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In Brief
Metabolism is recognized as an
important driver of complex
diseases, but global metabolite
profiling remains a challenge.
Protein expression is a poor proxy
because pathway enrichment
models provide an incomplete
mapping between the proteome
and metabolism. We developed
MOMENTA, a multiomic network
approach for interrogating
metabolic pathways from
proteomics data. Analysis of data
from cancer cell lines and human
tumors reveals metabolic network
rewiring and oncogene
connections. The metabolic
networks altered in cancer are
linked to clinical outcomes.
Highlights

• Integrating protein interaction data with metabolic models expands multiomic mapping.

• Proteomic profiling of tumors and cell lines reveals altered metabolic-related signatures.

• Metabolite measurements validate pathway alterations in cancer cell lines and tumors.
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RESEARCH
Multiomic Metabolic Enrichment Network
Analysis Reveals Metabolite–Protein Physical
Interaction Subnetworks Altered in Cancer
Benjamin C. Blum1,2 , Weiwei Lin1,2, Matthew L. Lawton1,2 , Qian Liu3, Julian Kwan1,2 ,
Isabella Turcinovic1, Ryan Hekman1,2, Pingzhao Hu3, and Andrew Emili1,2,4,*
Metabolism is recognized as an important driver of cancer
progression and other complex diseases, but global
metabolite profiling remains a challenge. Protein expres-
sion profiling is often a poor proxy since existing pathway
enrichment models provide an incomplete mapping be-
tween the proteome and metabolism. To overcome these
gaps, we introduce multiomic metabolic enrichment
network analysis (MOMENTA), an integrative multiomic
data analysis framework for more accurately deducing
metabolic pathway changes from proteomics data alone
in a gene set analysis context by leveraging protein
interaction networks to extend annotated metabolic
models. We apply MOMENTA to proteomic data from
diverse cancer cell lines and human tumors to demon-
strate its utility at revealing variation in metabolic pathway
activity across cancer types, which we verify using inde-
pendent metabolomics measurements. The novel meta-
bolic networks we uncover in breast cancer and other
tumors are linked to clinical outcomes, underscoring the
pathophysiological relevance of the findings.

Regulation of metabolism through rewiring of biochemical
pathways occurs in response to physiological and pathobio-
logical signals, and dysregulation is increasingly linked to
progression of complex diseases, including cancer (1). Cellular
metabolic pathways are controlled by changes in enzyme
(catalytic subunit) and cofactor (regulatory subunit) expres-
sion, by protein–protein interactions (PPI) that constrain
component localization/compartmentalization, by post-
translational modification(s) (PTM; e.g., phosphorylation), and
local substrate/product concentrations, as well as through
allosteric regulation (e.g., ligand binding), motivating the need
to leverage functional proteomic and metabolomic information
together for in-depth interrogation of cellular metabolic regu-
lation (2–6).
Massive genome and proteome profiling efforts have been

invaluable in elucidating many of the molecular drivers of
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cancer (7, 8). These studies and the subsequent analyses
have contributed to our understanding of this complex dis-
ease and identified many potentially actionable therapeutic
hypotheses. Recent efforts have also turned to global profiling
of metabolites; however, the cohort sizes and number of
features identified are much smaller, limiting the degree to
which we can expect findings to be generalizable (9). Despite
this, there remains a significant interest in more thoroughly
understanding the complete degree to which metabolism is
altered in cancer types in order to identify potential
vulnerabilities or dependencies that may lead to actionable
insights.
Unbiased characterization of cellular pathway activity de-

pends on comprehensive molecular profiling. Mass spec-
trometry (MS) is a technology of choice for studying changes
in the abundance and interactions of proteins, PTMs, and
small molecules in response to physiological cues and path-
ological stresses (10, 11). However, given their chemical di-
versity, global experimental identification of metabolites
remains challenging (12), and relatively few laboratories pro-
ficient in proteomics engage in direct metabolomic profiling. In
contrast, metabolic networks and models are some of the
most comprehensively annotated models across all biological
processes (13, 14), and pathway annotations from metabolic
models form much of the basis for interpreting and under-
standing metabolism in biological systems (15). More
informed strategies to better infer metabolic changes from
phospho/proteomic profiles, and/or transcriptomic datasets,
are therefore warranted. Numerous omics data integration
tools have been devised to examine correlated changes be-
tween various molecular layers in cell systems (e.g., (16)),
including many that infer changes in metabolic pathway ac-
tivity (e.g., enzyme-mediated metabolic reactions) and exploit
a priori knowledge of protein–protein and protein–metabolite
interactions to integrate disparate data types (17–20).
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Multiomic Metabolic Enrichment Network Analysis in Cancer
One strategy for interpreting proteomic profiles from a
metabolism perspective is to impose a network architecture of
physical associations over a metabolic model in order to flesh
out functional associations missed by traditional curation ef-
forts. Network models are especially useful for integrating
disparate biomolecular data types (21, 22), potentially illumi-
nating unexpected mechanisms regulating biochemical path-
ways. The biophysical properties of networks (e.g., connecting
edges, network propagation) enable the study of dynamic
biomolecular systems that respond to perturbations. By rep-
resenting metabolites, enzymes, and their other cellular
interaction partners (e.g., ligands, regulatory subunits) as
nodes, and reactions and interactions as linking edges,
networks provide a unifying mechanistic framework to sys-
tematically explore and discover unexpected molecular re-
lationships and functional dependencies (23). Combining
metabolic models with the results from large-scale PPI sur-
veys can also aid in the identification of small-molecule
compound by MS (24, 25).
Traditionally, comparative (cases versus controls) proteomic

surveys utilize some form of enrichment analysis to find
functional trends among a set of observed differential mo-
lecular features. Such approaches fail to fully leverage meta-
bolic models, which currently have annotated associations
between metabolites, enzymes, regulators/cofactors, trans-
porters and their respective small-molecule ligands that
encompass only about 1200 to 1500 distinct gene products
(15), covering only a small fraction (~6%) of the expressed
human proteome (26). This limits the utility of gene-centric
(proteomic, transcriptomic) profiling data to faithfully interro-
gate and predict changes in metabolic pathway activity. To
address this gap, we adapted previous models of metabolic
network and PPI integration to generate gene sets for use in
gene set enrichment analysis (GSEA) with proteomic data (17).
Specifically, this implementation, which we call Multiomic
Metabolic Enrichment Network Analysis (MOMENTA) con-
nects prior physical (PPI networks) and functional information
(pathway annotation from metabolic models) to interrogate
metabolic pathways in a comparative study (i.e., disease
versus control samples) using proteomic (or transcriptomic)
data types. This network principle provides a unifying foun-
dation to interpret changes in proteomic and metabolic ac-
tivity at a biochemical pathway level since the functional
relationships are centered on metabolic pathways, derived
from the same metabolic model for both the proteomic and
metabolomic analysis. Statistical enrichment analysis with
MOMENTA on input differential protein (or gene) derived
measurements using a functional model that extends
metabolic pathways with reliable and scored PPI information
elucidates biochemical pathway activity beyond mere corre-
lations or primary pathway annotations.
As proof of concept and validation of our implementation,

we applied MOMENTA to examine alterations in cell meta-
bolism based on the quantitative proteomic profiles of
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cultured breast cancer cells following a controlled metabolic
perturbation, before examining proteomic profiling of a
broader compendium of cancer cell lines, and in human
tumor-derived clinical samples. In each case, we obtain
systems-level insights into the biochemical processes
impacting metabolic pathway activity and cross talk beyond
existing traditional approaches, which we were able to inde-
pendently confirm using direct metabolic measurements.
These case studies illustrate the utility of MOMENTA for
integrating proteomic data with metabolomic models using a
rigorously inferred network scaffold to generate more
encompassing biochemical pathway descriptions that both
leverage and contribute to improved cross-mapping between
metabolites, enzymes, and their physical and functional in-
teractions that are dynamically altered in a pathophysiological
context.
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

For cell culture proteomic and metabolomic analysis, cells were
grown and analyzed in replicates of 5 and 6, respectively, for each of
two conditions (with and without glucose). Differential analysis and
comparison between groups are performed using a t test with
adjustment made with for multiple testing (e.g., Benjamini–Hochberg).
For all studies, pathway-level findings are validated with orthogonal
data sets.

Cancer Cell Line Culture

MDA-MB-231, a human breast cancer–derived cell line, was ob-
tained from the American Type Culture Collection (ATCC). Cells were
maintained in Dulbecco’s modified Eagle’s medium (DMEM) without
pyruvate containing 4.5 g/l of glucose and L-glutamine (Gibco), sup-
plemented with 10% heat inactivated fetal bovine serum (FBS;
Hyclone) and 100 units/ml penicillin-100 μg/ml streptomycin (Hyclone)
in a humidified incubator at 37 ◦C in 5% CO2. Cells were then either
continued to be cultured in the same medium or switched to a no (0%)
glucose condition (DMEM containing L-glutamine but without glucose
or pyruvate) for 48 h before harvesting.

Protein Digestion

After pelleting, cells were resuspended in 100 μl of 8 M urea, con-
taining protease inhibitors (cOmplete Protease Inhibitor Cocktail;
Roche) and phosphatase inhibitors (PhosStop; Roche). After brief
sonication on ice, the lysates were reduced with addition of dithio-
threitol to a final concentration of 5 mM for 60 min at room temper-
ature, followed by alkylation with the addition of iodoacetamide (5 mM)
and incubation at room temperature for 30 min in the dark. The
samples were then diluted with 50 mM ammonium bicarbonate to
bring the urea concentration below 1 M. Proteins were digested
overnight with sequence-grade (Thermo Scientific) trypsin (1:50
enzyme to protein ratio) at 37 ◦C followed by the addition of formic
acid to 1% (v/v). The resulting peptides were desalted using a C18
cartridge as per the manufacturer’s instructions (Thermo Scientific).

TMT Peptide Labeling

Peptide quantification was determined by Pierce quantitative
colorimetric assay (Thermo Scientific). For each sample, 100 μg of
peptide was resuspended in 0.1 M triethylammonium bicarbonate
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(TEAB) and incubated with a tandem mass tag (TMT) 10-plex isobaric
labeling reagent (0.8 mg Thermo Scientific). The ratio of TMT to sub-
strate was 0.4 mg reagent to 0.1 mg peptide. The reaction was carried
out for 1 h at room temperature and quenched using 5% (v/v)
hydroxylamine for 15 min. Equal amounts of each sample were
combined in a new tube and desalted using a C18 Tip.

High-pH Reverse-Phase Peptide Fractionation

The labeled peptide mixtures (1 mg) were fractionated using a
Waters XBridge BEH C18 column (3.5 μm, 4.6 × 250 mm) on an
Agilent 1100 HPLC system operating at a flow rate of 0.45 ml/min with
two buffer lines: buffer A (consisting of 0.1% ammonium hydroxide-
2% acetonitrile-water) and buffer B (consisting of 0.1% ammonium
hydroxide-98% acetonitrile, pH 9). Peptides were separated by a
gradient from 0% to 10% B in 5 min, followed by a linear increase to
30% B in 23 min, 60% B in 7 min, and then 100% in 8 min and
continued for 5 min. The 48 fractions collected were combined into
12 and evaporated to dryness in a vacuum concentrator. Two
micrograms of peptide from each fraction was reconstituted in 1%
formic acid and kept at −80 ◦C until analyzed by the nLC-MS/MS
system.

Titanium Dioxide (TiO2) Enrichment of Fractionated
Phosphopeptides

TiO2-coated magnetic beads (GL Sciences, Titansphere Phos-TiO)
were used to enrich phosphopeptides obtained from combined HPLC
fractions. Beads (5 μl/mg) were preconditioned with DHB buffer
(consisting of 6% TFA, 5 mM KH2PO4, 80% ACN, 20 mg/ml 2,5-
dyhydroxybenzoic acid) for 15 min, then incubated with the peptide
mixtures, resuspended in 500 μl of DHB buffer (10:1 bead to peptide
ratio, w/w), for 30 min with shaking. Beads were washed in steps: 1%
TFA-80% ACN, followed by 1% TFA-50% ACN, and 1% TFA-10%
ACN twice, then the supernatant was discarded to remove abun-
dant contaminants. The phosphopeptides were eluted by 5% NH4OH
with 25% ACN and dried by speed vac before nLC-MS analysis.

Nanoflow LC-MS/MS of Proteomics and Phosphoproteomics

Total peptides and bead-enriched phosphopeptides from each
HPLC fraction were individually loaded onto a C18 trap column (3 μm,
75 μm × 2 cm, Thermo Scientific), connected in-line to a C18 analytical
EasySpray (Thermo Scientific) column (2 μm, 75 μm × 50 cm) using the
EasyLC 1200 system (Thermo Scientific) in a column oven at 55 ◦C.
The nanoflow gradient consisted of buffer A (composed of 2% (v/v)
ACN with 0.1% formic acid) and buffer B (consisting of 80% (v/v) ACN
with 0.1% formic acid). For protein analysis, nLC was performed for
180 min at a flow rate of 250 nl/min, with a gradient of 2% to 8% B
for 5 min, followed by 8% to 20% B for 96 min, then 20% to 35% for
56 min, 35% to 98% B for 3 min, 98% buffer B for 3 min, followed by
column recycling with 100% to 0% B for 3 min, and finishing with 5%
B for 14 min. Peptides were directly ionized from a nanospray ion
source into an online Q-Exactive HF (QE-HF) mass spectrometer
(Thermo Scientific) operated in a data-dependent data acquisition
mode.

The Q-Exactive HF was run using a ddMS2 top ten scans acquired
per single profile mode full-scan mass spectrum using HCD frag-
mentation. Full MS spectra were collected at a resolution of 120,000
with an AGC of 3e6 or maximum injection time of 60 ms and a scan
range of 350 to 1650 m/z. MS2 scans were performed at 45,000
resolution, with an ion-packet setting of 2e4 for AGC, maximum in-
jection time of 90 ms and using 33% total normalized collision energy.
Source ionization parameters were optimized with the spray voltage at
2.1 kV, transfer temperature at 275 ◦C. Dynamic exclusion was
enabled for 40 s.
For the phosphopeptide analysis, the metal-bead enriched peptide
fractions were loaded onto a 50 cm C18 column. nLC was performed
for 90 min at a flow rate of 250 nl/min, with a gradient of 2% to 6% B
for 5 min, followed by a 6% to 20% B for 39 min, a 20% to 35%
gradient for 23 min, and a 35% to 98% B gradient for 3 min, 98%
buffer B for 3 min, 100% to 0% gradient of B for 3 min, and finishing
with 5% B for 14 min. The QE-HF was operated using a top six scan
ddMS2 acquisition mode, with a maximum ms2 injection time of
400 ms.

Proteome Data Analysis

For the in vitro cancer cell line data analysis, raw files from five (5)
biological replicates for each condition were processed by MaxQuant
(version 1.6) under standard settings using the UniProt Reviewed
(Swiss-Prot) Human database with 20,443 entries (accessed July
2019). The extracted MS/MS spectra were searched against a both
forward (native) and reversed (decoy) sequences, with protein identi-
fication allowing for two missed trypsin cleavage sites, variable
modifications of methionine oxidation, N-terminal acetylation, and (for
the phosphoproteomic data) protein phosphorylation at S, T, and Y
residues. Carbamidomethylation of cysteine residues was set as a
fixed modification. Matched ion tolerances of 20 and 6 ppm were set
for the first and second searches, respectively. Candidate peptides,
proteins, and phosphosite identifications were filtered based on a
stringent, empirically controlled 1% false discovery rate (FDR)
threshold, using a 2 min window to match identifications between
runs. Phosphosites with a localization probability less than 0.7 were
removed. Relative quantification was determined based on the TMT
10 plex reporter ion intensities measured by MS2.

Metabolite Extraction and Cleanup

After pelleting, MDA-MB-231 cells (~15 million) were incubated with
1 ml cold MeOH:ACN:H2O (40:40:20, v/v) solvent with vortexing for
30 s, followed by incubation in liquid nitrogen for 1 min. The samples
were then allowed to thaw on ice followed by sonication (10% setting)
for 10 min. This freeze/thaw procedure was performed three times.
Afterward, the lysate was incubated for 1 h at −20 ◦C, followed by
15 min centrifugation at 12,000g at 4 ◦C to precipitate protein. The
metabolite-containing supernatant was transferred to new tubes,
dried under vacuum, prior to cleanup, while the precipitate was kept at
4 ◦C for protein analysis.

The dry metabolites were reconstituted in 200 μl PBS, transferred to
a 96-well plate, and subject to a solid-phase microextraction (SPME)
using resin-coated blades preconditioned for 30 min in methanol:-
water (50:50, v/v) (27). Samples were incubated with the blades for 1 h
at room temperature, then the coatings were washed for 20 s in water,
and the metabolites desorbed with acetonitrile:water (50:50, v/v) for
1 h. The eluate evaporated to dryness in a vacuum concentrator and
sample extract reconstituted in 2% ACN and analyzed by the nLC-
MS/MS system.

Nanoflow LC-MS/MS Analysis of Metabolite Samples

Metabolite analysis was performed using a nLC-QE HF Hybrid
Quadrupole-Orbitrap (Thermo Scientific) using a EasySpray micro-
column (Thermo; 2 μm, 75 μm × 50 cm) in an oven set to 40 ◦C. The
mobile phase A was 2% ACN, and mobile phase B was to prevent ion
suppression in negative mode, formic acid and TFA were eliminated
from the mobile phase. The flow rate was 300 nl/min. The gradient
started from 2% mobile phase B to 60% mobile phase B for 20 min
and then reaching to 95% mobile phase B in 10 min and then lasted
for 15 min. The Q Exactive HF mass spectrometer was operated under
a dual (positive/negative) ESI switching mode in real time during data
acquirement, requiring a longer gradient compared with standard
Mol Cell Proteomics (2022) 21(1) 100189 3
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analytical flow rate methods. Full mass scan (m/z 67–1000) was per-
formed at a resolution of 60,000, with an AGC target set at 3e6 ions,
and maximum ion injection time of 25 ms. Source ionization param-
eters were optimized with the spray voltage at 2.1 kV and −1.8 kV for
positive and negative mode, respectively, with a transfer temperature
of 300 ◦C. MS2 scans were performed at 15,000 resolution, with a
maximum injection time of 64 ms, using NCE steps of 10, 20, and 40.
The dynamic exclusion was set to 10 s.

Metabolomics Data Analysis

Raw data files were converted to mzML format and split into pos-
itive and negative spectra using msConvert prior to analysis using MS-
DIAL4 (28). “Linear-weighted moving average” was used for peak
detection, with a minimum peak height set to 20,000. Afterward,
spectral centroiding was performed by integrating the mass spectrum
across a ±0.01 and ±0.025 Da range in MS1 and MS2 respectively.
Spectra were searched against MS-DIAL metabolomic or lipidomic
MSP library with tolerance of 0.025 and 0.05 for MS1 and MS2,
respectively. Common adducts ([M + H]+, [M+NH4]+, [M+Na]+, [M-
H]−, [M-H2O-H]−, [M+Cl]−, etc.) were annotated prior to identification.
To assess the FDR, implausible adducts (e.g., [M+Be]+/−) were
defined as decoys during the database search along with native ad-
ducts. A stringent confidence cutoff score (>50) was used to improve
the confidence of annotated metabolite matches using an empirically
determined FDR of <0.1 probability (relative to decoy matches).
Quality control data (QC) were specified as a reference file for align-
ment between samples. Data matrices were exported as tab delimited
text files for subsequent enrichment analysis.

Data Analysis and Pathway Enrichment

Bioinformatic analysis was performed using R: A language and
environment for Statistical Computing (R Foundation for Statistical
Computing, http://www.R-project.org) using an in-house pipeline (29).
Briefly, the table of feature intensities was log transformed and
quantile normalized. Untargeted metabolomics enrichment analysis
was performed by MetaboAnalyst (15, 30). The LIMMA (31) R package
was used for differential protein and metabolite analysis to generate
ranked lists, after Benjamini–Hochberg FDR correction, for subse-
quent pathway (gene set) enrichment analysis using the fgsea R
package (32) with statistical significance calculated using 10,000
permutations. For the joint protein and phosphosite feature matrixes, a
combined ranked list was generated where in the case of duplicate
gene names, the entry with the greatest absolute rank value was
retained. The Cytoscape EnrichmentMap module (33) was used to
visualize the respective enrichment results in a network layout after
clustering the pathways based on feature overlap. Boxplots were
generated with the ggplot R package, with the centerline representing
the median, upper, and lower hinges representing the 75th and 25th
percentiles, respectively, and with whiskers extending from the hinges
to the most extreme values no further than 1.5 * IQR (interquartile
range) from the hinge. Data extending beyond the end of the whiskers
were plotted individually.

Protein–Protein Interaction and Metabolic Model Database
Parsing

Metabolic models were downloaded from MetaboAnalyst (www.
metaboanalyst.ca). Where available, E.C. codes were converted into
gene/protein names based on mappings from Uniprot (34). For each
pathway, a base gene set was derived based on these genes alone.
To expand the gene sets and increase the number of components
associated with metabolic pathways, we cross-mapped curated PPIs
from InWeb_IM (22) (human) and iRefIndex (35) (other species) using
two approaches: “Expanded” gene sets incorporated all first-degree
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interactors, while “Neighborhood” gene sets were based on the
most confident first- and second-degree interactors to reach a target
gene set size (250) based on scoring from the PPI databases. Similarly
sized control gene sets were also created by expanding with (1) the
same number of random proteins drawn from the PPI network, or (2)
the same number of random gene products from the PPI network that
were second-degree neighbors to each other (random subnetworks).
“Base” gene sets consisting of enzymes alone were also generated
directly from the metabolic models for comparison.

Visualization of Pathway Protein–Metabolite Subnetworks

For visualizing pathway-based protein–metabolite subnetworks,
network files were generated incorporating PPIs and metabolite re-
action pathways. Since reaction information was not included with the
metabolic models downloaded from MetaboAnalyst, specific pathway
information was retrieved from MetScape (human). Files were inte-
grated manually to visualize interaction networks encompassing me-
tabolites, reactions, enzymes, and associated proteins (human gene
products). Then, for a specified pathway, the Neighborhood protein
interaction subnetwork was added using a script after having been
previously parsed at the database integration step. Subnetworks were
visualized with Cytoscape. Pathway nodes with only one interactor
(e.g., nodes that mediated no interconnection) that were not detected
in any dataset were removed to declutter the final image. Nodes were
colored based on changes between conditions if they were detected,
while shapes were specified to distinguish metabolites, reactions,
genes, and PPI associated proteins, as described in figure legends.
RESULTS

Integrating Metabolic Models With Protein–Protein
Interactions to Define Pathway-Centric Subnetworks

Metabolic models based on curated pathway annotations,
such as KEGG (36), offer a valuable but incomplete mapping
of enzymatic reactions relative to the rest of the proteome. For
example, enzymes in the human MFN metabolic model
(curated aggregation of BiGG, KEGG, and the Edinburgh
model) map to only 1475 unique genes out of the ~23,000
open reading frames encoded by the human genome
(supplemental Table S1), which constrains traditional gene set
enrichment analyses. Since perturbations in metabolic path-
ways caused by physiological regulation or disease likely
propagate through a wider network encompassing proteins
that interact physically and functionally with these enzymes
(37, 38), we reasoned that high-confidence PPI could be used
to extend the coverage of metabolic-pathway models to a
greater fraction of the proteome.
To examine this systematically, we started with metabolic

models supported by MetaboAnalyst (15), a leading metab-
olomic analysis platform and aggregator of curated metabolic
pathway models with plans to extend support to more meta-
bolic models in the future. We extended the metabolic model
pathways with scored binary interactions, downloaded from
the InWeb_Im (22) and iRefIndex (35) databases, based on
compiling either: (i) all the direct (first-degree) interaction
partners (“Expanded”) of annotated enzymes (Fig. 1A), which
markedly increased the number of associated gene products
(from 1475 to 9145 for MFN; Fig. 1B), but created a range of

http://www.r-project.org
http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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FIG. 1. Integrative metabolomic and proteomic analysis using MOMENTA. A, metabolic models and protein–protein interaction (PPI)
networks are integrated to define metabolic pathway subnetworks (Base, Expanded or Neighborhood) and to derive enhanced gene sets. B, plot
showing the number of total unique genes across all pathways in the Human MFN and Human Biocyc metabolic models for the Base, Expanded,
and Neighborhood gene sets. C, distribution of pathway sizes (number of genes) for the Base, Expanded, and Neighborhood gene sets derived
from the Human MFN metabolic model. MOMENTA, multiomic metabolic enrichment network analysis.

Multiomic Metabolic Enrichment Network Analysis in Cancer
gene set sizes (supplemental Table S2 and Fig. 1C) that im-
pacts enrichment statistics (39); or (ii) both the direct (first-
degree) and nearest neighbor (second-degree) interaction
partners of enzymes, followed by pruning each subnetwork to
generate a uniform and optimal (39) gene set size (“Neigh-
borhood”) (Fig. 1A), which substantially increases the number
of unique genes/proteins for all pathway models (Fig. 1B) while
creating a uniform distribution of gene set sizes for stan-
dardized enrichment (statistical) scoring (Fig. 1C). Extending
the metabolic pathways through the PPI network, as opposed
to metabolic network, maintains the metabolic pathway at the
geometric center of the subnetworks as much as possible,
which supports the intended use of proteomic data to study
metabolic pathways.
Our method of network integration results in these

Expanded and Neighborhood gene set definitions, which we
can apply in a boosted enrichment analysis pipeline to
examine differences in metabolic pathways starting from
experimental proteomic profiling data. Benchmarks for the
obtained enrichment results include both standard “Base”
gene sets, representing traditional annotated metabolic
pathways (i.e., enzyme alone gene sets), and against two
control gene sets, based on globally randomized sets of
proteins (“Control 1”) or randomized interaction subnetworks
(“Control 2”).

Metabolic Pathway Changes in Breast Cancer Cells in
Response to Glucose Starvation

As a demonstration of utility, we first applied MOMENTA to
examine metabolic constraint and pathway adaptation in a
cancer cell line model system (supplemental Fig. S1). Tumors
are known to exhibit metabolic stress stemming from
competitive growth and reduced angiogenic perfusion yet are
resilient (40, 41). As a model, we cultured MDA-MB-231 triple-
negative breast cancer cells in both standard and glucose-free
media for 48 h to mimic nutrient deprivation (Fig. 2A). For
replicate cultures, we measured proteins and phosphopep-
tides by isobaric tandem mass tag (TMT) multiplexing and
Mol Cell Proteomics (2022) 21(1) 100189 5



FIG. 2. MOMENTA applied to a glucose-starved in vitro breast cancer cell line model. A, MDA-MB-231 cells, cultured in standard media
or glucose-starved media, were subjected to TMT-multiplexing and LC/MS-based proteomic and phosphoproteomic analysis. B, differential
analysis of the proteomic data showing top differential proteins. C, number of pathways enriched in each of three major biological categories
from the proteomic analysis. D, total number of unique genes mapping to pathways based on major biological categories. E, differential analysis
of phosphoproteomic data showing top differential phosphosites across all conditions. F, number of pathways enriched in major biological
categories for the phosphoproteomic analysis. G, total number of unique genes mapping to pathways based on the phosphoproteomic
enrichment analysis. H, boxplot of individual pathway enrichment significance for all metabolic pathways in the Human MFN model using the
proteomic data alone for the Base (enzyme only), Expanded, and Neighborhood gene sets. Matched control gene sets with the same number of
PPI components added at random (Control 1) or from an alternative area in the PPI network (all second-degree neighbors, Control 2). The same
enrichment analysis on scrambled proteomic data, after gene annotations were randomized. I, plot of global pathway significance across gene
sets as in A, with the enrichments based on the combined proteomic and phosphoproteomic data. J, number of significant metabolic pathways
(p < 0.05) enriched in the phospho/proteomic profiles using the Base, Expanded, and Neighborhood gene sets. K, overlap of significant
metabolic pathways (Adj. p Value < 0.05) enriched in the phospho/proteomic profiles using the Base, Expanded, and Neighborhood gene sets.
MOMENTA, multiomic metabolic enrichment network analysis; PPI, protein–protein interaction; TMT, tandem mass tag.
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nLC/MS, quantifying 7214 proteins (supplemental Table S3A)
and 5785 phosphosites (supplemental Table S4A), respec-
tively after normalization (see supplemental Tables S3B and
S4B for unnormalized data with identification annotation).
Differential analysis identified 3055 high-confidence (Adj. p
Value < 0.05) proteins and 1528 phosphosites.
The proteomic analysis showed consistent differential

expression (Fig. 2B and supplemental Fig. S2A), including
upregulation of TXNIP, a downstream target of IGF1 (insulin)
signaling that is linked to cellular redox signaling (42). We
subjected the ranked differential expression profiles to a
standard, broad GSEA to examine functional patterns. Con-
ventional (GSEA) analysis using a large library of curated gene
sets (33) revealed metabolic stress consistent with glucose
starvation (supplemental Fig. S2B and supplemental
Table S5); however, the returned metabolic pathways were
broadly defined, represented only a small minority of the major
biological themes deemed significant (Fig. 2C) and encom-
passed only a small fraction of the number of total gene
products as compared with other major functional categories
(Fig. 2D).
Differential analysis of the phosphoproteomic data likewise

showed a robust signature (Fig. 2E and supplemental
Fig. S2C), including downregulation of the metabolism mas-
ter regulator, RPTOR, consistent with reduced nutrient levels
(43), and additional orthogonal signaling pathways reflective of
global changes in intracellular kinase activity (supplemental
Fig. S3). Again, however, only high-level metabolic terms
(Nitrogen, Lipid and Carbon utilization) were returned
(supplemental Fig. S2D and supplemental Table S6) in the
general-purpose GSEA, whereas more fine-grained metabolic
pathways were underrepresented in the enriched terms
(Fig. 2F) and mapped to a sparse subset of the differential
phosphoproteins deemed differential in the data (Fig. 2G).
In order to more thoroughly interrogate metabolic signa-

tures based on the proteomic data, we performed GSEA using
the MOMENTA-derived gene sets. In this analysis of the
proteomic and phosphoproteomic data, we compared the
Base enrichment results, representing existing methods, with
our computationally derived Expanded and Neighborhood
gene sets. Further, we compared against the Control gene
sets to test whether or not observed difference was better
than would be expected from random chance. To first assess
the performance of the enrichment results at a global level, we
examined the global significance distribution across all path-
ways. Strikingly, for the proteomic data alone, using the MFN
and Biocyc-derived metabolic models, the Expanded and
Neighborhood gene set analyses produced markedly
increased metabolic pathway enrichment significance results
relative to either the Base or Control gene sets (Fig. 2H and
supplemental Fig. S4A). To compare global enrichment re-
sults, we primarily use these distributions of pathway signifi-
cance to show effects on the statistical tests across all
pathways. This effect was eliminated when the underlying
protein and phosphoprotein data matrixes were randomized,
effectively removing the signature derived from the curated
molecular interaction network (Fig. 2H and supplemental
Fig. S4A), demonstrating that the signal is due to underlying
biologically functional connections between proteins.
An even more pronounced effect was observed after sub-

jecting the combined proteomic and phosphoproteomic data
to enrichment with MOMENTA (Fig. 2I and supplemental
Fig. S4B), which provided increased gene and pathway
coverage over the proteomic data alone. Using the MFN
model, the number of significant (Adj. p Value < 0.05) path-
ways increased 25-fold, from only three with the Base gene
sets to 82 and 72 in the Expanded and Neighborhood sub-
networks, respectively (Fig. 2J and supplemental Tables S7–
S9); all three of the significant pathways in the Base analysis
were also captured in the Expanded and Neighborhood results
(Fig. 2K). While the majority of significant pathways for
Expanded and Neighborhood are shared, we can examine the
individual pathway results to explain differences. For example,
Purine Metabolism is significant in the Expanded results (Adj.
p Value 0.0009; supplemental Table S8) but not the Neigh-
borhood results (Adj. p Value 0.8). In this case, when we
examine the gene set sizes, we see that the Purine Meta-
bolism pathway comprises 3449 genes in the Expanded case
compared with 250 in Neighborhood (supplemental Table S2).
These differing results are consistent with nonspecific
enrichment observed in GSEA analyses when very large gene
sets are used and why they are often excluded. However,
comparison to an orthogonal method is necessary to ulti-
mately validate results.
In order to control for overlapping pathways (genes in

multiple pathways) and visualize the overall enrichment re-
sults, we used the Enrichment Map Cytoscape plugin to graph
the metabolic pathway terms returned by the Base, Expanded,
and Neighborhood, which clustered significant gene sets into
biological modules based on shared protein/gene annota-
tions. As shown in supplemental Fig. S5, MOMENTA docu-
mented a profound decrease in global metabolic pathway
activity in the MDA-MB-231 cells following glucose-
withdrawal, consistent with lower energy consumption and
holistic pathway remodeling resulting from the withdrawal of a
primary carbon source. Major themes included a predominant
downregulation of pathways related to sugar metabolism, lipid
synthesis, as well as upregulation of adaptive pathways, such
as Urea Cycle/Amino Group and Lysine metabolism
(supplemental Fig. S5), consistent with the utilization of amino
acids as alternative fuel source by cancer cells (1).

Metabolomic Profiling of Glucose-Starved Cancer Cells
Consistent with MOMENTA Projections

The use of computationally randomized controls and data
goes a long way in establishing confidence in the enrichment
analysis. However, ultimately biological validation requires
testing results using orthogonal methods. In order to validate
Mol Cell Proteomics (2022) 21(1) 100189 7
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the results from the MOMENTA metabolic pathway interro-
gation, we performed global metabolomic profiling on the
same glucose-starved cancer cell samples in parallel with our
phospho/proteomic analysis (Fig. 3A). Global analysis of
untargeted metabolomics showed samples clustering based
on glucose withdrawal (Fig. 3B) and using an empirically
controlled (decoy adduct) metabolite identification pipeline
(44), we found a robust signature from replicate sample
measurements across both conditions (Fig. 3C).
To systematically compare the metabolomic pathway

enrichment results produced by MOMENTA and direct
experimental detection of differential metabolites, we inte-
grated the MetaboAnalyst metabolic enrichment results based
on the metabolomic data with the phospho/proteomic
enrichment analysis using the same gene set (pathway) defi-
nitions (supplemental Table S10). Notably, the metabolomic
profile enrichment results were in closest agreement in terms
of metabolic pathway significance with the Neighborhood and
Expanded subnetworks, followed distantly by Base and
Control gene sets (Fig. 3D). We are able to compare these
distributions between the metabolomic data and the proteo-
mic data because in both cases, enrichments are based on
the same list of pathways, derived from the metabolic models,
as described previously. Additionally, the Expanded and
Neighborhood enrichment results produced a comparable
number and significantly overlapping (Adj. p Value < 0.05) of
pathways as reported by the Metabolomic experiments, rela-
tive to the sparse Base enrichments (Fig. 3E). Consistent with
a high degree of agreement, the significant pathways found
with the Expanded and Neighborhood subnetworks over-
lapped with the majority of the enriched pathways detected by
direct metabolomic profiling (Fig. 3F); the mean absolute dif-
ference in significance returned for each pathway was great-
est between the Base and Metabolomic enrichments,
reflecting the least agreement (Fig. 3G). While there is a great
deal of overlap between the proteomic and metabolomic
analysis, examination of individual pathway results reveals
technical reasons for cases where there is not agreement.
Vitamin B12 metabolism is significantly altered in the metab-
olomic enrichment results, however, not in any of the prote-
omic results. Examination of the gene set composition for this
pathway reveals that in this metabolic model it is only anno-
tated with two genes (supplemental Table S2), resulting in a
very small Expanded gene set that is unlikely to produce a
robust signal (33). Similarly, among the set of pathways
significantly enriched in the proteomic data but not that
metabolomic data are a number of lipid and fatty acid–related
pathways (e.g., Glycosphingolipid biosynthesis, fatty acid
oxidation) composed of metabolite molecules that are unlikely
to be detected in our metabolite profiling method. Despite
picking a method to be as global as possible with metabolite
measurements, this illustrates the impact metabolite chemical
diversity has on the feasibility of comprehensive metabolite
profiling.
8 Mol Cell Proteomics (2022) 21(1) 100189
Notably, looking at representative pathways, while the Base
gene set analysis showed some signal in relevant pathways
such as Fructose and Mannose Metabolism, it produced
hardly any signal in Hexose Phosphorylation, Nitrogen, or
Pyruvate Metabolism, all of which were deemed significantly
altered in the direct metabolomic survey, as well as the
Expanded and Neighborhood analyses (Fig. 3H). Consistent
with a wider range of gene set sizes (Fig. 1C), the Expanded
correlation with the metabolic results was less pronounced
than for the Neighborhood approach, suggesting that gene set
size distribution contributes some degree of noise, as ex-
pected, with uniform subnetwork sizes producing more robust
findings.

MOMENTA Reveals Metabolic Variation Across Cancer
Cell Types

A recent in-depth proteomic profiling of hundreds of cancer
cell lines (45) offers an important resource to study variation in
cancer cell pathways and, ultimately, better understand
unique susceptibilities to targeted therapeutics based on
molecular phenotypes. Dimensionality reduction with principal
component analysis (PCA) of the quantitative proteomic pro-
files for 375 cell lines, representing a diversity of tissues of
origin (e.g., Breast, Pancreas), revealed broad variation across
the large number of blood and solid tumor cell types surveyed
(Fig. 4A), confirming the original report, which mentions
metabolic pathways in a cursory discussion of broad path-
ways (e.g., glycolysis and nucleotide metabolism).
In order to determine the extent of variation in metabolic

activity across the cancer cell types, we performed a more
extensive MOMENTA Neighborhood enrichment analysis
based on the protein (gene) rankings according to their load-
ings on the first principal component (PC1) (Fig. 4, A and B
and supplemental Table S11). The top most significantly (Adj.
p Value < 0.01) varying pathways from the Neighborhood
subnetwork model mapped to over 20 pathways related to the
metabolism of extracellular glycans, diverse lipids, and
oxidation related processes, among others (Fig. 4B), which
have previously been implicated in cancer signaling (46).
These pathways represent systems that are differentially
regulated across the profiled cancer cell types.
Visual inspection of the tumor line distributions along PC1

revealed a strong separation of those derived from blood-
borne cancers from those originating from solid tumors
(Fig. 4C), consistent with the original analysis. This also is
consistent with the findings of Heparan Sulfate and Glycan
pathways, which are expected to vary substantially between
blood and solid organ cell types. To confirm these patterns,
we downloaded and clustered the metabolomic data available
for 225 metabolites in 928 cell lines (47) and found a similar
stratification of cancer cell types (Blood, Breast, Pancreas,
Other) along PC1 in both our metabolomic and proteomic PCA
analyses (supplemental Fig. S6). We then cross-mapped all
metabolites to the corresponding pathways implicated by our



FIG. 3. Experimental validation of metabolomic changes in breast cancer cell line. A, experimental workflow of metabolomic profiling of
glucose-starved cell line. B, PCA dimensionality reduction of unbiased metabolomic profiles showing partitioning of Glucose versus No Glucose
samples. C, heatmap of top differential annotated metabolites identified using a decoy adduct strategy. D, global pathway enrichment results
comparing the global significance of phospho/proteomic pathways with metabolomics-based analysis using the same Base, Expanded,
Neighborhood, and Control gene sets. E, number of significant metabolic pathways (Adj. p Value < 0.05) enriched in the metabolomic and
phospho/proteomic data using the Base, Expanded, and Neighborhood gene sets. F, overlap of significant (Adj. p Value < 0.05) metabolic
pathways enriched in the metabolomic data and phospho/proteomic data using the Base, Expanded, and Neighborhood gene sets. G, mean
absolute difference of pathway significance between the Metabolomic and phospho/proteomic enrichment results. H, significance of select
metabolic pathways across the metabolomic and phospho/proteomic profiles. PCA, principal component analysis.
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FIG. 4. MOMENTA analysis of metabolic variation across diverse cancer cell lines. A, workflow for CCLE proteomic profiling data
processing and MOMENTA analysis. B, enrichment results for top Neighborhood pathways (Adj. p Value < 0.01) for enrichment based on global
profile PC1. C, distribution of tissue derived cancer cell lines across PC1. D, relative intensity of glutamate metabolism pathway metabolites in
CCLE for highlighted cancer cell types, with p Values for comparison between Breast and Pancreas based on Kruskal–Wallis test.
E, relative intensity of metabolites in tumor and normal tissue samples for both Breast (BRCA) and Pancreas (PAAD) cancers showing corre-
sponding p Values (t test). CCLE, Cancer Cell Line Encyclopedia; MOMENTA, multiomic metabolic enrichment network analysis.
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MOMENTA Neighborhood analysis (Fig. 4B) and found 39 (out
of 43 detected) were significantly altered across the subtypes
used for comparison (Blood, Breast, Pancreas, Other; ANOVA,
p < 0.05) providing validation of variation across cell types in
our top pathways (supplemental Fig. S7). Further, when we
looked at particular metabolites from these same significant
pathways in clinical metabolomic data recently reported for
Breast and Pancreas cancers (9), we found 11 metabolites
(out of 14 detected) were significantly altered (t test, p < 0.05)
between the tumor and adjacent normal tissue (supplemental
Fig. S8), but not concordantly across the two tissues of origin
(two metabolites were significantly concordantly regulated,
one was not significantly regulated).
While some separation was evident among certain solid

organ tissues, such as Breast and Pancreas, based on PC1,
more in-depth molecular phenotyping was deemed warranted
to define significant metabolic. To focus on the specific dif-
ferences between these two cell types with clinical data
(Breast and Pancreas), we repeated the MOMENTA Neigh-
borhood-based enrichment analysis to compare the Breast
and Pancreas cell lines and found 23 significantly (Adj. p Value
< 0.05) differential metabolic pathways (supplemental Fig. S9).
Again, we were able to independently verify these findings
with clinical metabolite measurements from the Pan Cancer
Metabolism Data, of the ten metabolites mapping to these
same 23 pathways, we found seven were significantly differ-
entially regulated in Breast and Pancreas tumors as compared
with normal tissue (supplemental Fig. S10). Discordant direc-
tionality in this case may be indicative of metabolite substrates
and intermediates being depleted by upregulation of protein
regulators (e.g., phosphorylation events) in certain pathways.
One notable pathway predicted to show differential activity
mapped to Glutamate metabolism, where the associated
metabolites alanine, GABA, glutamate, and glutathione were
found to significantly different between both breast and
pancreatic cancer–derived cell lines, which show metabolite
abundances in the cell lines relative to one another (Fig. 4D),
and between tumors and normal adjacent tissue primarily in
Breast relative to Pancreas cancers (Fig. 4E), though note
these data do not adjust for differing normal levels of
metabolite abundance in different tissues. This is potentially
clinically significant since recent research has pointed to these
metabolites as potential cotargets for immuneoncology ther-
apeutics (48). Our analysis suggests that metabolomic phe-
notyping may be an important biomarker to stratify cancers for
susceptibility to this therapeutic strategy.

Evaluation of the Proteomic Profiles of Clinical Samples
Using MOMENTA

Having demonstrated the utility of the MOMENTA gene set
enrichment to more thoroughly interrogate differences in the
metabolic activity of cell lines, we extended our studies to
analyze the proteomic profiles generated for patient-derived
tumor specimens as reported in a recent CPTAC (Clinical
Proteomic Tumor Analysis Consortium) breast cancer study
(Fig. 5A) (49). Consistent with previous research on tumor
metabolic suppression and adaptation (9), our MOMENTA-
based Neighborhood enrichment analysis revealed a global
downregulation in many metabolic pathways (Fig. 5B and
supplemental Table S12) and an increase in specific metabolic
pathways, such as Urea Cycle/Amino Group, Lysine, and
Pyrimidine metabolism (Adj. p Value < 0.01). When compared
with the nutrient stressed cancer cells studied previously, we
see strong agreement in the metabolic pathway perturbations
in the Neighborhood enrichment results (Fig. 5C) and focused
on the Urea Cycle/Amino Group together with the Lysine
pathway, due to overlapping features (supplemental Fig. S5),
for further interrogation.
To independently confirm the pathway composition and

definitions for the metabolic models used in the MOMENTA
analysis, we downloaded tumor metabolite measurements
from the Pan Cancer Metabolism Data project (9). We plotted
the compound ion intensities reported for quantified metab-
olites in the Lysine and Urea Cycle/Amino Group metabolic
pathways in different tumors (supplemental Fig. S11). Strik-
ingly, of 14 cross-mapped metabolites, 13 (93%) were found
to be significantly (Adj. p Value < 0.05) increased in breast
cancer as compared with adjacent normal tissue. Moreover,
among all cancer types, 11 of 18 metabolites associated with
Lysine and Urea Cycle/Amino Group metabolism exhibited
significantly (Adj. p Value < 0.05) altered levels in tumors
(supplemental Fig. S12), though these data may be noisier due
to comparisons across multiple cancer types.
Approximately half (130 of 266) of the proteins in the

Neighborhood subnetworks were significantly (Adj. p Value <
0.05) differentially altered, showing substantial biochemical
rewiring of these metabolic pathways and functionally asso-
ciated proteins. While metabolic rewiring in nitrogen utilization
toward pyrimidine synthesis is a well-established biochemical
signature of cancer (9), this external validation serves as
important confirmation that specific pathway metabolites
predicted by MOMENTA solely on proteomics data are indeed
significantly altered. Unsupervised hierarchical clustering
based on just the levels of enzymes and associated proteins
implicated by the MOMENTA Neighborhood analyses that
map to Urea Cycle/Amino Group and Lysine pathways also
readily discriminated between the tumor and adjacent normal
samples (Fig. 5D).
We extended our analysis to examine the physical associ-

ations underlying each differential subnetwork, which revealed
mechanistic relationships between metabolites, enzymes, and
interacting (PPI) proteins contributing to the enrichment
signature (Fig. 5E). To investigate the functional basis of the
Urea/Amino and Lysine pathway groupings, we overlaid the
CPTAC tumor protein expression enrichment results together
with the results of our in vitro MDA-MD-231 cell line analysis.
Highly connected components in the combined subnetwork
(Fig. 5E) included the Histone-lysine N-methyltransferase
Mol Cell Proteomics (2022) 21(1) 100189 11



FIG. 5. Analysis of CPTAC clinical proteomics profiles using MOMENTA-based Neighborhood gene sets. A, analysis scheme for breast
cancer data downloaded from the CPTAC database. B, enrichment results based on Neighborhood gene sets comparing significant (Adj.
p Value < 0.01) pathways in tumors and adjacent normal samples. C, correlation of pathways inferred using different gene sets between the
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KMT2D, which was elevated in both datasets, suggesting
metabolic modeling is associated with epigenetic feedback.
KMT2D has been reported to physically interact with multiple
proteins associated with cancer and tumor progression,
including BCL9L (50), MEN1 (51), and UHRF1 (52). Related
enzymes, and their interacting (PPI) protein neighbors, were
likewise strongly upregulated in the phospho/proteomic data,
including SETD2, another histone lysine methyltransferase
implicated as a tumor suppressor (53), suggestive of a
metabolic regulatory mechanism operating in nutrient-
deprived breast tumors.
To independently validate the significance of these findings

using orthogonal data, we downloaded the breast cancer
mRNA expression and associated clinical outcomes data
(TCGA-BRCA) from the cBioPortal. After data processing, we
explored the mRNA expression profiles of 1045 patients to test
prognosis significance of ourMOMENTANeighborhood-based
signatures after applying a LASSO Cox model to automatically
perform feature (gene) selection.We then classified the patients
into high-risk and the low-risk groups based on a subset of the
Urea Cycle/Amino Group and Lysine gene features. Finally, we
generated a Kaplan–Meier plot to examine the survival differ-
ence between the high-risk and low-risk groups and found high
expression of a subset of genes in both the Urea Cycle/Amino
Group (Fig. 5F) andLysine (Fig. 5G)Neighborhood subnetworks
were significantly (p Value < 0.0001) associated with decreased
overall survival probability. Taken together, these results
establish the ability of MOMENTA to infer reproducible and
clinicalmeaningful changes in cancer cellmetabolic activity that
are associated with disease progression.
DISCUSSION

By leveraging existing knowledge, MOMENTA can provide
unexpected mechanistic insights into complex biological
processes associated with cellular metabolism. While recent
progress continues to be made on correlative relationships
between the metabolome and genome (54), we have
demonstrated the utility and importance of expanded func-
tional models for exploring connections between metabolism
and the proteome. We demonstrated the utility of our
approach for leveraging widely available proteomic data to
study more precisely the metabolic pathway perturbations
that occur in tumor cell lines and then extended the analysis to
study metabolomic variation in tumor samples. While we
established compelling agreement between direct metabolite
in vivo CPTAC and in vitro MDA-MB-231 cell culture data. D, heatmap o
Cycle/Amino Group and Lysine pathways used for hierarchical cluster
combined Urea Cycle/Amino Group and Lysine metabolic pathways and
CPTAC and MDA-MB-231 expression patterns. F, Kaplan–Meier curve
data reported for select proteins in the Urea Cycle/Amino Group Neighb
mRNA expression data for select proteins from the Lysine Neighb
MOMENTA, multiomic metabolic enrichment network analysis.
measurements and the metabolic pathway signatures identi-
fied from proteomic profiles, the experimental metabolite
coverage reported to date is often so limited that compre-
hensive and statistically significant interrogation of metabolic
pathways is not possible using metabolomic data alone.
Hence, MOMENTA addresses an important existing unmet
research need. While we demonstrate a greater degree of
signal in global metabolic pathway enrichments based on
proteomic measurements, over existing methods and ran-
domized controls, it is important to remember that the goal of
identifying a small number of actionable mechanisms in many
contexts of biological research is not necessarily served by
this metric. Boosting signal is helpful in cases where existing
methods do not reveal any signatures, or reveal too few, but
corroborating analyses will be required to help narrow down
and validate pathways.
One limitation of this approach is the reliance on existing

metabolic pathway annotations, which are prone to error,
incompleteness, and bias. While other methods capable of
network inference and the identification of de novo pathways
have been reported (25, 55), these methods may still be
impacted by the accuracy of individual molecular interactions
and pathways are useful to help narrow the search space for
validation. Additionally, a limitation of this method is the un-
derlying source networks. While the PPI are confidence-
weighted, this method does not capture or model the
diverse functional relationships between diverse bio-
molecules. Both protein and small molecule cofactors have
tremendously impactful roles on regulating metabolic activ-
ities, and these functional relationships are not well modeled
in this approach, beyond their inclusion as network nodes if
annotated in the metabolic model. As the reliability of PPI and
metabolic models improves, our analysis framework can be
easily updated to incorporate new, and increasingly accurate,
metabolic pathway and interactome information. Ultimately,
new methods of network distillation may be needed to model
complex biomolecular functions while still maintaining an
ability to perform rapid, interpretable, and global analysis.
An additional caveat is that certain aspects of metabolic

regulation that depend on localization to specific subcellular
compartments may not be captured (23) by any methods
based on global proteomic or metabolomic measurements.
However, by incorporating more proteins into the network-
based analysis that may be components of biomolecular
complexes involved in spatial compartmentalization, we pro-
vide a path to incorporate more granular functional information
f CPTAC proteomic results corresponding to the Neighborhood Urea
ing of tumor and adjacent normal samples. E, molecular network of
their associated Neighborhood proteins. Nodes are colored to show

showing clinical outcomes based on TCGA-BRCA mRNA expression
orhood. G, Kaplan–Meier curve for outcomes based on TCGA-BRCA
orhood. CPTAC, Clinical Proteomic Tumor Analysis Consortium;
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or, ultimately, sample-specific PPI data into the enrichment
analysis. Ultimately, defining a detailed molecular mechanism
will require follow-up and validation with more specialized,
targeted methods.
To stimulate broad community access to this rapid explor-

atory metabolic pathway analysis, we provide precomputed
metabolic gene sets (github.com/cnsb-boston/MOMENTA) for
integration into existing enrichment workflows, as well as a
stand-alone R script to enable automated enrichment analysis
from MOMENTA inferred subnetworks, along with efficient
visualization of the combined results to examine metabolic
pathway enrichment in one or more datasets. Since high-
throughput identification of metabolites remains challenging
(56), future efforts to understand the regulation and roles of
metabolic pathways in cancer and other diseases will benefit
from improved integration models incorporating additional
functional relationships and data types.
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