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Abstract

The subcortical mechanisms subtending the sensorimotor processes related to the periper-

sonal space (PPS) have been well characterized, whereas less evidence is available con-

cerning the cortical mechanisms. We investigated the theta, alpha and beta event-related

spectral perturbations (ERSP) while holding the forearm in different positions into the PPS

of the face. Fifty healthy individuals were subjected to EEG recording while being provided

with median nerve electric stimulation at the wrist of the right hand held at different hand-to-

face distances. Theta and beta rhythms were significantly perturbed depending on the

hand-to-face distance, whereas alpha oscillations reflected a more general, non-specific

oscillatory response to the motor task. The perturbation of theta and beta frequency bands

may reflect the processes of top-down modulation overseeing the conscious spatiotemporal

encoding of sensory-motor information within the PPS. In other words, such perturbation

reflects the continuous update of the conscious internal representations of the PPS to build

up a purposeful and reflexive motor response.

Introduction

The brain processes environmental information depending on their origin—that is, whether

they arise from the body or the extrapersonal or peripersonal space (PPS). The latter refers to

“the nearby representational space in terms of what was reachable—that is, within range of the

arm’s reach” [1].

Multisensory information arising from the PPS is processed together to build an internal

spatio-temporal reconstruction of the neighboring environment with a body part-centered

frame [2]. An example of these sensory processes is represented by visuo-tactile integration

between tactile stimuli, provided on a surface of the body, and visual stimuli, presented close

to the stimulated body surface [3]. The internal spatio-temporal reconstruction of the PPS

allows (i) building up purposeful motor behaviors aimed at interacting with objects and per-

sons, e.g., to grasp food and useful objects, and (ii) controlling the subcortical networks

(namely, top-down modulation) generating reflex responses to avoid threats near the body,
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e.g., to avoid a bee flying towards the face [3–17]. To internally reconstruct the PPS, it is

required combining information on the spatial properties of the environment with the infor-

mation on the current capacity to act [18].

The neuroanatomical substrates of such internal spatio-temporal reconstruction and of the

PPS-related motor plan generation have been partially characterized in humans using tran-

scranial magnetic stimulation and fMRI [19–25]. These studies identified a PPS-related com-

plex network encompassing ventral premotor, intraparietal, occipital and somatosensory areas

through which the location and timing of multisensory stimuli are coded into body part-cen-

tered PPS coordinates. Indeed, perceiving objects in the PPS activates a neural network largely

overlapping the one subtending voluntary motor action and motor imagery [18]. Furthermore,

the boundaries of PPS are continuously tuned depending on body part movements and posi-

tions; last, they are flexible because they adapt to experience [3,5,15,26–27].

On the other hand, the neurophysiological basis subtending PPS functions is still only par-

tially understood. It has been suggested that the subcortical circuits (brainstem, spinal cord)

mediating PPS-related responses undergo a top-down modulation from higher-order cortical

areas depending on many factors, including the position of the hand toward the PPS [24–

25,28–32].

This top-down modulation has been estimated by measuring the changes in the magnitude

of several brain responses (including fMRI BOLD signals, event-related potentials, and the

hand-blink reflex) to various distances between a target and the PPS of the face during multi-

sensory or sensorimotor paradigms [33–37]. Specifically, the magnitude of the evoked brain

response has been found to be proportional to the distance of the target, e.g., the hand, from a

body surface, e.g., the face [38–40], in keeping with the temporal rules of multisensory integra-

tion [17,24,28–32].

Indeed, bimodal stimulation at the same location in the PPS or in the same hemispace to

tactile stimuli elicits greater brain responses compared to the algebraic sum of the responses to

unimodal single stimuli, even within the same location in the PPS or in the same hemispace to

tactile stimuli [28,31]. This distance-dependent response is also suggested by the sensitivity of

the extinction phenomenon (i.e., the inability to perceive multiple stimuli of the same type

delivered simultaneously) to the body-target distance (e.g., face-hand) in patients with right

brain damage [41–43].

A still debated issue is the degree of awareness related to PPS processing [44]. The knowl-

edge of PPS related-awareness may be important to better understand the neurophysiological

basis of neurological or neuropsychiatric disorders involving the PPS, including neuropsychi-

atric disorders [45], cognitive decline [46], and chronic Disorders of Consciousness [47].

The fact that PPS partially activates a neural network overlapping with those subtending

voluntary motor action and motor imagery and, partially, consciousness generation and main-

tenance [21,48] would support the hypothesis of consciousness of the PPS. Indeed, the activa-

tion of the PPS network may presuppose as many different levels of awareness as different the

aspects of the sensorimotor processes related to PPS are, including attention (top-down con-

trol), target position within the PPS, threatened body area, cognitive expectation about the

stimulus, potential cross-modal link between different stimuli, the spatial extent of PPS (the

amplitude of PPS-related responses is modified if sight is somehow limited), the social content,

the functional consequences of sensory information (i.e., protective and goal-directed

responses), and the cortico-subcortical control of the brainstem and spinal circuitries mediat-

ing PPS-related reflex responses [3,5,49–54].

A suitable way to assess awareness related to PPS may be represented by EEG analysis. A

few studies investigated brain oscillations elicited during multisensory tasks perturbing the

PPS [55–56]. It has been shown that the motor coding of visual objects within the PPS is
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expressed in the alpha band (8–13 Hz), depending on the object location and the goal of the

motor task. However, partial knowledge is available on the changes of sensory-motor rhythms

during PPS-related motor tasks. Studying these rhythms and, in particular, their top-down

modulation may offer useful information concerning PPS-related movement planning and

execution and their level of awareness, as specific modulation of brain responses evoked by

PPS perturbation would suggest awareness of the PPS [46–47,57–59]. To this end, we investi-

gated the spatial rules of a visuo-tactile interaction task targeting the PPS of the face. We

employed the paradigm of hand-blink reflex elicitation described by Sambo and Iannetti [52–

53]. Specifically, we estimated the effects of some spatial configurations (i.e., different hand-to

face-distances) on the magnitude of brain response measured by event-related spectral pertur-

bation (ERSP) in a sample of healthy individuals. ERSP coincides with the event-related

dynamics of the EEG spectrum induced by, but not phase-locked to, the onset of a stimulus;

thus, ERSP reveals aspects of event-related brain dynamics not contained in the ERP average

of the same response epochs [60–61]. We focused on theta, alpha, and beta ERSP as these may

reflect diverse sensorimotor processes under dissimilar spatial configurations, i.e., diverse

hand-to-face distance [62–64].

Materials and methods

Participants

Fifty healthy right-handed volunteers (31 males and 19 females), aged between 23 and 45 years

(33±5 years), were enrolled in this study. Only self-reported right-handed subjects were

included in the study to avoid a handedness confound. Moreover, the handedness was assessed

by the Edinburgh Inventory [65], and only subjects with a high, positive scoring (suggesting

strong right-handedness) were recruited. Last, subjects were excluded from the study if infor-

mation from a standardized questionnaire suggested the possibility of any neurological disor-

der, particularly perinatal asphyxia or kernicterus, head trauma, loss of consciousness,

epileptic seizures, meningitis or encephalitis, or delayed or disturbed language development.

All procedures performed in studies involving human participants were in accordance with

the ethical standards of the institutional and/or national research committee and with the

1964 Helsinki declaration and its later amendments or comparable ethical standards. The local

Ethics Committee of the IRCCS Centro Neurolesi Bonino Pulejo (Messina, Italy) approved

the study. Informed consent was obtained from all individual participants included in the

study.

Experimental design

Subjects were sitting in a comfortable armchair reclined at 45˚, in a quiet and mildly lit room

with the right hand put at rest on the ipsilateral thigh, the palm facing up, and the eyes open.

They were asked to look straight forward at a point marked on a wall. The subjects were

invited (verbally by the experimenter) to hold the right forearm for 20 seconds at a pre-estab-

lished distance between the hand and the face. We employed the ultrafar position, p0, with the

hand lying on the thigh; the far position, p1, with the hand held between the thigh and the

face; and the near position, p2, with the hand held at ~4cm from the face (Fig 1).

Thus, the hand was visible by the subject only in the far and near positions, as the thigh was

out of sight (Fig 1). The order of the positions to be held was random; the participants were

instructed on how to hold the right forearm and which were the positions to be held through a

video before starting the experiment.

While holding the hand in a position, the subject was provided with a single brief electric

stimulus (square wave pulse) at the median nerve at the right wrist [66–67], between 8 to 12

Neurophysiology of PPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0218675 June 24, 2019 3 / 17

https://doi.org/10.1371/journal.pone.0218675


seconds after having started to hold the position. The square wave pulses were applied to the

median nerve at the right wrist using a bar-electrode (located slightly medial and proximal to

the styloid process of the radius and just lateral to the tendons of the wrist) wired to a con-

stant-current stimulator (Digitimer D-160 stimulator; Digitimer Ltd, Welwyn Garden City,

Herts, UK). The cathode was located proximally and the pulse width was 500 μs. The stimula-

tion intensity was set at 1.5 times the individual sensory threshold (defined as the minimum

stimulation intensity resulting in sensation in the vicinity of the disk electrodes in at least 5 out

of 10 consecutive trials with the hand kept at rest), tested by tuning the stimulation intensity

Fig 1. Experimental design.

https://doi.org/10.1371/journal.pone.0218675.g001
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in ±0.5mA steps. Thus, the subject was invited to move and then hold the upper limb in

another hand-to-face position (randomly among p0, p1, and p2, avoiding position repetition).

Each position was repeated 50 times in a random order during the experiment while recording

the EEG. Participants were required to count mentally the stimuli they received, given that

attention can interfere with brain plasticity also when employing repeated nerve stimulation

(Stefan et al. 2004).

In a separate control session (in a different day), 25 healthy individuals, age- and gender-

matched to the main group, were subjected to a different motor task while recording EEG.

Specifically, the forearm positions to be held (paired with the same brief electric stimulus at

the median nerve at the right wrist) were toward and away from the thigh in a horizontal plane

(at 90˚, 45˚, and 0˚ from the thigh). This control experiment was necessary to control for hold-

ing the arm in various positions of equal distance away from the face and to control for focus

and attention. Further, it is known that the brain elaborates sensorimotor information in a dif-

ferent way whether they come from the extra-personal space or PPS, and depending on the

direction of target movement toward and away from a body part [7,68–71]. Thus, it is manda-

tory to check for different levels of awareness whether the stimulus falls within the extra-per-

sonal space or PPS, and depending on the cognitive demand for the proper motor output

generation (behavioral or defensive).

EEG recording and analysis

EEG was continuously recorded during the experiment using a BrainQuick System (Micro-

med, Mogliano Veneto, Italy) equipped with a 21-channel cap. EEG data in microvolts (μV)

were sampled at 512Hz, referenced to the linked mastoids (checking for impedance asymme-

try), and filtered at 0.3–45Hz. EEG was segmented into 12s epochs, [-6:6]s with respect to the

electric stimulus provision (0 time). The electric stimulus provision occurred at each of the

hand positions, which was changed 50 times during the experiment. Thus, 150 epochs were

obtained (50 for each of the hand position). Trials contaminated by eye blinks (i.e., Fp1 or Fp2

exceeding ±60μV relative to baseline), EOG movements (exceeding ±30μV relative to baseline

as measured by flat electrodes placed on the outer canthi of the eyes, under the right eye and

over the ear lobes to capture any eye movements and blinks), or other artefacts within 800ms

after electric stimulus provision (a voltage exceeding ±60μV relative to baseline), were

excluded from the analysis. Further, Independent Components Analysis (ICA) was used to

identify and reject artefactual trials.

Then, about 125±7 artifact-free EEG segments were used to calculate the spectral energy on

pooled electrodes (frontal, pooled across Fp1,F3/7,Fz and Fp2,F4/8,Fz; centroparietal, C3/P3,

Cz and C4,P4,Pz; temporal, T3/5 and T4/6, and occipital, O1 and O2) and frequency bands

(theta 3.5–8Hz, alpha 8–12Hz, and beta 12–30Hz), using a sinusoidal wavelet transform [72].

The energy was extracted for and log-transformed on each trial separately. Time-frequency

decomposition was applied to all the segmented data, comparing the energy of the mean pre-

stimulus [-4:0]s to the mean post-stimulus period [0:6]s. A paired t-test was applied for each

frequency band on the pooled electrodes. By averaging and baseline-correcting these trials to

[-6:-4s], we obtained the ERSPs [73].

Owing to the exploratory nature of our study, we focused on the general tendency in the

post-stimulus oscillation pattern (that is, the increases and decreases of the energy around

each region of interest) rather than the precise timing of the differences. So, we adjusted a

2-degree polynomial regression on the baseline-corrected [0:6]s spectral energy of each trial

separately for the three frequency bands using least-squares.
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Statistical analysis

Hand-position effect on each frequency-band ERSP was tested using paired t-tests (one-way

repeated measures ANOVA) with 2000 permutations and false discovery rate correction for

multiple comparisons. Hand-position effect on ERSPs was assessed using unpaired t-tests. Sta-

tistical significance was set at p<0.05. Then, we extracted three features for each trial and fre-

quency band: the intercept (the baseline corrected energy at 3 sec post-stimulus), the slope

(the linear tendency of the post-stimulus energy), and the quadratic effect (signaling a U-shape

or its inverse for a positive or, respectively, negative coefficient). Each of the six (dependent)

variables obtained (feature × frequency band) was subjected to an ANOVA with electrode pool
(four levels) and hand-to-face distance (three levels) as factors, thus getting 72 values per trial.

Statistical significance was set at p<0.05. Post–hoc paired t–tests adjusted for multiple compar-

isons with the Bonferroni method were thus performed.

Results

All the participants performed the task without any difficulty. Post-stimulus spectral changes

were largely visible (Fig 2). ERSP data are enclosed in S1 Table.

We observed a significant post-stimulus frontal theta ERSP (t(1,49) = -11, p<0.0001), a sig-

nificant centroparietal alpha ERSP (t(1,49) = -9, p<0.0001), and a significant frontal beta ERSP

(t(1,49) = 17, p<0.0001). Even though we focused on the general tendency of the ERSP in the

post-stimulus period rather than the precise timing of the ERSP at different distances between

the hand and the face, the near position induced a clear spectral perturbation within frontal

electrodes in theta (100–700 ms) and beta frequency range (700-1500ms) compared to the far

and ultrafar positions. On the contrary, we constantly found a centroparietal alpha ERSP start-

ing soon after the electric stimulus at the wrist and progressively decreasing in magnitude up

to the epoch end (100–2800 ms). As illustrated in Fig 3, theta and beta ERSPs were dependent

on hand-to-face distance, i.e. ERSP was more evident at p2 (p = 0.005) and p1 (p = 0.006) com-

pared to p0 in both of the frequency ranges. On the contrary, alpha frequency range was not

dependent on hand-to-face distance (all comparisons p = 0.5).

To further characterize the post-stimulus spectral changes, we tested the electrode-pool ×
hand-to-face-distance ANOVA interaction for each of the six (dependent) variables obtained.

Each of the features showed a significant effect of the factor electrode-pool (Table 1), whereas

only the theta and alpha frequency range showed a significant effect of hand-to-face distance,

parallel to the lack of hand-to-face distance effect on the ERSP magnitude.

We also estimated the temporal evolution of the energy for each of the frequency bands

(Fig 4). Overall, near position led to growing by epoch time and hand position-dependent

energy magnitude (i.e., higher in near compared to far and ultrafar positions) only in the theta

and beta bands.

All the ERSP features, ANOVA data, and feature data analyses related to the control experi-

ment were non-significant with the exception of a centroparietal alpha ERSP (t(1,24) = -9.9,

p<0.0001). The features of such alpha ERSP were significant for the electrode-pool factor

(intercept F(1,24) = 25, p<0.0001; slope F(1,24) = 111, p<0.0001; quadratic F(1,24) = 177,

p<0.0001), but not for the hand-to-face-distance factor and electrode-pool × hand-to-face-dis-
tance interaction.

Discussion

Our data indicates that specific ERSPs within the frontal and centroparietal electrodes were

elicited by the actual distance between the hand and the face. In particular, only theta and beta

ERSPs were specifically dependent on the hand-to-face distance. Indeed, the near position
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induced a clear theta (early) and beta ERSP (later) within frontal electrodes compared to the

far and ultrafar positions. On the contrary, we found a clear centro-parietal alpha ERSP that

progressively decreased up to the end of the epoch. Last, we found a post-stimulus increase in

all the ERSP coefficients.

Fig 2. ERSP plots of pooled electrodes in frontal and centroparietal scalp sites. Electric stimulus onset is at 0ms.

Pairwise headplots indicate the left the ERSP topography at specific periods, the right the two-dimensional grand mean

t-maps (negative t-test value indicates a post-stimulus ERSP increase).

https://doi.org/10.1371/journal.pone.0218675.g002
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Changes in sensorimotor rhythms normally occur during execution, observation, and

imagery motor tasks, as well as during steady posture [74–77]. However, it is not completely

understood whether these represent conscious processes, also with regard to PPS [77–82]. We

suggest that the spatio-temporal perturbation of theta and beta frequency bands may be the

Fig 3. Event-related spectral perturbation (ERSP) time course across hand positions. ERSP are highlighted only for

the significant electrode-groups.

https://doi.org/10.1371/journal.pone.0218675.g003
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marker of the top-down cognitive control that the frontal areas exert on the sensorimotor pro-

cesses within the centroparietal areas occurring during a task execution [55–56,83–87]. Specifi-

cally, beta ERSP may be a marker of the purposeful motor preparation processes in relation to

objects approaching the PPS [5,55–56,85]. In other words, beta oscillations may reflect the

motoric “status quo”, that is, the dynamic remapping of motoric representation (of the PPS) as

a function of the sensory-motor transformations required by the action kinematics in view of

action execution [86–87].

On the other hand, the motor preparation-related cognitive processes, including working

memory and attention, may be expressed by the theta ERSP [88–89]. The consequence of

the frontal theta-beta perturbation was the long-lasting alpha ERSP, in which the magnitude

was instead independent of hand-to-face distance. This response was also detectable in the

control experiment not targeting the PPS, differently from theta-beta ERSPs, but it was sub-

stantially shorter and smaller in amplitude. Therefore, alpha ERSP may represent a PPS per-

turbation-related arousal phenomenon correlated with motor action preparation in response

to the PPS-approaching target, even though it is not as specific as the theta-beta ERSP is [90–

97].

Concerning the features of spectral perturbation, the post-stimulus increase of all the ERSP

coefficients suggests a sustained mental activity during the post-stimulus period, thus propos-

ing the involvement of an attentional load in the processing of the coupled visual (hand posi-

tion) and sensory (electric stimulus) information [98–99]. The increase of the three ERSP

coefficients suggests a shift of attention to facilitate the processing of stimuli, both attended

and unattended [100–102].

Altogether, the spatio-temporal perturbation of the ERSPs and the modulation of the

ERSP specific features suggest that the sensorimotor processing related to PPS may occur at

a conscious level. This is further suggested by the potential entrainment of a frontoparietal

networks overlapping with that subtending voluntary motor action and motor imagery and,

partially, consciousness generation and maintenance [3,5,21,34,36,48,57,103]. Last, PPS acti-

vation may perturb the thalamo-cortical sensory gating mechanisms to facilitate sensory flow

and increase cortical excitability to prompt motor responses. Therefore, theta-beta ERSP

changes may express a higher level of cortical activation within frontoparietal networks

related to the movements of the hand within the PPS and, likely, their conscious awareness

thereof [63,104].

Table 1. Significant ANOVA values.

electrode-pool (F(3,147)) hand-to-face-distance

(F(2,98))

electrode-pool×
hand-to-face-distance (F(6,294))

Alpha intercept F = 20 p<0.0001 p>0.2 F = 13 p<0.0001

slope F = 19 p<0.0001 p>0.2 F = 14 p<0.0001

quadratic F = 17 p<0.0001 p>0.2 F = 16 p<0.0001

Beta intercept F = 18p<0.0001 F = 16p<0.0001 F = 15 p<0.0001

slope F = 21 p<0.0001 F = 19 p<0.0001 F = 19 p<0.0001

quadratic F = 19 p<0.0001 F = 17 p<0.0001 F = 14 p<0.0001

Theta intercept F = 6.1 p = 0.004 F = 18p<0.0001 F = 13p<0.0001

slope F = 5.3 p = 0.001 F = 21 <0.0001 F = 11 <0.0001

quadratic F = 15 p<0.0001 F = 16 p<0.0001 F = 51 p<0.0001

ANOVA values (F, p) associated with each parameter (intercept, slope, and quadratic effect) in the three frequency bands (theta, alpha, and beta) for the principal effects

of each factor (electrode-pool and hand-to-face-distance) and their interactions.

https://doi.org/10.1371/journal.pone.0218675.t001
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Fig 4. Evolution of the spectral energy based on the three parameters (intercept, slope, and quadratic effect) for

theta, alpha, and beta band as a function of hand position. Vertical bars represent confidence intervals of 95%

around the central value.

https://doi.org/10.1371/journal.pone.0218675.g004
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The specificity of the oscillatory changes we reported concerning PPS is suggested by the

lack of specific EEG changes during the control motor task. We opted for such a control

motor task because the actions targeting the extrapersonal space entrain brain networks (and

thus evoke EEG changes) different from those entrained by PPS activation [7,68–71]. The lack

of specific EEG changes during the control motor task also rules out the potential confounding

effect of the diverse degree of required motor control and planning depending on the different

hand positions, and of holding a certain posture as opposed to another, which might entail the

activity of very different muscular patterns with a different effort [105].

Limitations

We were unable to replicate the EEG power suppression usually observed during median

nerve stimulation. In fact, nerve stimulation generates phase-locked and non-phase-locked

responses within post-central (somatosensory) and pre-central (motor) cortices, respectively,

which can be suppressed by muscle activation [63,95,106–108].

The lack of power suppression may depend on the partial uncertainty about the forthcom-

ing hand position to be held from time to time (the sequence of hand position to be held was

random) and the frequency of hand position change (ranging from 8 to 12 seconds). More-

over, the lack of power suppression may depend on a higher level of activation of the primary

motor cortex owing to the perturbation of PPS compared to the motor task unrelated to the

PPS [109].

Notably, we did not find any significant EOG response comparable to the hand-blink reflex

responses. This was because we used much lower stimulation intensity than that necessary to

evoke a hand-blink reflex, as we had to avoid any excessive sensory volley that could perturb

the complex top-down control of subcortical networks. Further, the shorter frequency of elec-

tric stimulation may have induced hand-blink reflex habituation, which needs much slower

stimulation frequency to be prevented (about 30 sec).

Last, we did not carry out validity checks to ensure that the sensory volleys were not influ-

enced by peripheral factors. It may be the case that the changes observed in ERSP (known to

have central generators) were due to alterations in afferent input because of transient vari-

ables, such as changes in posture, rather than to the sensory integration processes related to

the PPS. To ensure this, it may be useful to investigate the N9 peak of somatosensory evoked

potentials, which should differ by no more than ±10% pre- and post-stimulus trials [110].

However, we found significantly diverse ERSPs in the control experiment despite very similar

motion sequencing. Thus, it seems unlikely a biasing effect on ERSP by alterations in afferent

inputs.

Conclusions

Our data indicate that PPS perturbation induces specific brain oscillations that varies with the

hand-to-face distance changes. These oscillatory effects may represent the tonic and selective

top-down modulation from the higher-order cortical areas (involved in the representation of

the PPS) on sensorimotor circuits that oversee subcortical networks mediating the purposeful

or reflex responses. Thus, there could be consciousness when PPS scenarios are mapped within

frontoparietal areas in a fine-grained manner to continuously update the internal representa-

tions of the PPS to the end of preparing purposeful and/or reflexive motor responses. Once

confirmed by larger sample studies and other methodological approaches (e.g., TMS-EEG,

NIRS), the definition of the neural activity underlying PPS representation may be helpful to

better characterize neurological conditions in which PPS can be impaired, as in the disorders

of consciousness and cognitive decline.
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