified protein
hub). In the global network, proteins that belong to the first cluster generated by MCODE (as
presented in Figs 5B, 6B and 7B, respectively) are coloured in green in Figs 5A, 6A and 7A.

The three main clusters in Figs 5B, 6B and 7B were still densely interconnected, with an
overlap of 59 out of 177 proteins for the brown module (33%), 129 out of 256 proteins for the
blue module (50%) and 94 out of 272 proteins for the turquoise module (35%). As those main
clusters represent an important part of each module, they are mostly an enriched version in
terms of function and protein localisation of each module. In addition to those main clusters,
several smaller clusters were as well identified and are described below.

Some smaller clusters for the three modules (see Figs 5C, 5E, 5F, 6D and 6E) showed signifi-
cant GO term enrichment based on GOrilla (node coloured in red). The main terms describing
the most significant enrichment varied in most cases, but were mainly found to be well
described by cellular component and biological process GO terms.

In order to identify subtle variation within each main cluster, we applied hierarchical clus-
tering on the protein intensity for each of the main clusters (i.e. the large clusters in Figs 5B, 6B
and 7B), which highlighted some possible sub-clustering. These heatmaps are shown in Fig 5D
for the brown module, Fig 6C for the blue module and Fig 7C for the turquoise module. Each
of those clusters and sub-clusters were analysed using the comparative tool Toppcluster.

Description of the ER (Brown) Clusters and Sub-clusters. From the initial 177 proteins
composing this module, 154 proteins had at least oneWGCNA co-expression parameter above
0.2 the threshold value we used for that clusters/sub-clusters. From those 154 proteins, 87 proteins
are sub-grouped into four clusters. The 67 proteins that did not associate with any cluster were
also not assigned any major biological function. A group of seven proteins were identified as “hub”
proteins, i.e. proteins which are highly interconnected (shown in purple in Fig 5A and 5B). Those
proteins are CAT, PDIA6, CALU, SCP2, TMX1, MYH9, and VIM, of which PDIA6 and TMX1
are involved in disulphide isomerase activity and SCP2, CAT and VIM in peroxisome signalling.

In Fig 5B, the proteins highlighted in red are associated with cell compartment GO termi-
nology “ER”. In Fig 5E, the term used to describe the proteins in red was the GO Cellular Com-
ponent “cell cortex part” (ANK1, SLC2A1, SLC4A1, SPTA1, SPTB) primarily involved with
cytoskeletal protein binding, while the subgroup ANK1, SPTA1, SPTB is also related to biologi-
cal processes associated with the tetrapyrrole and porphyrin-containing compound biosyn-
thetic process. RHD is the only protein not associated with the cell cortex part, but is linked to
the plasma membrane along with the other proteins in this cluster.
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For Fig 5C, the “cell cortex” and “cortical cytoskeleton” are over-represented in the cellular
compartment GO terminology (EZR, FLNA, MAPRE1), the proteins EZR, FLNA, PFN1,
TLN1 are involved in maintenance of protein location while the large group of proteins con-
taining EEF2, EIF4A1, EZR, FLNA, HSPB1, KPNB1, MAPRE1, PFN1, RPL4, SERPINH1 share
the molecular function “poly(A) RNA binding”. The term used to describe the proteins in red
was the GO Function term “nucleic acid binding”. One can notice that two proteins, were not
characterised by the prevalent GO term (i.e., protein TAGLN2 and TLN1 both in blue in Fig
5C). These two proteins are associated with actin binding. However, TAGLN2 is a poorly char-
acterised protein without a determined function.

Fig 5F shows proteins involved in poly(A) RNA binding (APEX1, FUS, HMGB2,
HNRNPA2B1, HNRNPA3, PARP1), and most of the proteins found in this cluster are primar-
ily located in the nucleoplasm (Cellular compartment). They are: APEX1, FUS, H2AFY,
HMGB2, HNRNPA2B1, HNRNPA3 and PARP1. The term used to describe the proteins in red
was the GO Function “DNA binding.”

The main brown cluster illustrated in Fig 5B contains proteins enriched in the ER part, with
proteins involved in ER stress. Some specific domain enrichments were found, such as

Fig 5. Visualisation of the brownmodule using a network generated in Cytoscape. The global network is shown in Fig 5A. The main large cluster
identified by the MCODE application, being coloured in green and the most interconnected (‘hub’) proteins shown in purple. This main cluster extracted
from the brown module is shown in Fig 5B and other secondary clusters identified by MCODE are also shown (Fig 5C, 5E and 5F). In Fig 5B, 5C, 5E and
5F, proteins highlighted in red are associated with a defined GO term assigned by GOrilla. The main cluster as shown in Fig 5B was analysed using a
hierarchical clustering approach based on protein intensity across the tumour (Tu) and the control (Ct) samples and is shown in Fig 5D. Five sub-clusters
were identified and further analysed using Toppcluster.

doi:10.1371/journal.pone.0161828.g005
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Thioredoxin-like fold (EEF1G, P4HB, PDIA3, PDIA4, PDIA6, PRDX4, TMX1) and ER targets
(CALR, HSP90B1, HSPA5, P4HB, PDIA4, PDIA6, PRKCSH). The three main pathways repre-
sented in these data are:

1. mRNA processing (HNRNPA1, HNRNPH1, HNRNPK, HNRNPU, NONO, PTBP1, SFPQ,
TMED10)

2. Protein processing in ER CALR, CANX, CKAP4, DDOST, HSP90B1, HSPA5, P4HB,
PDIA3, PDIA4, PDIA6, PRKCSH, RPN1, STT3A

Fig 6. Visualisation of the blue module using a network generated in Cytoscape. The global network is shown in Fig 6A with the main large
cluster, identified by the MCODE application, being coloured in green. The main cluster extracted from this module is shown in Fig 6B and other
secondary clusters identified by MCODE are also shown in Fig 6D and 6E. In Fig 6B, 6D and 6E, proteins highlighted in red are parts of a defined GO
term according to GOrilla. The main cluster as shown in Fig 6B was analysed using a hierarchical clustering approach based on protein intensity
across the tumour (Tu) and the control (Ct) samples and is shown in Fig 6C. Four sub-clusters were identified. Distribution of the proteins from the five
complexes across the different sub-clusters is shown in Fig 6F.

doi:10.1371/journal.pone.0161828.g006

Protein Co-Expression Analysis of GlioblastomaMultiforme

PLOSONE | DOI:10.1371/journal.pone.0161828 August 29, 2016 12 / 22



3. Calnexin/calreticulin cycle (CALR, CANX, PDIA3, PRKCSH)

The main cluster shown in Fig 5B was separated into five sub-clusters, Br1a to Br1e, of
31,6,8,2 and 12 proteins, respectively (shown in Fig 5D). Mainly the two sub-clusters Br1a and
Br1e generate functional information. The ER parts are found in the Br1a and Br1e sub-cluster
with CALU, CKAP4, DDOST, PDIA4, PRKCSH, RPN1, STT3A, TMED10, TMX1 for Br1a.

Proteins associated with mRNA processing were found in the sub-cluster Br1a (HNRNPA1,
HNRNPH1, HNRNPK, HNRNPU, NONO, PTBP1, SFPQ) and nucleoplasm (HNRNPA1,
HNRNPH1, HNRNPK, HNRNPU, LMNB1, NONO, PTBP1, SFPQ, XRCC5, XRCC6). Inter-
estingly, the pair XRCC5 and XRCC6 were identified, which play a major role in the non-
homologous end joining (NHEJ) pathway [22].

Proteins associated to the cytoplasmic membrane-bound vesicles are unique to the Br1e
sub-cluster (CALR, CANX, HSP90B1, HSPA5, P4HB, PDIA3 and PPIB). In addition, unique
proteins associated to calcium ion binding such as ANXA1, CALR, CANX, HSP90B1, HSPA5
are found in the sub-cluster Br1e which also contains unique proteins involved in response to
ER (CALR, HSP90B1, HSPA5, P4HB, PDIA3). Proteins found in this last subgroup (CALR,
HSP90B1 and especially HSPA5) are well known to be involved in the activation of signalling
protein activity and unfolded protein response (UPR).

Fig 7. Visualisation of the turquoise module using a network generated in Cytoscape. The global network is shown in Fig 7A which contains a large
(Fig 7B) and a small (Fig 7C) network. In Fig 7A, the main large cluster, identified by the MCODE application, is coloured in green and the most
interconnected (‘hub’) proteins are visualized in purple. The main cluster extracted from this module is shown in Fig 7B and a smaller secondary cluster
identified by MCODE is shown in Fig 7D. In Fig 7B, proteins highlighted in red are part of a described biological function according to GOrilla, no specific
enrichment has been found for cluster 7D. The main cluster as shown in Fig 7B was analysed using a hierarchical clustering approach based on protein
intensity across the tumour (Tu) and the control (Ct) samples and is shown in Fig 7C.

doi:10.1371/journal.pone.0161828.g007
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Description of the Mitochondrial (Blue) Clusters and Sub-clusters. From the initial 256
proteins composing this module, 214 proteins have a WGCNA co-expression parameter above
0.2. From those 214 proteins, a group of 147 proteins can be sub-divided into three clusters.
The 67 proteins that are not part of any major cluster are not significantly co-expressed, how-
ever, they did share some biological function such as fibrinogen Complex FGA, FGB, FGG,
FN1 and are parts of the Integrin signalling linked to the MAP kinase pathway by recruiting
Grb2 to the FADK1/SRC activation complex. In contrast to the majority of protein in this
module, this small subset of proteins is up-regulated in the tumour samples.

Fig 6A shows the main module Blue while Fig 6B is associated to the main blue cluster gen-
erated by MCODE. The main cluster in Fig 6B is largely composed of proteins involved in the
‘Electron Transport Chain’. The small cluster (Fig 6E) (HPX, ORM1, SERPINA1, TF) is associ-
ated to the cellular component “extracellular space”. The larger network (Fig 6D) has no signif-
icant functional enrichment according to GOrilla, although STRING significantly associates
(p-value of 2.059e-5) all of its proteins to the extracellular region, except for GLS, CKMT1B
and GDAP1L1. This module also contains three proteins having a thioredoxin fold domain
(GDAP1L1, PRDX1, and PRDX6). The cluster in Fig 6D contains several proteins which have
been associated with a variety of different cancer types including breast cancer which are
WDR1, PRDX1, PRDX6 [23], and HSP90AB1 [24], hepatocellular carcinoma HSP90AB1,
PRDX1, PRDX6 [25], gastric cancer WDR1, HSPB90AB1[26], cervical cancer PRDX1,
HSP90AB1 [27], thyroid cancer HSP90AB1, PRDX6 [28], prostate cancer HSP90AB [29], and
colorectal cancer WDR1 [30].

The main blue cluster from Fig 6B can be separated into four sub-clusters (shown in Fig
6C), Bl1a to Bl1d, consisting of 52, 33, 16, and 28 proteins, respectively. The smallest cluster
(Bl1c) had little biological information deduced. The blue cluster 1 (Fig 6B) is mainly com-
posed of proteins associated to the mitochondrial respiratory chain which, in turn, comprises
Complexes I to V. These different complexes are co-expressed slightly differently and are there-
fore distributed across the four sub-clusters (Fig 6F). The Complex I proteins are mainly found
in sub-clusters Bl1a (18 proteins out of 26 identified in this study), proteins from Complex III
are mainly found in Bl1b (5 out of 7 proteins identified in this study), Complex IV is found
across Bl1b and Bl1d while Complex V is distributed between sub-clusters Bl1a and Bl1d. Only
two proteins from Complex II were identified (SDHA and SDHB) that were not found to be
part of the same sub-cluster.

Description of the Neuronal (Turquoise) Clusters and Sub-clusters. From the initial
272 proteins composing this module, 198 proteins have a WGCNA co-expression parameter
above 0.3. From those 198 proteins, a group of 118 proteins is involved in two clusters. The 80
proteins not part of any major clusters although not significantly co-expressed shared some
biological function such as fatty acid beta oxidation (ACAA2, ACADS, ACADVL, DECR1,
ECI2, HADHA, HADHB), gluconeogenesis (ALDOA, ENO2, PGAM1, SLC25A1, SLC25A13),
and glucose metabolism (ALDOA, ENO2, PGAM1, PKM1, SLC25A1, SLC25A13).

The main turquoise module (Fig 7A) generated both a large and a small network while
using a threshold of 0.3 for the WGCNA coefficient. The large main network (Fig 7A) is com-
posed of proteins involved in different “membrane vesicles” structures whilst the small network
is mostly related to the myelin sheath (CNP, MBP, PLP1, SIRT2). The overall module contain-
ing the “neuronal part” is associated with proteins assigned the terms endocytic vesicles and
cytoplasmic membrane-bounded vesicles with some ATPase and GTPase activity; furthermore,
a subgroup of proteins is associated to glial cell differentiation (CNP, GAP43, MBP, PLP1,
TPPP).

A group of proteins which are highly connected (i.e. Hub proteins; VSNL1, YWHAG,
ATP6V1E1, ATP6V0A1, GNAZ, SYT1, DNM1, ATP6V1A, STXBP1) were identified. Three
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ATPase H+ transporting lysosomal units were found to be quite interconnected and are
involved in several different functions (e.g. ATP hydrolysis coupled proton transport and ferric
ion transport). Three proteins combined with SYT1, DNM1 and STXBP1 are part of the synap-
tic vesicle cycle.

In Fig 7C, the main cluster in 7B has been divided into five sub-clusters of 24, 23, 9, 31, and
7 proteins, respectively, (Tu1a to Tu1e). According to Toppcluster, mainly three sub-clusters
show biological enrichments which are Tu1a, Tu1b and Tu1d. The sub-cluster Tu1a is rich in
proteins involved in ion/cation transport (ANK2, ATP1B1, ATP6V0A1, ATP6V1A,
ATP6V1B2, CAMK2A, CNTN1, NSF, SNAP25, STX1A, STX1B, SYT1, THY1, and YWHAZ).
In addition, proteins from cluster Tu1a have molecular functions associated to SNARE binding
(NSF, SNAP25, STX1A, STX1B, and SYT1).

A group of three proteins from Tu1a is involved in regulation of mitochondrial membrane
permeability (CAMK2A, YWHAG, and YWHAZ). The sub-cluster Tu1b is rich in proteins
involved in pathways associated to coated vesicle membrane and clathrin-coated vesicle
(AP2A1, AP2M1, DNAJC5, SNAP91, and VAMP2), while Tu1d is mainly composed of pro-
teins involved in synaptic vesicle endocytosis and synaptic vesicle recycling (AMPH, RAB3A,
SH3GL2, SNCA, SYNJ1, and SYP).

The data presented in Fig 7D showed no strong functional enrichment after being analysed
by GOrilla, although according to Toppcluster and STRING the following proteins are associ-
ated to protein targeting to ER as biological process: RPL18, RPL7A, RPLP0, and RPN2. Addi-
tionally, STRING identified several proteins as parts of membrane-bound vesicle from this
cluster (CAMKV, CAMK2G, PALM, RPLP0, RAP2A, RPL7A, GSTK1, TUBB2A, AP2A2,
DPYSL2, FTH1, PFKP, DPP6, and AK2).

Pyruvate kinase isoforms co-expression network. The two isoforms of PKM (PKM1 and
PKM2) were identified (Fig 8). While PKM1 was found to be down-regulated and associated to
the turquoise module, the PKM2 isoform was up-regulated and associated to the brown mod-
ule. The direct co-expressed proteins for each pyruvate kinase protein isoform are illustrated in
Fig 8. Twenty-nine proteins were found to be co-expressed with PKM1 while only three
showed co-expression with PKM2 in this study.

Regarding PKM1, the largest group of proteins exhibiting direct co-expression are those
related to the synaptic vesicle cycle (KEGG Pathway): ATP6V0A1, ATP6V0D1, ATP6V1A,
ATP6V1B2, ATP6V1E1, CPLX2, DNM1, NSF, RAB3A, SNAP25, STXBP1, SYT1, and VAMP2.

Several other metabolite-associated groups of proteins were identified, such as proteins
related to cellular response to insulin stimulus (YWHAG, VAMP2, ATP6V0A1, ATP6V0D1,
ATP6V1A, ATP6V1B2, ATP6V1E1, and GOT1), glutamate secretion (VAMP2, SYT1,
SNAP25, STXBP1, and RAB3A), and to syntaxin binding (CPLX2 NAPB NSF SNAP25
STXBP1, and VAMP2).Some of the highly correlated expression profile proteins with PKM1
include guanine nucleotide binding protein (GNAO1) and syntaxin binding protein 1
(STXBP1) for which no known direct interaction has been reported yet. In a similar manner,
the protein cell adhesion molecule 3, CADM3 involve in the calcium-independent cell-cell
adhesion molecules is as well highly correlated with PKM1 but no known relation between
CADM3 and PKM1 has been previously reported. Both cases merit to be explored by studying
the role of both PKM in specific tissues, in this cases, PKM1 role in the synaptic vesicle. For the
PKM2 cluster, no significant term enrichment was found.

Discussion
In the present study, we used a combination of different analytical methods to characterise pro-
tein co-expression measured from a quantitative proteomics analysis. The main method
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(WGCNA) was applied to the Deighton et al dataset [12] and allowed for the subgrouping of
all proteins into five main modules, of these modules, three are associated with membrane-
based organelles. The soft threshold power used in this study (β = 10) is in the same order of
magnitude as that used in previous work [31]. This approach has resulted in identification and
sub-grouping of proteins by their distinct features into three different cellular locations.

Although the dataset is of a modest size (a total of 12 experiments), we have shown that it
was possible to extract valid and meaningful information. We evaluated the FDR for different
correlation coefficient thresholds using the same dataset but with the position of each intensity
for a given protein being randomised. The threshold values selected to generate the different
networks in Figs 5–7 have a FDR of between 0.5% and 1% which is quite conservative. The 3
major modules clearly show significant enrichments thus supporting the validity of the
approach even on small datasets. The networks generated using WGCNA have been compared
to the knowledge-based method STRING and shows the overlap between the two independent
methods to be significant. Thus, we have shown that the use of WGCNA to generate protein
networks de novo without the need for an immunoprecipitation-based approach. These net-
works could not have been generated with the initial type of analysis used in Deighton et al
[12] The over-represented GO term to describe functional enrichment was mainly the cellular
component with the blue module’s proteins being significantly localised in the mitochondria.
The brown module was enriched in ER proteins and the turquoise module enriched in various
types of vesicle membranes. In addition, these abundance of the proteins in these modules

Fig 8. Pyruvate kinase isoformM1 (Left) and M2 (Right) and their respective co-expression networks (direct interactors only).Nodes in
dark blue are the 2 PKM proteins, in pink are proteins defined as HUB proteins from the turquoise Module. The proteins in green are proteins
associated to the larger sub-cluster presented in Fig 7.

doi:10.1371/journal.pone.0161828.g008
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correlated to traits which included the relative increase, or decrease of expression in cancer tis-
sue (Fig 4). The brown module (ER) proteins correlate with proteins that are up-regulated in
tumour samples, while the blue module (mitochondrial membrane part) and turquoise module
(membrane vesicles) both correlate with proteins that are down- regulated in tumour samples.

The original proteomic analysis reported by Deighton et al. [12] was based on a mitochon-
drial fraction enrichment. However, in this current study we have identified several proteins
from other membrane-based organelles such as the ER and vesicular membranes. Although
these membrane fractions share similar physical properties to the mitochondrial fractions and
could introduce complexity to the samples, their identified interaction networks reveal the
broader of the many effects of glioblastoma multiforme. In addition, the concomitant enrich-
ment of ER in the mitochondrial fraction might be a result of those two organelles being inter-
connected through mitochondria-associated membranes (MAM) [32] a finding that may
provide a deeper understanding of intra-cellular organelle coordination during tumorigenesis.

Despite the use of a soft threshold β = 10 to generate the different networks, these networks
were significantly denser than what was predicted by STRING. Although the overlap between
STRING andWGCNA was found to range between 5 and 22%, the calculated p-values clearly
support that the observed networks were not simply due to chance (p-values between 1.2e-12
to 6e-289).

One observation, also reported in Deighton et al. [12] is that the electron transfer chain
(ETC) is significantly down-regulated in cancer cells (part of the blue module). Proteins from
the major complexes of the ETC were identified in this study and were found to be mostly
down-regulated. This observation was supported by electron microscopy showing that the
inner membrane of the mitochondria is severely disrupted [12]. However, in this manuscript
we have found that the different complexes were marginally co-expressed in different sub-clus-
ters especially for Complex I (70% of Complex I proteins were found in sub-cluster Bl1a) and
Complex III (70% of Complex III proteins found in sub-cluster Bl1b) which suggests that these
two complexes are not affected in the same way, with Complex I proteins being slightly more
down-regulated than the proteins from Complex III. A similar observation on the different
effects on complexes of the ETC has been made on mitochondrial fractions isolated from a
transgenic mouse model [33]. A disruption of the electron transfer chain and oxidative phos-
phorylation could potentially lead to elevated ROS generation [34]. Several proteins involved
in the oxidative damage response were also found to be up-regulated such as catalase, superox-
ide dismutase 2, peroxiredoxin 1, 4 and 6.

Several key proteins involved in the “ER stress response” or the “unfolded protein response”
(UPR) were found to be up-regulated. The disruption of the ETC and the up-regulation of sev-
eral proteins involved in oxidative stress support a link with cellular events such as protein oxi-
dation and protein folding. Oxidative stress and ROS generation are important components of
the ER stress response. The major enzymatic components of ROS production during UPR
induction are protein disulfide isomerase (PDIA4 was found up-regulated in this study); ER
proteins involved in stress response were found significantly co-expressed (CALR, HSP90B1,
HSPA5, P4HB, and PDIA3) specifically in the sub-cluster Br1e. Most of these proteins were
also found up-regulated during oxygen and glucose deprivation for 18h [35] which supports an
integrated cellular survival response. Furthermore, mitochondrial HSP90 has been reported to
play an important role in controlling core metabolic processes by stabilising Complex II of the
ETC and allowing cellular respiration to continue under compromised conditions, contribut-
ing to tumorigenesis [36].

Cells under normal conditions have a basal level of ROS, which is intrinsic to signalling
mechanisms. However, an increase of ROS levels is observed upon exposure to specific stress
such as cytotoxic reagents, irradiation, and environmental pollutants and during some specific
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enzymatic reactions such as: mitochondrial respiratory chain reactions, activity of glucose oxi-
dase, amino acid oxidase, xanthine oxidase, and NADP/NADPH oxidase). Triggering of the
unfolded protein response (UPR) consequential to the exposure to oxidative stress is most
likely a mechanism to preserve both cell function and survival. On the other hand, continuous
oxidative stress and protein misfolding induce apoptotic pathways and play crucial roles in the
pathogenesis of multiple human diseases including diabetes, atherosclerosis, and neurodegen-
erative diseases.

HSPA5 (also known as GRP78, Bip) is a chaperone protein whose expression is significantly
enhanced under various conditions including glucose deprivation, oxidative stress, treatment
with Ca2+ ionophores, and hypoxia [37]. Higher levels of HSPA5 are essential for sustaining
cell viability under specific kinds of stress. The up-regulation of stress proteins in tumour cells
has been shown to inhibit programmed cell death and to contribute to drug resistance [37].
Therefore, HSPA5 has some potential as a novel therapeutic target for both anti-tumor and
anti-angiogenesis activity [38].

Similar to the blue module, the turquoise module is mainly composed of proteins which are
down-regulated under tumour-forming conditions and are mainly enriched in “vesicle mem-
brane” fractions. The main cluster in Fig 7B contains most of the proteins having known bio-
logical functions. Surprisingly, the YWHAZ protein was found to be down-regulated in our
study, whilst Nishimura et al. [39] observed that YWHAZ-overexpression plays a major role in
tumour cell proliferation. One of the highly interconnected protein members of the hub pro-
teins was YWHAG, which is a 14-3-3 adapter protein involved in the regulation of a broad
spectrum of signalling pathways. YWHAG binds to a large number of partners, usually by rec-
ognition of a phosphoserine or phosphothreonine motif. Binding generally results in the mod-
ulation of the activity of the binding partner by protein kinase C inhibitor activity. A protein
kinase C (PRKG) was also found co-expressed in the turquoise module. Both, 14-3-3 protein
YWHAG and YWHAZ in combination with CAMK2A were found in the same sub-cluster
Tu1a and are involved in the regulation of mitochondrial membrane permeability.

The soft threshold method used in this study (β = 10) significantly reduced the importance
of module interconnection. However, a few interesting proteins were identified in the ER
which are more strongly co-expressed with proteins in the mitochondria including PDIA6 and
HSPA5/GRP78 which are known to play a crucial role on apoptosis inhibition [38, 40]. Regard-
ing the blue module, a few proteins were found to be highly co-expressed with other proteins
outside the module suggesting a co-ordination role far beyond their immediate environment.
One of the identified proteins is CKMT1B, which was also found to be down-regulated in squa-
mous cell carcinomas and in clinical samples [41].

A component of the turquoise module is the isoform 1 of pyruvate kinase (PKM1), which
was highly co-expressed with more proteins than its counterpart PKM2 from the brown mod-
ule (Fig 8). It has often been described in the literature that the PKM protein expression
switches from PKM1 to the PKM2 isoform during tumourigenesis [42, 43]. We observed a
change in isoform ratio where the PKM1 isoform is down-regulated with a ratio tumour/con-
trol = 0.26 associated to the turquoise module. While the PKM2 isoform is up-regulated (ratio
tumour/control = 2.14 and clustered in the brown module). The observed changes in this cur-
rent study, although meaningful, do not support a complete shift from one isoform to the other
one as described by Bluemlein et al.[44]. The two isoforms of PKM are differentially expressed
(M1 and M2) with the different co-expression network proteins of each isoform supporting an
increase in aerobic glycoysis at the expense of oxidative phosphorylation (rendered inefficient
due to the disruption of the ETC).

Decreasing the PKM2/PKM1 ratio has recently been described as a therapeutic strategy in
patients with glioblastoma multiforme [45]. As shown in Fig 8, co-expression of PKM2 was
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limited to only three other proteins (ANXA5, PFN1, and RPS11). Conversely, PKM1 was
found co-expressed with more than 30 other proteins from the turquoise module which are
mostly involved in ion transport, cellular response to insulin stimulus, glutamate secretion as
well as syntaxin binding; a common theme among these proteins is related to the synaptic vesi-
cle cycle with 12 out of the 32 proteins being directly involved in this pathway. Although a
broad range of functions is associated to the different proteins co-expressed with PKM1, our
findings support that pyruvate kinases are possibly bound to synaptic vesicles with substrates
that may be supporting vesicular glutamate uptake [46]. In addition, several of the highly
PKM1 co-expressed proteins reported in this study were newly identified. Guanine nucleotide
binding protein (GNAO1) and syntaxin binding protein 1 (STXBP1) and the protein cell adhe-
sion molecule 3, CADM3 involved in the calcium-independent cell-cell adhesion molecules
has not been previously reported and merit to be explored by more tissue targeted analysis of
both PKM.

It is intriguing that the 2 PKM isoforms show expression patterns which are not co-local-
ised; PKM2 found mostly co-expressed with proteins from the mitochondrial fraction while
PKM1 found co-expressed with proteins related with vesicular membrane. In summary, pro-
tein co-expression analysis of the mitochondrial protein fraction revealed novel protein net-
works with several intrinsically linked functions and uncovered functional modulesHere we
have shown and validated with several different strategies that a weighted protein co-expres-
sion analysis complements more conventional approaches based on differentially expressed
proteins from different groups and can serve as a valuable method for revealing new trends
and information clustering which are impossible to capture otherwise.
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