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Abstract In a dynamic environment an organism has to constantly adjust ongoing behavior to 
adapt to a given context. This process requires continuous monitoring of ongoing behavior to 
provide its meaningful interpretation. The caudate nucleus is known to have a role in behavioral 
monitoring, but the nature of these signals during dynamic behavior is still unclear. We recorded 
neuronal activity in the caudate nucleus in monkeys during categorization behavior that changed 
rapidly across contexts. We found that neuronal activity maintained representation of the identity 
and context of a recently categorized stimulus, as well as interpreted the behavioral meaningfulness 
of the maintained trace. The accuracy of this cognitive monitoring signal was highest for behavior 
for which subjects were prone to make errors. Thus, the caudate nucleus provides interpretive 
monitoring of ongoing behavior, which is necessary for contextually specific decisions to adapt to 
rapidly changing conditions.
DOI: 10.7554/eLife.03727.001

Introduction
We adapt to different situations by sorting information into behaviorally meaningful categories that 
can change rapidly across contexts. This categorization process allows us to interact with such environ-
ments. Eager to get to an important meeting, we drive fast, but the actual speed depends on the 
speed limits along the way. In this situation, categories are delineated by a category boundary (i.e., speed 
limit) that varies with different environments. Flexible categorization requires continuous monitoring 
of the changes in the environment to ensure that classification reflects current task demands, even 
after categories are well learned. How the brain monitors such complex cognitive behavior is not well 
understood. The basal ganglia, particularly the caudate nucleus, are known to be essential for flexible 
behavior (Wise et al., 1996; Barnes et al., 2005) and together with the interconnected prefrontal and 
parietal cortices play an important role in categorization (Poldrack et al., 1999; Poldrack et al., 2001; 
Seger and Cincotta, 2005; Freedman and Assad, 2006; Seger, 2008; Antzoulatos and Miller, 2011; 
Ashby and Maddox, 2011; Mendez et al., 2011; Merchant et al., 2011). Many psychiatric and neu-
rological disorders that compromise the caudate nucleus are characterized by impairment in cognitive 
flexibility (Knowlton et al., 1996; Shohamy et al., 2004; Montoya et al., 2006). Human and animal 
studies have provided extensive evidence for the critical role of this structure in category learning 
(Seger and Miller, 2010; Antzoulatos and Miller, 2011). Neurobiological models of categorization 
have suggested that the caudate nucleus, together with interconnected cortical and subcortical structures, 
contributes to the maintenance and switching of rules that guide categorization (Maddox and Ashby, 
2004; Ashby and Ennis, 2006).

Despite the established role of the caudate nucleus in flexible behavior by linking actions and out-
comes (Hikosaka et al., 2000; Yin et al., 2005; Graybiel, 2008; Balleine and O'Doherty, 2010), its 
role in the monitoring of such behavior is less clear. Recent studies have highlighted the strong contri-
bution of the caudate to post-action evaluation by monitoring behavioral performance based on 
reward information (Lau and Glimcher, 2007; Ding and Gold, 2010; Thorn et al., 2010; Kim et al., 
2013). The general idea is that the caudate detects a mismatch between expected and actual outcomes 
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and these prediction error signals tend to alert an organism about the overall level of behavioral 
performance. Some studies have shown that post-action neuronal activity maintained memory traces 
of specific actions, possibly linking them to outcomes (Lau and Glimcher, 2007; Kim et al., 2013). 
Others have found that post-action activity represented outcomes independent of specific actions 
(Ding and Gold, 2010). Monitoring signals are sensitive to behavioral context change (Hikosaka and 
Isoda, 2010) and can also incorporate uncertainty estimates (Badre, 2012; Kepecs and Mainen, 
2012) known to modulate caudate activity (Ding and Gold, 2012; Yanike and Ferrera, 2014). Thus, 
a systematic evaluation of caudate monitoring signals is important for understanding its role in behav-
ioral flexibility, when changes in context and outcome are frequent.

To study what aspects of cognitive flexible behavior are monitored in the caudate nucleus we 
recorded neuronal activity during a categorization task in which decision criteria changed rapidly 
across trials. We evaluated post-decision signals both at the level of individual neurons and their pop-
ulation activity. We found that while individual neurons were highly context specific, their population 
activity across ensembles of neurons provided an accurate and separable read-out of sensory and 
cognitive aspects of ongoing behavior.

Results
We trained two monkeys on a speed categorization task in which they categorized stimulus speed 
depending on the position of two different category boundaries (Figure 1A). Each boundary  
divided a set of random dot stimuli of 8 different speeds (2, 4, …, 16 deg/s) into ‘fast’ and ‘slow’ 
categories. On each trial, one of the boundary speeds (5 or 13 deg/s), selected randomly, was 
indicated by a visual cue at the beginning of the trial, prior to the motion stimulus. Therefore, 
depending on the visual cue, a particular speed of dot movement would switch from belonging to 
the fast or slow category. Two choice targets (red/green), the locations of which were randomized 
from trial to trial, were presented adjacent to the motion stimulus. Monkeys made saccades to the 
red target if they categorized the stimulus as ‘slow’ and to the green target if they categorized the 
stimulus as ‘fast’.

eLife digest The ability to adapt behavior in a changing environment is a hallmark of intelligent 
systems. From adjusting our driving speed to match road conditions to responding to a last-minute 
change of plans, mental flexibility underpins much of our day-to-day functioning.

To perform optimally, an animal must continuously monitor its own behavior and adjust it according 
to circumstances. A region of the brain called the caudate nucleus is thought to contribute to this 
process by keeping track of the relation between an action and its outcomes, but it is not clear how 
it monitors cognitive aspects of ongoing behavior.

Yanike and Ferrera have clarified this process by recording electrical activity from the caudate 
nucleus in two monkeys as they categorized visual stimuli. The monkeys viewed a moving stimulus 
and classified it as ‘fast’ or ‘slow’ relative to a reference speed that varied from trial to trial. The 
monkeys were trained to use two different references speeds and were told which reference speed 
to use at the start of each trial. They used an eye movement to indicate their decision.

Most neurons within the caudate nucleus responded after the monkey had made a decision, 
suggesting that these neurons might be involved in evaluating the decision that had just been made. 
The response of the neurons depended on the stimulus speed, and also on the category (fast or slow) 
in which the stimulus belonged. This observation indicates that the caudate nucleus tracked the 
context (reference speed) as well as the stimulus speed.

Yanike and Ferrera also showed that the response of the entire population of caudate neurons 
could be decoded to reveal both the speed of the stimulus and whether the monkey had categorized 
it as fast or slow. This shows that after a decision has been made, neurons continue to signal both 
the stimulus and the context in which that stimulus was presented. Such ‘post-decision’ monitoring 
is important for anticipating the outcome of the decision. Overall the results suggest that the caudate 
nucleus helps animals to adapt their behavior to rapidly changing circumstances by supporting 
decision-making that takes context into account.
DOI: 10.7554/eLife.03727.002
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Both monkeys flexibly adjusted their categori-
zation behavior depending on the position of the 
category boundary. We sorted behavioral data 
across animals and trials by the boundary posi-
tion. We obtained two shifted psychometric 
functions (Figure 1B), suggesting that animals 
classified the stimuli using two different internal 
estimates of the boundary position. To estimate 
the internal representation of each boundary we 
found the stimulus speed for which the animal 
was equally likely to classify the stimulus as ‘fast’ 
or ‘slow’ (i.e., the point of subjective equality 
(PSE), Figure 1B). The per-session PSE's formed 
two non-overlapping distributions (Figure 1C) 
with means (slow: 6.9 ± 0.1; fast: 11.3 ± 0.12) 
shifted inward relative to the actual boundary 
speeds (5 and 13, respectively; Figure 1C). This 
implies that the monkeys' categorical decisions 
were less accurate for stimulus speeds near the 
boundaries, possibly due to uncertainty about 
the boundary position or its internal estimate. 
Consistently, the greater categorization uncertainty 
at the boundaries, expressed as an error rate, cor-
related with a higher rate of trials that the animal 
aborted without making a choice (broke fixation) 
(Figure 1D). Both the error rate and the rate of 
fixation breaks peaked for speeds 6 and 12, sug-
gesting that subjects had greater difficulty cate-
gorizing these near boundary stimuli.

Individual neurons monitored 
specific context
We analyzed a total of 155 presumed projection 
neurons from the associative caudate nucleus 
(Figure 2A) in two monkeys performing the speed 
categorization task (Monkey C: n = 91; Monkey 
F: n = 64). For each neuron only trials in the neuron's 
response field were included. The data from the 
two monkeys were combined as they were quali-
tatively similar. We found that the majority of cau-
date neurons were responsive after, and not prior 
to, the animal making a decision. Therefore we 
focused on two post-decision periods of the task, 
one right after the decision (‘post-saccade’, 0–400 
ms after saccade onset, median saccade onset 
309 ms) and another when the correctness of the 
decision was revealed at 800 ms after the decision 
onset (‘reward’, 0–600 ms after reward onset). 
We found that many neurons (71 out of 155, 46%, 
Figure 2B, top) showed significantly different 
activity between the fixation period and at least 
one of the post-decision periods of the task 
(bootstrap test, p < 0.01). Next, we asked whether 
caudate neurons represented category-related 
information regardless of the properties of  
the visual stimuli or their stimulus selectivity.  

Figure 1. Behavioral task and performance. (A) Sequence 
of events in each trial of the speed categorization task. 
(B) Percentage of trials for which the stimulus speed 
was categorized as ‘fast’ for slow and fast boundary 
positions (orange/blue, respectively). Small circles 
represent choices from each session and large circles 
represent their average. Psychometric curves (solid lines) 
represent fits of Naka-Rushton functions together with 
the corresponding error rate (orange/blue dashed lines). 
(C) Histograms of PSEs from the psychometric curves 
across sessions sorted by the boundary position. PSE 
(i.e., the point of subjective equality) corresponds to 
the stimulus speed for which the animal was equally 
likely to classify the stimulus as ‘fast’ or ‘slow’. Triangles 
represent the mean PSEs corresponding to internal 
estimates for each boundary position. (D) Proportion 
of fixation breaks of the total number of trials (open 
circles, mean ± SEM) for each speed sorted by the 
boundary position.
DOI: 10.7554/eLife.03727.003
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We identified 38 out of 71 neurons that were sensitive to the category context (i.e., boundary position) 
during either one or both post-decision periods (Figure 2B, bottom). The firing rates of these neurons 
were significantly different between the two boundary positions for at least one speed either during 
the post-saccade (‘psacc’, n = 31) and/or reward (‘rwd’, n = 23) periods of the task (Figure 3, boostrap 
test, p < 0.05 Bonferroni corrected). Figure 4 shows example neurons with activity during the post-
saccade (A) and reward (B) periods with a significantly different average response to one out of 8 
stimuli, corresponding to speed 12 (see Figure 4—figure supplement 1 for other examples), for 
which they responded with either significantly higher (Figure 4A) or lower (Figure 4B) firing rate on 
trials with the fast compared to slow boundary positions (bootstrap test, p < 0.0001). These neurons 
responded similarly to most other stimuli, irrespective of the boundary position (Figure 4A,B, bottom). 
The majority of these post-decision neurons (psacc: 19/31, 61%; rwd: 15/23, 65%) discriminated signif-
icantly only one out of 8 stimuli and many of them (psacc: 22/31, 71%; rwd: 11/23, 48%) had signifi-
cantly different neuronal activity for stimuli near the category boundaries, speeds 6 and 12 (Figure 4E,F, 
bottom).

To quantify the sensitivity to the boundary position, we calculated a category index for each neuron 
(CI; see ‘Materials and methods’) separately for each period of the task. The CI measures how well 
neuronal responses discriminate the same stimuli when presented with different boundaries. The index 
ranges between 0 and 1, with values close to 0 indicating weak discrimination and values close to 
1 indicating strong differentiation between the two categories. Similarly to the example neurons, the 
CIs between the stimuli close to the boundaries (speeds 6 and 12) were different for most individual 
neurons in both periods of the task (Figure 4C,D). When averaged across neurons, the CIs for the two 
most difficult stimuli were the highest during both periods of the task (Figure 4E,F, top). The ability of 
individual neurons to multiplex their function according to the relevant boundary position is incon-
sistent with the known sensitivity of caudate neurons to the rate of reward coding, which varied similarly 

Figure 2. Location of recording sites. (A) Recording chamber showing access to the associative striatum (indicated 
in red square) in Monkey F. (B) (top) Distribution of recording sites for post-saccade (gray) and reward (black) 
neurons across two animals. AP = 0 corresponds to the anterior commissure. (bottom) Location of category-related 
neurons with selective response to slow (orange) and fast (blue) boundaries superimposed on the location of 
responsive neurons (gray).
DOI: 10.7554/eLife.03727.004
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with two boundaries (Cromwell and Schultz, 2003; Hassani et al., 2001). These results show that 
individual neurons were limited in their ability to monitor behavior across multiple boundaries. 
However, as a population, the neuronal activity of these neurons could differentiate stimuli near both 
category boundaries.

The neuronal population read-out provided a global monitoring signal
Next we tested whether combined signals across pools of individual neurons could provide a reliable 
population code (Pouget et al., 2003) to monitor behaviors across multiple boundaries. We predicted 
on each trial the stimulus speed and category boundary position (for a total of 16 conditions: 8 × 2) 
based on the neuronal activity of populations of independently recorded neurons (see ‘Materials and 
methods’). To evaluate the prediction accuracy, we used the proportion of correct estimates for either 
speed or boundary position. We found that on each trial, the population activity of ensembles of cau-
date neurons provided a reliable read-out of the two signals: the identity (speed) of the previously 
categorized stimulus and the context (boundary position) in which the stimulus was categorized with 
above chance accuracy during the post-saccade (Figure 5A, B; n = 31) and reward (Figure 5C,D; 
n = 23) periods of the task. To account for variable levels of the subjects' performance, we obtained 
the prediction accuracy for the speed and boundary position separately for correct only trials and for 
all trials (correct and incorrect) separately. On average, the prediction accuracies for the two signals 
were significantly better on correct trials compared to all trials for the post-saccade (Figure 5A,B; 
1-way ANOVA (trial type), p < 0.0001) and reward (Figure 5C,D; p < 0.0001) populations. We also 
evaluated decoding accuracy as a function of the number of neurons (Figure 5—figure supplement 1). 
The decoding performance converged towards an asymptote faster for the boundary position  
(∼5 neurons) compared to the speed (∼10–15 neurons) in each neuronal population. This suggests 
a more redundant neuronal code for the boundary position.

To further quantify the relationship between the accuracy of the population read-out and subjects' 
behavioral performance for each stimulus, we determined the prediction accuracy of the stimulus 
speed by splitting trials into slow and fast boundary positions. We found that the accuracy of the pop-
ulation read-out for the identity of the previously categorized stimuli varied with the categorization 
difficulty at each boundary. This was shown by a significant interaction between the speed and 
boundary position (Figure 6A,C; 2-way ANOVA (speed, boundary), p < 0.001) in each neuronal pop-
ulation. To correlate subjects' categorization performance and the reliability of the population repre-
sentation, we averaged the prediction accuracy between the slow and fast boundary positions across 
all speeds and plotted it as a function of the distance to the boundary for post-saccade (Figure 6B) 
and reward (Figure 6D) populations. The average prediction accuracy was the highest for the near 
boundary stimuli on the right, coinciding with the highest behavioral error rate (Figure 1B,D), then 

Figure 3. Sensitivity to the boundary position in caudate neurons. (A and B) Distribution of significant p-values 
indicating difference in spike count between slow and fast boundary positions for neurons with activity during the 
post-saccade (A) and reward (B) periods of the task. Only values of less than 0.05 are shown.
DOI: 10.7554/eLife.03727.005
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Figure 4. Representation of category signals. (A) Example neurons with activity during post-saccade (A) and reward 
(B) periods. (top) Spike raster plots, each row is one trial and each dot is detected spike, and spike density functions 
(mean ± SEM) in response to speeds 6 (left) and 12 (right). Black lines show periods of the task. Dashed black lines 
indicate average reaction time to saccade. (bottom) Average neuronal activity across stimuli sorted by the boundary 
position. Orange/blue dashed lines, actual boundary positions. Bars, SEM. (C and D) Scatter plots of CIs for speed 
6 vs speed 12 across neurons with activity during post-saccade (C, n = 31) and reward (D, n = 23) periods. Example 
neurons in (A and B), star and square in (C and D), respectively. (E and F) (top) Average CI across speeds for neurons 
with activity during post-saccade (E) and reward (F) periods. (bottom) Proportion of neurons with a significant 
difference between spike counts across boundaries for each speed (bootstrap test, p < 0.05).
DOI: 10.7554/eLife.03727.006
The following figure supplement is available for figure 4:

Figure supplement 1. Examples of two additional caudate neurons. 
DOI: 10.7554/eLife.03727.007
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decreased with the distance to the boundary. The population read out of the previous stimulus speed 
was strongly correlated with subjects' behavioral performance, expressed as an error rate, averaged 
across two boundaries for each speed (Figure 1B), similarly in both neuronal populations (Figure 6B,D; 
psacc: R2 = 0.85; rwd: R2 = 0.76). Thus, the population was best at maintaining the sensory represen-
tation of stimuli, for which the subjects were prone to make categorization errors.

We then compared the predication accuracy between trials when subjects categorized the same 
stimuli correctly and incorrectly for a subset of stimuli, speeds 6 and 12, with sufficient number of incor-
rect trials (see ‘Materials and methods’). In both neuronal populations, the incorrect categorical judg-
ments were followed by the failure to represent the identity of the preceding stimulus (Figure 6A,C). 
In contrast, correct categorization of the same stimuli, either near or far from the boundary, were 
followed by a reliable but different read-out of stimulus speed based on the population activity 

Figure 5. Prediction accuracy for speed and category boundary. The average prediction accuracy for speed (A, C), 
across two boundary position, and boundary position (B, D), across all speeds, for correct only trials (black) and all 
trials (correct and incorrect, gray) separately for the post-saccade (A, B) and reward (C, D) neuronal populations. 
Corresponding chance levels are shown in dashed line. Orange/blue dashed lines, actual slow/fast boundary 
positions.
DOI: 10.7554/eLife.03727.008
The following figure supplement is available for figure 5:

Figure supplement 1. Prediction accuracy and population size. 
DOI: 10.7554/eLife.03727.009

http://dx.doi.org/10.7554/eLife.03727
http://dx.doi.org/10.7554/eLife.03727.008
http://dx.doi.org/10.7554/eLife.03727.009


Neuroscience

Yanike and Ferrera. eLife 2014;3:e03727. DOI: 10.7554/eLife.03727 8 of 16

Research article

(2-way ANOVA [trial type, boundary], p < 0.001). These results suggest that outcome uncertainty 
near the boundaries can act as a gating mechanism to enhance representation of the boundary 
stimuli to potentially overcome decision uncertainty.

The monitoring signal reflected behavioral relevance
We reasoned that if this neuronal code is cognitive and reflects categorization process, instead of 
reward processing, then even irrelevant information which could be pertinent for categorization should 
be processed in a task meaningful way. We asked if caudate neurons encoded category-irrelevant 
features of otherwise relevant stimuli and whether the post-decision evaluation of the irrelevant informa-
tion reflected categorization difficulty. We tested this hypothesis by computing how well we could 
predict discrimination accuracy between two opposite directions of dot motions for each stimulus 
separately for the slow and fast boundaries based on neuronal activity (see ‘Materials and methods’). 
We found that even those features of stimuli (i.e., dots direction) that were not linked to category 
identity were selectively suppressed when stimuli were near the boundary compared to when they 
were far from the boundary in both neuronal populations (see ‘Materials and methods’; Figure 7A,B; 
3-way ANOVA (direction, speed, boundary), p < 0.01). Similarly to single unit studies (Hussar and 
Pasternak, 2009), the post-decision population read-out in the caudate strongly reflected behavioral 
relevance of stimuli during categorization.

Figure 6. Population read out of speed and boundary position. (A and C) Proportion of correct estimates for 
each stimulus speed separately for slow (upper bars) and fast (lower bars) boundary positions for post-saccade 
(A) and reward (C) populations for correct only (gray) and incorrect (open) trials. (B and D) Average prediction 
accuracy for speed (black circles) and behavioral error rate (mean ± SEM, dashed and solid lines) as a function 
of stimulus' position to the boundary (dashed line) for each neuronal population. The prediction accuracy for 
the most extreme stimuli (speeds 2, 4, 14, and 16) deviated from the behavioral error rate function, possibly 
due to a greater perceptual uncertainty, about the identity of the stimulus or boundary cue, compared to the 
intermediate stimuli.
DOI: 10.7554/eLife.03727.010
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The monitoring signal provided parsed representation of categorization 
context
The bias towards processing near boundary stimuli in the caudate population code suggests that it 
could represent the position of each boundary, either actual or inferred. The actual boundary positions 
(speeds 5/13 for slow/fast boundaries respectively) were never explicitly given and the subjects had 
to infer the positions of each boundary through training. We tested whether caudate population rep-
resented the position of each boundary by comparing the discrimination accuracy for the seven 
pairs of neighboring speeds (2–4, …, 14–16) separately for each boundary and neuronal popula-
tion (see ‘Materials and methods’). We reasoned that the greater discrimination accuracy between 
pairs of neighboring speeds would correspond to the more accurate neuronal representation of the 
internal estimates of the boundary position. We found that immediately after the decision, the post-
saccade population activity provided signals specific to all behaviorally relevant boundary positions. 
Figure 7C shows that high discrimination accuracy occurred for stimuli across the actual boundary 
positions (speed pairs 4/6 and 12/14), and across the average internal estimates of the boundary 
positions (6/8 and 10/12, respectively). Figure 7D shows a different pattern during reward delivery. 
The strength of the discrimination accuracy peaked for the speeds across the actual boundary posi-
tions (4/6 and 12/14), but remained elevated for intermediate speeds regardless of the distance to the 

Figure 7. Contextual modulation during categorization. (A and B) Prediction accuracy for two opposite directions 
of dots motion (up or down) for each stimulus for post-saccade (A) and reward (B) neuronal populations. (C and D) 
Discrimination accuracy across pairs of neighboring speeds (seven pairs, 2–4, 4–6, …, 14–16) separately for trials 
with each boundary position for post-saccade (C) and reward (D) neuronal populations. The thickness of each bar 
corresponds to the average discrimination accuracy with ± SEM. Same notation as in above.
DOI: 10.7554/eLife.03727.011
The following figure supplement is available for figure 7:

Figure supplement 1. Effect of categorical perception on discrimination of near boundary stimuli in individual 
neurons. 
DOI: 10.7554/eLife.03727.012
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boundary. These differences in population read-out codes possibly reflect different putative synaptic 
pooling mechanisms, with the pooling during the reward period better suited to linking stimuli with 
dual class membership to the received outcome. We confirmed that this signal reflects categorical 
perception as opposed to representation of stimulus identity. We reasoned that any two stimuli should 
be discriminated better when they are judged to be in a different class as opposed to being in  
the same class. This is often referred to as the boundary accentuation effect (Goldstone, 1994). 
The results in Figure 7C,D confirmed this prediction, the average discrimination accuracy between the 
near boundary speeds (4/6 and 12/14) being significantly greater when the stimuli were classified in 
two different (slow vs fast) compared to the same (slow or fast) categories in both populations (psacc: 
0.86 ± 0.02 vs 0.63 ± 0.02; rwd: 0.9 ± 0.01 vs 0.82 ± 0.01, permutation test, p < 0.001). To understand 
the representation at the level of individual neurons, for each neuron we calculated a ratio difference 
index (Ratio Diff) measuring the difference in firing for two pairs of speeds (4/6 and 12/14) separately 
for slow and fast boundary trials. Consistent with the population findings, individual neurons had 
significantly larger differences in firing rate to the near boundary stimuli when in different categories 
compared to the same category both during the post-saccade (boostrap test, p < 0.04) and reward 
(p < 0.01) periods of the task (Figure 7—figure supplement 1). These results suggest that the caudate 
neuronal code parses information into behaviorally relevant categories and that the code is most 
informative for the stimuli with the most erroneous performance.

Discussion
We found that caudate neurons monitored flexible categorization behavior by providing distinct 
representation of decision-pertinent variables, from stimulus specific features to more cognitive signals 
reflecting internal estimates of decision variables. The monitoring signal in the caudate was not only 
accurate at representing ongoing behavior, but it also interpreted behavioral consequences in light 
of changing demands of the task. The accuracy of the monitoring signal was inversely related to 
behavioral proficiency, suggesting that the caudate nucleus allocates more efficient coding for changing 
and/or uncertain information critical for behavioral flexibility. These findings provide direct evidence 
for the role of the caudate nucleus in online monitoring of complex cognitive behavior, possibly allowing 
for contextually specific decisions to adapt to rapidly changing context (Daw et al., 2006; Hikosaka 
and Isoda, 2010; Pearson and Platt, 2013).

It is well-established that the caudate nucleus supports cognitive function, including categorization, 
by utilizing reward or motivation information. However, how cognitive and reward signals interact to 
support complex behavior is still unclear. In this report, we showed that the monitoring signals in the 
caudate nucleus reflecting cognitive variables were shaped by reward modulation, as more accurate 
representation correlated with the most variable reward outcome. We found that individual neurons 
were highly selective at linking sensory and reward information. In other words, the neurons did 
not generalize across sensory inputs to code reward-related information. However, their population 
response provided a reliable and separable representation of both cognitive and motivational signals 
on a trial-by-trial basis. The reported monitoring signals in the caudate can reflect the outcome predic-
tion and/or the rate of reward coding (Hollerman et al., 1998; Hassani et al., 2001; Cromwell and 
Schultz, 2003). The motivational signals potentially shape categorical representation in the caudate to 
monitor context specific decisions to adapt to rapidly changing conditions.

Our findings are consistent with the growing evidence for the strong contribution of the caudate 
nucleus to post-decision monitoring and evaluation (Lau and Glimcher, 2007; Ding and Gold, 2010; 
Thorn et al., 2010). Traditional views postulate that the striatum, which includes the caudate nucleus, 
contributes to behavioral evaluation through updates based on differences between the observed and 
expected outcomes through reinforcement learning (Daw et al., 2006; Williams and Eskandar, 2006). 
Recent views suggest that such updates can also incorporate uncertainty estimates, similar to the pre-
frontal cortex (Badre, 2012; Kepecs et al., 2008; Kepecs and Mainen, 2012). Caudate neuronal activity 
is sensitive to both stimulus (Ding and Gold, 2012) and outcome uncertainty (Yanike and Ferrera, 
2014), which can potentially shape more efficient coding of changing or uncertain information.

Our findings that the caudate nucleus provides online monitoring of flexible behavior are consistent 
with a recent study showing that individual caudate neurons coded values of visual objects in a flexible 
manner (Kim and Hikosaka, 2013). Specifically, neurons in the head of the caudate nucleus represented 
changes in recent value of objects while monkeys made saccades to visual objects with different values 
and inactivation of this structure disrupted their behavioral preference for high value objects. While we 
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also recorded in the anterior part of the caudate nucleus (see ‘Materials and methods’), our experi-
mental paradigm was different. During the categorization task, monkeys had to maintained represen-
tation of both stable (i.e., always far from boundaries) and changing (i.e., near the boundaries) values 
of dot stimuli to perform successfully, well after the initial learning had occurred. Therefore, our find-
ings are complementary to the aforementioned study because we showed that the caudate nucleus 
provides abstract cognitive monitoring signals beyond flexible reward associations. Taken together, 
these results suggest that the anterior caudate plays an important role in the change detection net-
work (Isoda and Hikosaka, 2011; Pearson and Platt, 2013) contributing to a rapid adjustment of 
behavior.

Our findings that the representation of category-relevant information was enhanced while cate-
gory-irrelevant information was suppressed near the boundaries are consistent with the possible role 
of the caudate nucleus in the working memory updating. Computational models (O'Reilly and Frank, 
2006) have suggested that the striatum contributes to a selective gating of information flow into the 
working memory in the prefrontal cortex. The present findings suggest that such selective gating 
in the caudate nucleus can occur via a neuronal population code, which allows for independent read-
out of all task variables by downstream structures. In our experimental paradigm the direction of the 
dots motion was irrelevant for the speed categorization and the animals were never explicitly required 
to utilize that information. Yet, the accuracy of the population read-out for the dots motion direction 
in the caudate was suppressed near the boundary compared to that far from the boundary. These 
results suggest that the caudate nucleus sorts information by its relevance to the task at hand, possibly 
automatically, to potentially affect ongoing behavior (Badre, 2012).

Finally, our findings suggest that unrevealing the nature of neuronal population code can greatly 
benefit our understanding of the neural basis of complex cognitive behavior. We found that individual 
neurons provided a context-specific code, while their population read-out covered all aspects of 
behavior and multiple separable signals could be reliably extracted. Previous studies on visual catego-
rization have shown that representation of multiple categories in the prefrontal cortex at the level of 
single neurons was either distributed or sparse depending on how much the visual categories over-
lapped (Cromer et al., 2010; Roy et al., 2010). How these differences translate into population codes 
remains to be studied. The results of our experiment show that the caudate neuronal population code 
can reliably represent all aspects of cognitive complexity during flexible behavior.

Materials and methods
Surgical and recording procedures
Two adult male rhesus monkeys (Macaca mulatta, Monkey C: 8.2 kg and Monkey F: 11.5 kg) were used 
in the experiments. All ‘Materials and methods’ and treatments were in accordance with NIH guide-
lines and approved by the Institutional Animal Care and Use Committee at Columbia University and 
the New York State Psychiatric Institute. Prior to the experiments each animal was implanted with a 
scleral search coil, head post and recording chamber under aseptic conditions using isoflurane anes-
thesia. The animals received postoperative analgesics during postsurgical recovery. The positions 
of the recording chambers were guided by monkeys' individual MRI atlases. The recording chamber 
(20 mm in diameter) for Monkey C was placed on the scull over the arcuate sulcus positioned at stere-
otaxic coordinates 20 mm anterior and 15 mm lateral allowing access to the anterior caudate nucleus 
via the frontal eye fields (FEF). Monkey F was sequentially implanted with two different recording 
chambers. The first recording chamber (20 mm in diameter) was placed at 25 mm anterior and 18 mm 
lateral positioned over the acruate sulcus. The second recording chamber (20 × 30 mm oval) was 
centered at 15 mm anterior and 12 mm lateral. We used tungsten or glass coated electrodes with 
impedance ranging from 1–3.5 MΩ. The signals were amplified, filtered and passed to a real-time 
action potential detection. Action potentials were converted to TTL pulses that were stored together 
with the behavioral data. We also stored individual waveforms on each channel for further offline anal-
ysis. To identify the anterior caudate nucleus we used a number of criteria. We used depth meas-
urements and identified the position of the caudate relative to the FEF. Also the dorsal edge of the 
caudate was identified by the presence of injury potentials. We identified the phasically active neurons 
by their low baseline activity (1–3 Hz). On each recording track we made sure to identify a tonically 
active neuron (4–8 Hz), in fact during some sessions we simultaneously recorded a pair of tonically and 
phasically active neurons. Post-saccade and reward neurons tended to be distributed without any distinct 
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spatial organization in the associative caudate (Figure 2B). Monkeys were trained to sit in a primate 
chair for the duration of the experiments with their heads restrained. They performed behavioral 
experiments and received liquid reward for correctly executing the behavioral task.

Behavioral task
We trained two adult monkeys to categorize the speed of moving random dot patterns depending on 
the position of a category boundary (Ferrera et al., 2009). The stimulus set consisted of random-
dot patterns moving at 8 different speeds (2, 4, 6, …, 16 deg/s) with coherence equal to 1. The direc-
tion of random dot motion also varied randomly. On each trial, dot direction was selected from a 
set of two opposite directions. Generally, the directions were ‘up’ and ‘down’ although other axes 
of motion were also tried. Animals were never asked to judge the direction of dot motion, thus we 
consider this stimulus dimension as category-irrelevant. On a given trial, monkeys judged the speed of 
motion as ‘slow’ or ‘fast’ depending on one of two reference speeds. Each trial started with a fixation 
cue presented at the center of the computer screen. After animals fixated for 400 ms (baseline period), 
one of two boundary cues (blue or orange squares) indicating the reference speed was presented for 
800 ms (cue period), followed by the random-dot stimulus together with two spatially located targets 
(decision period). Monkeys were trained to associate speeds faster than the reference with the green 
target and slower than the reference with the red target. They indicated their judgment by making 
a saccade within 800 ms to one of the targets, the positions of which were randomized across 
trials. Feedback was provided at the end of the trial. Correctly categorized stimuli were followed by 
two drops of water and a high tone, while incorrectly categorized stimuli were followed by a low tone 
and no reward. The trials were separated by a 2000 ms inter-trial interval.

The task had a block-randomized design; each trial type was presented randomly from a block and 
animals had to complete each trial-type to progress to the next block. The full design comprised 
64 trial types: 8 speeds × 2 directions × 2 boundaries × 2 target locations. On a small fraction of trials 
(∼0.13) animals broke fixation during the decision period of the task without making a choice (fixation 
break trials). The fixation break trials were reshuffled with the different trials in a given block and were 
not immediately repeated. The average reaction time to abort on the fixation break trials was 348 ± 
12 ms and was similar between the two animals (monkey: F, 328 ± 13 ms, and monkey C: 367 ± 18 ms; 
1 tail t test p = 0.08). Trials on which animals broke fixation during the baseline or cue periods of the 
task were excluded from the analyses.

We used a memory guided saccade task with 8 spatial targets at 45° intervals to identify task-related 
neurons. We identified each neuron's response field by finding the spatial location which evoked the 
maximum firing rate during one of the task periods in the memory guided saccade task. In the speed 
categorization task, we placed one of the spatial targets in the response field and one in the location 
opposite to the response field of a neuron. Some of the cells that were responsive during the memory 
guided saccade task were not responsive during the categorization task (21/176 cells, 12%). These cells 
were excluded from the present analyses. We analyzed a total of 155 cells with the average of 494 ± 94 
trials per session (range [285–1393]), which was similar between the two animals (Monkey F: 551 ± 92; 
Monkey C: 444 ± 105; 1 tail t test, p = 0.36). The monkeys performed on average similar number of trials 
with slow and fast boundary positions across all speeds (mean slow boundary: 226 ± 16 trials; mean fast 
boundary: 219 ± 15; paired t test p = 0.74) and on average 27 ± 2 trials for each speed. For each neuron, 
we only included trials in a neuron's response field during the categorization task.

Data analysis
We identified all task related neurons by a bootstrap test (p < 0.05) comparing baseline firing rate 
during the initial fixation period (400 ms) with the average spike counts during each of four different 
task periods: cue (0–700 ms), decision (0 ≤ 800 ms), post-saccade (0–400 ms), and reward (0–600 ms). 
We focused out analyses on the post-decision activity and only included neurons with significant task-
related activity either during 400 ms after saccade (‘post-saccade’ activity aligned to saccade onset) 
and 600 ms during reward (‘reward’ activity aligned to the reward onset) periods of the task. For each 
neuron, only trials in a neuron's response field were included. The data from the two monkeys were 
combined as they were qualitatively similar. The majority of these post-decision neurons (psacc: 19/31, 
61%; rwd: 15/23, 65%) discriminated significantly only one out of eight stimuli and many of them had 
significantly different neuronal activity for stimuli on the inside near the category boundaries, speeds 
6 and 12 (psacc: 22/31, 71%; rwd: 11/23, 48%).
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Single neuron metric
We calculated a category index (CI) as |(Rslow − Rfast)/(Rslow + Rfast)|, where Rslow and Rfast indicate the spike 
count to stimuli of different speeds (2, 4, …, 16) with slow and fast boundary position trials, respectively. 
This index ranges from 0 to 1, with values closer to 1 indicating a larger difference in activity for a given 
stimulus between slow and fast boundary positions. We used an unsigned category index, as we were 
focusing on the difference in activity, not the preference for either boundary position.

We calculated a ratio difference index (Ratio Diff) by taking the unsigned difference in the spike 
counts between two neighboring speeds separately for each boundary position. Because each neuron 
had stronger preference for one of two boundary positions, for each cell we selected the speed pair 
(4/6 or 12/14) with the largest difference and use that speed pair for the population analysis.

Neuronal population metric
We sought to determine how accurately the information about the stimulus identity (speed) and rele-
vant context (boundary position) were represented in neuronal activity across striatal neurons after 
animals made their categorical choices. We wanted to simultaneously decode the stimulus speed and 
boundary position from the population response to obtain an accurate estimate of each parameter on 
a single trial. The population response on a single trial could reflect a stimulus speed sj at a given 
boundary with j = 1:16, where j = 1:8, speeds with the slow boundary; and j = 9:16, speeds with the 
fast boundary. We use a Poisson independent decoder to estimate how well a neuronal population can 
predict a stimulus on a given trial (Sanger, 1996; Jazayeri and Movshon, 2006; Graf et al., 2011). 
We made two assumptions that allowed us to use this framework: (1) the firing rate can be described 
by Poisson statistics, and (2) firing rates across neurons are not correlated. Assuming that neuronal 
responses are statistically independent, the log likelihood of stimulus s for the population response ri 
(where i is equal to 1: N total number of neurons) can be obtained by summing the log likelihoods of 
individual responses:

( ) ( )
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log = log ( | ) = log |  
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i i

i i

L s p r s p r s∑ 
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where fi(s) is the speed tuning of neuron i.
Assuming that neuronal responses can be described by Poisson statistics, we compute the log 
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We can ignore the last term as it is stimulus s independent. To avoid taking the log(0), which is 
negative infinity, we assumed that at least one spike was fired for a given condition. The estimate 
corresponding to the population activity was then the speed and boundary position maximizing the 
log likelihood. This decoder has been widely used in previous studies (Jazayeri and Movshon, 2006; 
Graf et al., 2011; Yanike and Ferrera, 2014).

We performed cross-validation by using a leave-one-out approach (Duda et al., 2001). We trained 
the decoder on one randomly selected trial and tested the decoder on n − 1 trials. We avoided over 
fitting the data because the estimates of accuracy were not obtained on the same trials on which the 
decoder was trained. The neurons were recorded across days and varied in the number of trials for 
each speed and boundary position. To perform cross-validation we used the same number of trials 
(n = 10) for each neuron in the population. If for a given speed there were more than n = 10 trials, 
we randomly selected n = 10 trials, otherwise, we reconstructed some of the trials (24% of trials for 
slow boundary position; 21% of trials for fast boundary position) for some cells by adding firing rate 
from a Poisson distribution with the mean equal to the actual data mean (26% and 27% percent of cells 
were reconstructed for slow and fast boundary position, respectively). To evaluate decoding accuracy 
(i.e., prediction accuracy, fraction of correct estimates) we randomly drew without replacement 1000 
samples and then averaged the decoding accuracy for either speed or boundary position.

To evaluate the accuracy of the read out of population activity we only used trials when animals 
categorized stimuli correctly (i.e., correct), unless stated otherwise. The average prediction accuracy 
for each signal varied with subjects' performance, as it was significantly better on correct trials compared 
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to all trials for post-saccade (1-way ANOVA (trial type), p < 0.0001) and reward (p < 0.0001) populations. 
We also evaluated decoding accuracy as a function of the number of neurons (Figure 7—figure 
supplement 1). We obtained the average prediction accuracy (either across speeds or across boundary 
positions) for populations of different sizes N by randomly drawing without replacement N = [2 − max] 
separately for neuronal populations with activity during the post-saccade and reward periods of the 

task. We then normalized the average prediction accuracy by ˆ –

1–

chance

chance

σ , where σ̂  is the average 

prediction accuracy and chance level is 0.125 or 0.5 for speed or boundary position decoding.
To determine whether the prediction accuracy varied between trials when subjects categorized the 

same stimuli correctly and incorrectly, we only used a subset of stimuli, speeds 6 and 12, which had 
a sufficient number of incorrect trials. To obtained the prediction accuracy for speeds 6 and 12 during 
incorrect categorization, we randomly draw n = 10 trials from only incorrect trials using the same 
method as described above. We compared the prediction accuracy for speeds 6 and 12 between 
correct vs incorrect categorization near the boundary with correct categorization near vs far from the 
boundary. For these stimuli incorrect categorical judgments were followed by the failure to represent 
the identity of the preceding stimulus (Figure 5A,C), in contrast correct categorization of the same 
stimuli, either near or far from the boundary, were followed by a reliable but different read out of stim-
ulus speed based on the population activity (2-way ANOVA [trial type, boundary], p < 0.001).

We also tested whether we could read out the direction of random dots motion (up or down) 
from neuronal population activity. The direction of dots motion was irrelevant feature of otherwise 
relevant stimuli, and animals were never asked to judge it. On a given trial, we calculated the pre-
diction accuracy, as described above, with sj where j = 1:32 dimensions (where, 1:8, up, slow; 9:16, 
down, slow; 17:25, up, fast; 26:32, down, fast).

To obtain a representation of the boundary position in neuronal population activity, we used 
the log likelihood ratio to discriminate between pairs of neighboring speeds s1 and s2 (seven pairs, 
[2–4, 4–6, …, 14–16]). We obtained the log likelihood ratio as:

( )
( )
( )

( ) ( )1
1 2 1 2

2

log = log = log lo, – g
L s

LR s s L s L s
L s

     
 

where, s1 and s2 are stimuli speeds on each trial. The decoder selected s1 when LR > 0 and s2 when LR < 0.
We used a permutation test for comparing n samples, with Bonferroni correction for multiple 

comparisons at p values equal to 0.05/n.
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