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Abstract

Psychotic disorders are severe, debilitating, and even fatal. The development of targeted and 

effective interventions for psychosis depends upon on clear understanding of the timing and nature 

of disease progression to target processes amenable to intervention. Strong evidence suggests early 

and ongoing neuroprogressive changes, but timing and inflection points remain unclear and likely 

differ across cognitive, clinical, and brain measures. Additionally, granular evidence across 

modalities is particularly sparse in the “bridging years” between first episode and established 

illness—years that may be especially critical for improving outcomes and during which 

interventions may be maximally effective. Our objective is the systematic, multimodal 

characterization of neuroprogression through the early course of illness in a cross-diagnostic 

sample of patients with psychosis. We aim to (1) interrogate neurocognition, structural brain 

measures, and network connectivity at multiple assessments over the first eight years of illness to 

map neuroprogressive trajectories, and (2) examine trajectories as predictors of clinical and 

functional outcomes. We will recruit 192 patients with psychosis and 36 healthy controls. 

Assessments will occur at baseline and 8- and 16-month follow ups using clinical, cognitive, and 

imaging measures. We will employ an accelerated longitudinal design (ALD), which permits 

ascertainment of data across a longer timeframe and at more frequent intervals than would be 

possible in a single cohort longitudinal study. Results from this study are expected to hasten 

identification of actionable treatment targets that are closely associated with clinical outcomes, and 

identify subgroups who share common neuroprogressive trajectories toward the development of 

individualized treatments.
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INTRODUCTION

Psychotic disorders, including schizophrenia (SZ), schizoaffective disorder (SZA), and 

bipolar disorder with psychosis (BDP) are severe, debilitating, and even fatal [1] and are a 

leading cause of disability world-wide [2]. Unfortunately, a majority of patients with 

psychosis experience functional impairments, even after symptom remission [3,4], 

underscoring further the need for effective, targeted treatments to improve outcomes. The 

development and implementation of targeted and effective treatments for psychosis is 

critically dependent on a clear understanding of the timing and nature of disease progression 

in order to target processes amenable to intervention.

Evidence of early and ongoing disease-related changes in brain and neurocognitive measures 

in psychosis, often referred to as “neuroprogression,” including cognitive dysfunction, gray 

matter reduction and ventricular enlargement, and regional structural and connectivity 

alterations, have been described using multiple modalities including neurocognitive testing, 

PET, CT, and fMRI imaging techniques, and post-mortem brain studies (Table 1) [5–93]. 

However, these studies rely mainly on cross-sectional data comparing groups at particular 

illness stages (e.g., high risk, first episode, established) to healthy controls or to each other. 

Existing longitudinal studies typically involve only two measurement points, or repeated 

assessment years apart, thereby limiting our understanding of the actual trajectories and key 

inflection points of these disease markers [94]. Thus, while it is evident that significant 

progressive brain changes occur during the years following an initial episode, the timing and 

course of progression across domains remains unclear. This knowledge gap limits our ability 

to develop interventions that capitalize on plasticity in key systems during this critical and 

dynamic period of illness, and hinders the development of targeted treatments when they 

may be most effective, potentially preventing further decline and chronic loss of functioning.

Early Psychosis: A Critical Period

The years after illness onset represent a critical period where early intervention strategies 

may be most effective, before irreversible brain alterations take place. Effective treatment 

after a first episode of psychosis (FEP) not only improves functioning but may actually alter 

illness trajectories placing patients on a path toward recovery [95]. Disease trajectories 

appear to crystalize in the years following an initial episode of illness, making this a critical 

period for intervention after which effectiveness may be greatly reduced [96,97]. While 

much is known about neuroprogressive changes in FEP and established illness, less is known 

about the course and timing of these changes in the “bridging years” between illness stages. 

The National Advisory Mental Health Council’s Workgroup Report recommended that in 

the identification of pathophysiological processes that contribute to symptoms or syndromes 

“[p]articular attention should be devoted to discovering the sensitive and critical periods 

when neuroplasticity in specific circuits is greatest and maximally responsive to 

intervention” [98]. This requires careful phenotyping of neuroprogression throughout the 

early course of illness and development of predictive models.
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Neuroprogression in Early Psychosis

Abnormalities of gray and white matter volume, network connectivity, and cognition are 

well-described in patients with established psychosis, and longitudinal research suggests that 

neuroprogression may continue well into chronicity in some patients [65,67,99]. However, 

neuroprogressive changes may begin much earlier in the illness course, some even prior to 

illness onset. Examination of cognition, gray matter, white matter, and connectivity at 

various stages of illness suggest that (1) measurable alterations exist in each of these 

domains and (2) abnormalities do not progress uniformly across stages of illness (Table 1). 

For instance, cognitive abnormalities appear to be present prior to illness onset in patients 

with SZ, becoming more widespread by the first episode with profiles qualitatively and 

perhaps quantitatively similar to chronicity in both BP and SZ [26]. In contrast, while gray 

matter (GM) and white matter (WM) reductions are reported in multiple frontal, temporal, 

and parietal regions by the first episode, and these markers appear to become more 

widespread and pronounced compared to controls into chronicity. Regionally, some brain 

volume abnormalities appear to be present in first episode at the magnitude seen in 

chronicity (e.g., hippocampal volume), whereas some structures (e.g., amygdala) that show 

significant abnormalities in established psychosis show no evidence of abnormalities in high 

risk [59,100]. Thus, neuroprogression is detectable early in the course of illness; however, 

neuroprogressive changes across modalities do not occur uniformly.

Neuroprogression and Illness Course

Neuroprogressive changes are related to disease course. Cognitive deficits are predictive of 

functional disability [3,24], and progressive gray matter loss and increased cerebrospinal 

fluid volumes are associated with symptom severity, clinical course, and poorer functional 

outcomes [48,65,101–103]. Associations amongst cognitive and brain measures suggest 

complex dynamics amongst these domains, and with illness course and functional outcomes 

[30,58,64,104–106]. For instance, in a recent study functionally connected brain regions 

“thinned together” in networks related to cognition, showing a dynamic interplay amongst 

cognitive, structural, and connectivity changes [107].

Together, findings suggest that neuroprogressive changes in the years following psychosis 

onset occur rapidly in many areas during an important neurodevelopmental window [94], 

with continued progression throughout the early and mid years. However, the current state of 

the literature is insufficient to carefully characterize neuroprogressive trajectories at key 

inflection points [29] and throughout the “bridging” years between onset and established 

illness—years that are critical for targeted intervention—for several reasons. First, studies of 

high risk participants often have very low rates of conversion to psychosis resulting in 

possible “dilution effects” [94,108,109]. Second, most longitudinal studies include only two 

assessment points forcing the assumption of linearity, and those with more assessments are 

typically years apart making it difficult to pinpoint inflection points in primary outcomes 

[94]. It has been suggested that repeated assessments (>2) at relatively short (i.e., at most 1 

year apart) intervals are needed to characterize the longitudinal trajectories in each of these 

neuroprogressive domains [94,110]. Other challenges include considerable methodological 

variation across studies (e.g., definition of key grouping characteristics (e.g., DOI in first 

episode studies); inter-scan interval; analysis approach). Additionally, as can been seen in 
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Table 1, relatively few studies focus explicitly on the years between onset and chronicity, 

despite the critical nature of the early course of illness in terms of prognosis and 

intervention.

Heterogeneity in Cognition and Neurobiology

Heterogeneity of premorbid adjustment, illness course, and outcomes is the rule rather than 

the exception in psychotic disorders, (e.g., [62]), and identifiable subsamples may differ in 

neuroprogressive degree and trajectory (e.g., [111]). Recent reports suggest that 

abnormalities in brain structure and connectivity are associated with cognitive subtypes in 

psychosis [112–114]. A recent study found that baseline neurocognitive functioning 

predicted gray matter reductions in multiple brain regions two years later [115], suggesting 

that baseline profiles may predict neuroprogressive course. While heterogeneity can interfere 

with our ability to identify associations and timelines at the group level, it may be possible 

to leverage this heterogeneity to identify subgroups that share similar behavioral and 

neurobiological presentation and course toward more individualized prediction and 

treatment implementation.

Goals and Hypotheses

Evidence strongly indicates that neuroprogressive changes occur across brain and cognitive 

measures in patients with psychosis at the time of first episode and throughout the early 

course of illness. Nonetheless, no studies to date have undertaken the systematic 

characterization of neuroprogression throughout the early course of illness at a granular level 

using multimodal assessments in a transdiagnostic sample. Thus, our objective with this 

project is the systematic, multimodal characterization of neuroprogression through the early 

years of illness in a cross-diagnostic sample of patients with psychosis. We hypothesize that 

(1) by interrogating neurocognition, structural brain measures, and network connectivity at 

multiple assessments across the first eight years of illness we will identify clear 

neuroprogressive trajectories along our primary outcome variables, and (2) neuroprogressive 

trajectories will be predictive of clinical and functional outcomes. To accomplish this 

objective within the project timeline, we will use an accelerated longitudinal design (ALD, 

described below) modeling multiple neuroprogressive markers by duration of illness, and in 

association with key clinical and functional measures. A central aspect of this project is that 

it builds upon the rich neuroimaging, cognitive, and clinical data being collected by the 

Human Connectome Project in Early Psychosis (HCP-EP; PI: Dr. Martha Shenton). Data 

collection for this longitudinal study will occur across the Boston HCP-EP sites, and it is 

estimated that approximately 75% of baseline data for the present project will be drawn from 

existing data collected in the context of the HCP-EP.

MATERIALS AND METHODS

Participants

192 patients with DSM-V non-affective (schizophrenia, schizophreniform, schizoaffective, 

psychosis NOS, delusional disorder, brief psychotic disorder) or affective (major depression 

with psychosis or bipolar disorder with psychosis) psychosis as determined by SCID-5-RV 

for DSM-V-RV interview [116] will be enrolled. As noted above, it is expected that 
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approximately 75% of these subjects will have participated previously in the HCP-EP. 

Patients will be between the ages 18–35 at enrollment, and between the ages of 17 and 30 at 

the time of their first episode. Duration of illness will be determined via the SCID interview, 

together with all available collateral data from medical records, treatment providers, and 

family members. Subjects must have capacity to provide informed consent. Exclusion 

criteria include MRI contraindication, IQ less than 70 based on medical history or WASI-II 

[117], DSM-V diagnosis of substance-induced psychosis or psychotic disorder due to 

medical condition [116] and known brain damage. We will also recruit 36 control 

participants. Exclusion criteria for control participants include history of DSM-V diagnosis 

or psychiatric treatment, and all other exclusion criteria noted above. All procedures have 

been approved by the Partners Healthcare Human Research Committee/IRB, and comply 

with the regulations set forth by the Declaration of Helsinki.

Materials

In order to capitalize on existing data and maximize comparability between data sets, we 

will use identical materials and procedures to those currently implemented by the HCP-EP. 

Participants will be reassessed at the same site as their original assessment, including MRI 

scans.

Behavioral measures—Behavioral measures include the NIH Cognition Toolbox [118], 

psychosis-relevant HCP Lifespan measures, and additional measures for early psychosis 

including: (1) Hollingshead Two-Factor scale [119], measure of parental SES; (2) SCID-5-

RV in conjunction with medical records and patient/family clinical interviews to confirm 

diagnosis; (3) The Positive and Negative Syndrome Scale (PANSS) [120]; (4) The Clinical 

Assessment Interview for Negative Symptoms (CAINS) [121]; (5) The Young Mania Rating 

Scale (YMRS) [122]; (6) The Montgomery-Asberg Depression Rating Scale (MADRS) 

[123]; (7) The MIRECC Global Assessment of Functioning (GAF) [124]; (8) HCP-EP 

Lifetime Medication Record, which assesses past and current medication use; 9) WASI-II 

Vocabulary and Matrix Reasoning to estimate IQ, and 10) the Seidman Auditory Continuous 

Performance Test (CPT [125,126]).

Medications represent an important covariate in the study of progressive changes in brain 

and behavior. We will collect detailed information about mediation use at each assessment, 

and account for medication effects using analytic models of antipsychotic, Lithium, and total 

medication load both as moderators and confounders in order to examine the potential role 

of medications in neuroprogression.

Neuroimaging: MR data acquisition protocol—Imaging data will be collected on two 

Siemens MAGNETOM Prisma 3T scanners, one at McLean and one at Brigham and 

Women’s Hospital. Both use a 32-channel head coil and are actively collecting HCP-EP data 

using the same sequence employed here. This protocol is similar to the original HCP 

Lifespan protocol [127], but without the fMRI task, as many subjects with psychotic 

disorders may not easily tolerate lengthy MR sessions. Total scan time is just over one hour. 

The scan sequences include: (1) Localizer and Auto Align Scout; (2) Structural T1w 

(MPRAGE) (0.8 mm isotropic; T1 1000 ms; TR 2400 ms; 208 slices) and T2w (SPACE) 
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(0.8 mm isotropic; TR 3200 ms; 208 slices) (3) Resting state fMRI (rfMRI) of 2mm 

isotropic; multiband (MB) acceleration × 8; TR 720 ms; acquired twice: once with AP and 

once with PA phase encoding; 4) Diffusion MRI (dMRI) 1.5 mm isotropic; TR: 3230 ms; 

TE: 89.20 m; flip angle 78°; MB acceleration × 4, 92 directions in each shell (b = 1500 and 

3000) acquired twice: once with AP and once with PA phase encoding. Field maps will be 

acquired to correct for intensity and geometric distortions.

Procedures—This project employs an accelerated longitudinal design (ALD) in order to 

cover the desired timeframe within the constraints of the project. ALDs follow enrollment 

cohorts longitudinally and thus model both within subject longitudinal and between subject 

group effects. While most ALDs use age to define cohorts, we will use duration of illness 

(DOI), which will allow us to estimate DOI-related trends in our primary outcomes. The 

timing of repeated assessments will be calibrated to each individual’s DOI resulting in 

measures that span the range from 0 to 88 months after illness onset. We selected a 

“balanced ALD”, meaning equally spaced measurements across the study, the same number 

of measurements per cohort, and equal overlap between successive cohorts (in this case, no 

overlap; see Table 2).

Data collection schedule—Assessments will be conducted at baseline, 8-months and 

16-months to fully cover the early course of illness (Table 2) at equally-spaced assessments, 

minimizing overlap of assessment points amongst cohorts (desirable in an ALD [128]). 

Baseline assessments include MRI scan, clinical and diagnostic interviews, and 

neuropsychological assessments. Follow up at 8- and 16-months will consist of the MRI 

scan, clinical and neuropsychological assessments. The follow up interval was selected 

because scans at least annually have been recommended for assessment of changes that 

occur relatively rapidly (e.g., [20,94]) as may be the case after psychosis onset [62], and 

coverage of the time between onset and established illness is needed to fill a critical 

knowledge gap. Thus, in the context of an ALD, assessments at 8-month intervals permits 

frequent assessments at multiple assessment points—important for assessment of trajectories 

without forcing an assumption of linearity [20,94]—while covering nearly 8 years after 

illness onset. Control participants will also be assessed three times at baseline, 8- and 16-

months.

Behavioral assessments—Follow-up assessments involve approximately 3–3.5 h of 

behavioral, clinical, cognitive testing. Baseline assessments will also include a clinical 

diagnostic interview that will add approximately 1.5–2 h. Total assessment time for baseline 

procedures is expected to take approximately 4.5–5 h over two or more days, within days of 

the imaging. Participants are provided lunch and/or snacks during the assessment, as 

appropriate. Reliability was established on all Toolbox measures prior to the start of 

enrollment. Reliability and consensus diagnosis is ongoing for all diagnostic interview, 

conducted on a monthly basis with all diagnostic team staff across sites.

MRI scans—Subjects complete MRI safety screening prior to scanning. Procedures are 

described to subjects and they are helped into the scanner by study staff and an MRI tech at 

the scanning site. Subjects are instructed to remain still during scanning and deformable 
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foam cushioning is used to stabilize the head. Real time image reconstruction and processing 

are used for quality assurance at the time of scanning. Total scan time is just over 1 h; with 

MRI safety checks total time at the scan site is approximately 1.5 h.

All MRI data processing and storage are completed via a central database system at Brigham 

and Women’s hospital, which has been customized to host the project data and to manage 

daily operations and QC procedures and synchronized to receive data directly from McLean. 

This upload tool automatically strips all PHI prior to upload, and de-identified data from 

both sites with QC are stored in this database system. Automated verification of scan 

acquisition parameters at the time of the scan are followed by a manual review, and a semi-

automated QC procedure developed to detect signal drops is run for each scan. Because two 

different scanning sites will acquire data, special considerations have been taken to ensure 

that the data quality is homogeneous across sites. Harmonization procedures include 

Siemens specific QA tools, phantom measurements (fBIRN and NIST phantoms), and 

traveling human subjects. Scanner reliability was assessed both between scanners and using 

test-retest assessments within scanners. Intraclass correlations (ICC) were computed on 

Freesurfer outputs including total GM volume, subcortical GM volume, cortical WM 

volume, brain segmentation volume, and total ICV, and regionally specific measures based 

on our primary outcomes. We found ICCs of 0.98–0.99 for broad measures, and 0.90–0.99 

for regional measures.

Planned analyses—Our primary aim is to map neuroprogression across the first 8 years 

of illness. We will fit latent growth curve models to the repeated measures of our cognitive 

and MRI measures on the full sample using techniques that permit the functional form of the 

trajectories to be determined by the data. Each model will include initial DOI as a covariate 

to separate between-subject differences from within-subject changes as a function of current 

DOI at each assessment point [129,130]; the model will also include age at assessment to 

evaluate the effects of natural aging, which will also be estimated from the control 

participant data, as well as demographic and clinical covariates. By including the between-

subjects and within-subjects separately in the models we are able to determine the extent to 

which trajectories are more strongly associated with longitudinal change over DOI, or cohort 

effects. These methods allow examination of inflection points in primary outcome 

trajectories, and peaks and valleys by DOI. We will also examine diagnostic differences in 

trajectories.

To evaluate the predictive utility of neuroprogressive change on clinical and community 

functioning, we will conduct a second set of latent growth curve analyses on clinical and 

functional measures. We will then build predictive models of our clinical and functional 

outcomes based on within-subject changes in neuroprogressive markers. We will also 

explore the possibility that subgroups of subjects demonstrate distinct neuroprogressive 

trajectories, and differences in clinical and functional outcomes based on these groups using 

growth mixture models (GMMs). GMMs, an extension of multiple-group growth curve 

models in which the grouping variable is not specified a priori, can be used to identify 

subgroups within the data and describe differences in longitudinal trajectories between 

subsamples. Finally, we will conduct explicit tests of fully dimensional models and 
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combined dimensional and categorical models based on the latent class trajectories 

groupings.

DISCUSSION

Determining the timing and course of neuroprogressive changes over the early course of 

psychosis is essential to the development and implementation of targeted, individualized 

treatment during a critical time period in which treatments may be maximally effective and 

the potential for preventing further decline and chronic loss of functioning is at its greatest. 

Results from this study will (1) hasten the identification of actionable treatment targets that 

are closely associated with clinical outcomes in order to capitalize on islands of preserved 

plasticity and maximize their clinical utility, and (2) provide guidance for individualized 

treatment.

This project includes several key innovations. First, these data will be the first to 

characterize multiple markers of neuroprogression throughout the early course of psychosis, 

including inflection points, stabilization points, and associations with clinical course, in a 

transdiagnostic sample and within a single study paradigm covering the critical years 

between first episode and established illness. These findings will not only elucidate 

neuroprogressive processes that are as yet unknown, but will hasten our ability to design 

treatments in the early course of illness that target actionable mechanisms, potentially 

preventing further decline and chronic loss of functioning. For instance, if neurocognitive 

decline predates and predicts structural brain degeneration in associated regions, early 

treatments targeting cognition for patients with cognitive deficits may improve cognition and 

halt progression of gray matter loss. Indeed, Eack et al. [131] found that cognitive 

remediation both improved cognition and slowed gray matter loss in patients with SZ. 

Additionally, we will examine heterogeneity of neuroprogressive trajectories and their 

associations with clinical and functional course. The use of an accelerated longitudinal 

design (ALD) will allow ascertainment of data across a longer timeframe than would be 

possible in a single cohort longitudinal study, and at more frequent intervals than may be 

feasible in the same subjects over eight years [128]. To our knowledge this is the first study 

to employ an ALD based on illness duration in early psychosis. Of course, the use of an 

ALD rather than a fully longitudinal design in a single cohort introduces the possibility of 

cohort effects, but we feel that the benefits outweigh the costs by permitting coverage of the 

full 8 years of interest while reducing the likelihood of large-scale attrition over such a long 

follow up thereby reducing power especially in the later years, frequent enough inter-

assessment intervals to capture inflection and stabilization points in a more fine-grained way, 

and the potential to fit non-linear models by including 3 assessments per participant. 

Additionally, we are in a unique position to leverage a major ongoing study of patients in 

early psychosis to achieve our aims, capitalizing on both the innovations of the HCP-EP and 

the timing of the study. The HCP-EP is currently enrolling, allowing us to incorporate 

longitudinal data to the project while data collection is ongoing, and existing data will serve 

as baseline assessments for a large proportion of the sample allowing us to increase overall 

enrollment and follow-up and thereby increase power adequately to perform the analyses 

described above.
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Table 2.

Assessment Schedule by Cohort.

Months Since Onset 0 8 16 24 (2 year) 32 40 48 (4 year) 56 64 72 (6 year) 80 88

Cohort 1 (0 years) × × ×

Cohort 2 (2 years) × × ×

Cohort 3 (4 years) × × ×

Cohort 4 (6 years) × × ×

Assessment schedule by time (months since onset) and duration of illness-defined cohort.
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