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Patients with a Fontan circulation lack a sub-pulmonary ventricle with pulmonary blood

flow passively redirected to the lungs. In the Fontan circulation, ventilation has a significant

influence on pulmonary blood flow and cardiac output both at rest and with exercise.

Children and adults with a Fontan circulation have abnormalities in lung function. In

particular, restrictive ventilatory patterns, as measured by spirometry, and impaired

gas transfer, as measured by the diffusing capacity of carbon monoxide, have been

frequently observed. These abnormalities in lung function are associated with reduced

exercise capacity and quality of life. Moderate to severe impairment in lung volumes is

independently associated with reduced survival in adults with congenital heart disease.

Skeletal and inspiratory muscle weakness has also been reported in patients with a

Fontan circulation, with the prospect of improving respiratory muscle function through

exercise training programs. In this review, we will present data on cardiopulmonary

interactions in the Fontan circulation, the prevalence and severity of impaired lung

function, and respiratory muscle function in this population. We will discuss potential

causes for and consequence of respiratory impairments, and their impact on exercise

capacity and longer-term Fontan outcome. We aim to shed light on possible strategies to

reduce morbidity by improving respiratory function in this growing population of patients.

Keywords: Fontan, pulmonary function, respiratory muscle, restrictive lung disease, diffusing capacity of carbon

monoxide

INTRODUCTION

Children born with univentricular anatomy undergo procedures in early life resulting in the
Fontan circulation. This is routinely performed as staged procedures, resulting in systemic
venous return from the superior and inferior vena cava (SVC and IVC) draining passively
into the pulmonary arteries, bypassing a sub-pulmonary pump. The completion of the Fontan
circuit reduces desaturation and unloads the functionally single ventricle. Heart rate, ventricular
function, respiration, and skeletal and respiratory muscle strength all affect the performance of the
Fontan circulation.

Since its initial description, the Fontan procedure has undergone several modifications
to improve the circulation’s efficiency and reduce overall morbidity and mortality. However,
morbidity in this population is still high. The Fontan circulation results in high systemic
venous pressure, chronic venous congestion, and reduced pulmonary blood flow, cardiac output,
and ventricular function. In addition, multiple other adverse factors may be present including
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chronotropic incompetence, non-uniform distribution of
pulmonary blood flow, chest wall and spinal deformities, pleural
adhesions, diaphragmatic palsy, and respiratory and skeletal
muscle weakness. With advances in surgical techniques and
medical therapy, there are an increasing number of Fontan
patients surviving to older adulthood. However, complications
related to the Fontan circulation are common, including
ventricular systolic and diastolic dysfunction, arrhythmia, venous
thrombosis, protein-losing enteropathy, plastic bronchitis,
ascites, and hepatic fibrosis and carcinoma (1, 2). Approximately
50% of patients require another intervention by 15 years after
Fontan completion (3, 4), and freedom from Fontan failure
(defined as occurrence of death, protein-losing enteropathy,
plastic bronchitis, poor functional class, or heart transplant) at
50 years of age is only 30% (5).

Abnormal lung function and respiratory muscle weakness
have been documented in Fontan patients. Moderate to severe
impairment in lung volumes are independently associated with
reduced survival in adults with congenital heart disease (6).
Fontan patients have reduced total lung capacity and vital
capacity, with a restrictive ventilatory pattern (7, 8). These
impairments of lung function are associated with reduced
exercise capacity (9, 10). For these reasons, treatments directed
at improving lung function both before and after Fontan
completion are of great interest. Further advances in medical care
are actively being sought to reduce late morbidity and mortality
after Fontan completion. As yet, very few medical therapies have
been shown to be effective. Cardiopulmonary rehabilitation has
been shown to improve surrogate outcome measures in patients
with a Fontan circulation such as aerobic capacity.

CARDIOPULMONARY INTERACTIONS IN
THE NORMAL CIRCULATION

Respiration induces changes in intrathoracic pressures and
thereby lung volumes, which in turn affects preload, afterload,
and stroke volume. Lauson et al. described the influence of
respiration on changes in circulatory pressure in normal subjects,
those with chronic lung disease, and those with rheumatic heart
disease (11). They found only small variations in pressures during
tidal breathing consistent with minimal changes in heart rate or
stroke volume. However, during deep inspiration, they found an
increase in systemic venous return and right ventricular (RV)
stroke volume, and a decrease in left ventricular (LV) stroke
volume. In the normal circulation, the majority of LV filling
occurs during the first portion of ventricular diastole with atrial
systole providing a small contribution at end diastole. Using
electrocardiographic and respiratory gated echocardiography,
Riggs and Snider demonstrated that the reduction in LV stroke
volume during inspiration is secondary to a reduction in early
LV filling and not during atrial systole (12, 13). Heart rate also
increases with inspiration (12). Several mechanisms for these
effects of inspiration have been proposed: (1) an increase in
pulmonary venous capacitance, (2) reduced diastolic filling time
secondary to the accelerated heart rate, (3) an increase in systemic
afterload secondary to increase in intrathoracic pressure, and (4)

alterations in the interventricular septal shape secondary to RV
filling resulting in increased LV diastolic pressure (12, 14).

Systemic venous return from the SVC and IVC are dependent
on the existence of a pressure gradient between the extra-
thoracic venous system and the right atrium (15). The venous
system is a low-resistance, low-pressure, and high-compliance
circulation. During inspiration, a decrease in intra-pleural
pressure occurs from contraction of the external intercostal
and diaphragmatic muscles, causing an increase in right atrial
transmural pressure (pressure exerted across the wall) (11).
This results in the right atrial chamber distending and a
reduction in right atrial pressure, increasing systemic venous
return. With contraction of the diaphragmatic muscles during
inspiration, intra-abdominal pressure increases, and transmural
pressure of the abdominal vessels decreases. This effectively
causes constriction of the abdominal vessels, increasing IVC
return to the right atrium. Once right atrial pressure increases,
systemic venous return decreases (16). Through an adrenergic
response, veno-constriction occurs, increasing vascular pressure
and maintaining venous return. In addition to this, the
renin–angiotensin–aldosterone system is activated, increasing
reabsorption of water and sodium back into the circulation,
vasoconstricting arterioles, and releasing anti-diuretic hormone.

Riggs and Snider also noted an increase in RV filling during
inspiration, in both early and late diastole (12). Compared
with LV filling, they found a greater portion of RV filling
occurring during atrial systole. This may be augmented by the
diaphragm descending and transiently compressing compliant
hepatic sinusoids and portal venules (17). In summary, in the
normal circulation, inspiration is associated with increased RV
and reduced LV stroke volume.

CARDIOPULMONARY INTERACTIONS IN
THE FONTAN CIRCULATION

In the Fontan circulation, systemic venous return is independent
of a ventricular pump and relies on a balance between systemic
and pulmonary vascular resistance (PVR). The initial belief
was that a contractile chamber (right atrium) acting as a
pump to drive pulmonary forward flow was important in the
Fontan circulation (18). Subsequent animal studies, however,
demonstrated that right atrial contraction had a limited role
in actively pumping blood forward against higher resistance
in the pulmonary arteries (19, 20). de Leval et al. examining
Fontan hemodynamics in vitro, demonstrated that a contractile
chamber did not improve forward flow and did in fact limit
pulmonary forward flow detrimental to the circulation by
increasing upstream resistance (21).

The importance of spontaneous respiration in the Fontan
circulation was highlighted by Fontan and Baudet in 1971,
stating that “respiratory assistance should be stopped early
because positive pressure prevents central venous return” (18).
Subsequent studies have shown respiration to be an important
factor, with inspiration augmenting antegrade blood flow into
the pulmonary arteries, through inducing negative intrathoracic
pressure (22, 23). Spontaneous breathing has been shown to
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FIGURE 1 | Cardiopulmonary interactions in Fontan circulation.

be the main determinant of cardiac output in Fontan patients
(23, 24). Penny and Redington demonstrated that inspiration
augments antegrade pulmonary blood flow in an atriopulmonary
Fontan circulation, with pulmonary forward flow nearly 64%
higher during inspiration than expiration (22). Antegrade
pulmonary blood flow and peak velocity increased during atrial
systole, and was further augmented with inspiration (22).

Redington et al. also demonstrated augmentation of
pulmonary blood flow during inspiration, and attenuation or
cessation of this antegrade flow at beginning of expiration in
the Fontan circulation (23). They found that during normal
tidal breathing, the cardiac cycle had no significant effect
on pulmonary blood flow. Through performing breathing
maneuvers, they could demonstrate an increase in antegrade
pulmonary flow during prolonged forced inspiration against a
closed glottis (Mueller maneuver), and cessation to flow with
forced expiration (Valsalva), apart from some low-velocity
pulsatile flow during ventricular systole.

Consistent with previous studies demonstrating an increase in
venous return to the RV, Hsia et al. confirmed higher forward
flow in the hepatic veins and IVC during inspiration in both
normal and Fontan subjects (24). In normal subjects, there was
biphasic forward flow within the hepatic veins and IVC, with
a small amount of reversal during atrial systole. This normal
pattern was absent in Fontan subjects where the atrium was
excluded from the circulation. Thirty percent of flow through the
Fontan conduit was dependent on respiration, compared with
15% in normal subjects. Approximately 55% of hepatic flow was
respiratory dependent. They postulated that this was secondary
to hepatic venous congestion and reduced compressibility. They
also found that gravity had a more significant hemodynamic
effect on Fontan than normal subjects, with reduced net forward
flow and increased flow reversal when erect (24). Shafer et al. also
demonstrated the effects of expiration in Fontan subjects during
exercise, with a reduction in stroke volume during exercise with
an expiratory load (25).

In summary, these studies demonstrate the alterations
from normal in cardiopulmonary interactions in the Fontan
circulation (Figure 1). The effects of respiration are more
pronounced, with inspiration augmenting pulmonary antegrade
flow. These changes are induced by changes in intrathoracic
and intra-abdominal pressures, thereby influencing SVC and
IVC return.

ROLE OF MRI IN ASSESSMENT OF
RESPIRATORY EFFECTS OF PULMONARY
BLOOD FLOW AT REST AND WITH
EXERCISE

Using phase-contrast techniques, cardiac magnetic resonance
imaging (CMR) provides a unique opportunity to study
cardiopulmonary interactions of the Fontan circulation.
Respiratory variability in flows through the Fontan circulation
has been shown with CMR, with increased flow rates during
inspiration (26–29). For example, Hjortdal et al. examined the
effects of breathing on flow during exercise (26). Inspiratory
time initially increased during exercise. At rest, mean aortic
flow was marginally lower during inspiration than expiration
and was more dependent on the cardiac cycle than respiration.
Stroke volume was also lower during inspiration, and this was
unchanged with exercise. In contrast, IVC flow was higher
during inspiration at rest, with a smaller differential during
exercise. They found no respiratory dependence on SVC flow,
but noted limitations in their real-time flow MRI technique.

Using real-time free breathing methods, Wei et al. measured
respiration and flow in Fontan subjects during rest and
exercise (27). They also demonstrated increased IVC flow with
inspiration, which persisted with exercise, and additionally
showed increased SVC flow during inspiration. However, there
was no significant change in total systemic venous flow between
breath holding and free breathing, which could be accounted
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for by the exaggeration of reduced or even reversed flow during
expiration. They also demonstrated a significant increase in
aortic, SVC, and IVC flows with exercise. These findings are in
keeping with Hjortdal et al. apart from the increase in SVC flow
with exercise. This difference may be explained by differences in
real-time flow techniques and a younger cohort in Wei’s et al.
study population (12.4 ± 4.6 years compared with 20.0 ± 6.3
years) (26, 27).

Significant increases in systemic venous and aortic flow
pulsatility with respiration have been shown, with variability
between vessels (26, 30). Gabbert et al. developed a detailed
matrix to assess venous flow hemodynamics in the Fontan
circulation, to quantify respiratory and cardiac dependence of
flow (30). They found that although respiration had a significant
effect on systemic venous flow pulsatility, the predominant
determinant of IVC flow was the heart and not the lungs. These
findings were supported by Fogel et al. who showed that ∼70%
of systemic venous flow at rest was cardiac dependent, with the
highest flow occurring at end-systole and early-diastole (28). Like
others, Fogel et al. also showed increased flow during inspiration
at the mid-conduit level.

In a small cohort, where we were examining the hemodynamic
responses to inspiratory muscle training (IMT), we used CMR to
assess aortic and pulmonary flow at rest and during exercise (31).
We found that both stroke volume and ejection fraction increased
with exercise. We also demonstrated increased pulmonary flow
during inspiration at rest. Although IMT improved inspiratory
muscle strength and ventilatory efficiency on exercise testing,
aortic and pulmonary forward flow did not change.

CMR has further evaluated changes in pulmonary blood flow
during exercise in the Fontan circulation. Changes in pulmonary
forward flow are both cardiac and respiratory dependent.
Systemic venous return, particularly IVC return, and pulmonary
antegrade flow increases during inspiration at rest.

DETERMINANTS OF CARDIAC OUTPUT IN
THE FONTAN CIRCULATION

In the normal circulation, cardiac output is a function of stroke
volume (itself influenced by contractility, preload, and afterload)
and heart rate. Several factors can potentially limit cardiac output
in the Fontan circulation. Primarily, the lack of a sub-pulmonary
ventricle results in preload insufficiency (32, 33) with consequent
adverse ventricular remodeling (34, 35) and impaired diastolic
ventricular filling (36, 37). As a result of this preload insufficiency,
increasing heart rate may have a blunted ability to increase
cardiac output in the Fontan circulation (38). Other factors
likely to impact cardiac output in the Fontan circulation include
systolic dysfunction (34, 39), increased systemic afterload (40),
and abnormal ventriculo-arterial coupling (41).

Numerous studies have shown the importance of PVR in
the Fontan circulation and is now thought to be the major
determinant of cardiac output (42, 43). As the systemic and
pulmonary circuits in the Fontan circulation are connected
without a pump in between, stroke volume is dependent on
pulmonary venous return (preload), which in turn is dependent

on PVR. Gewillig and Goldberg demonstrated changes in cardiac
output with alterations in ventricular systolic function and PVR
(44). Mild increases in PVR cause significant reduction in cardiac
output. Factors that can influence PVR include patency of the
Fontan circuit, branch pulmonary arteries, pulmonary capillary
bed and pulmonary veins, and respiratory function.

Pulmonary vasculature development is abnormal in patients
with complex congenital heart. Antenatal hemodynamic factors
can alter pulmonary artery size and arborization, and pulmonary
venous and lymphatic anatomy. The connection between the
cardiac and pulmonary circulations is evident embryologically
with lung endoderm protruding into the mesoderm as the
heart tube elongates and folds (45). By 20 weeks of gestation,
pre-acinar pulmonary arteries have already formed, and any
mal-development of cardiac structure has already occurred.
Therefore, hemodynamic changes within the circulation, such as
a restrictive atrial septum in hypoplastic left heart syndrome, can
adversely affect pulmonary artery development. Lack of pulsatile
pulmonary flow in the Fontan circulation has been shown
to be associated with endothelial dysfunction and abnormal
vascular development (46, 47). This has also been shown on
histological specimens, with Levy et al. documenting in a study
of lung biopsies from 18 Fontan patients, variable intimal
proliferation and muscularization of terminal bronchiole and
alveolar duct arteries (48). Whether abnormalities of pulmonary
vascular development can impact alveolar development remains
to be determined.

Augmentation of cardiac output is usually achieved by
increases in heart rate, preload and/or myocardial contractility,
and reduced afterload. With exercise, for example, biventricular
stroke volume increases in the setting of adequate preload
reserve (43). In the Fontan circulation, ventricular function does
not predict exercise performance, suggesting that it is not the
main limitation of exercise capacity (49). The sub-pulmonary
ventricle has now been shown to also play a significant role
during exercise in the normal circulation (50, 51). La Gerche
and Gewillig elegantly discussed the effects of increased RV
afterload, and reducing LV preload and consequently cardiac
output; they further proposed that without a sub-pulmonary
pumping chamber in the Fontan circulation, PVR becomes the
limiting factor of cardiac output limitation (51).

ACUTE CHANGES IN PULMONARY
VASCULAR RESISTANCE AND POSITIVE
PRESSURE VENTILATION IN THE FONTAN
CIRCULATION

Pulmonary blood flow and PVR are the major determinants
of cardiac output in the Fontan circuit and are significantly
affected by respiration. In a normal circulation, PVR is the
main determinant of pulmonary afterload and is affected
by lung volumes (52). Reduction in intrathoracic pressure
with inspiration aids antegrade pulmonary blood flow and
consequently cardiac output.

Positive pressure ventilation (PPV) is frequently used in
the management of respiratory failure in postoperative cardiac
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patients. However, it has been shown to reduce cardiac output
likely secondary to increases in PVR and reduced systemic
venous return. The hemodynamics of a Fontan circulation
are dependent on low PVR and sufficient venous return, and
hence the adverse effect of PPV is augmented in the Fontan
circulation (53). PPV can be used to increase pressures during
inspiration (IPPV) and expiration (PEEP), resulting in increased
intrathoracic pressures. Applying pressure during expiration
prevents intrathoracic pressures from returning to normal,
thereby limiting systemic venous return and cardiac output (54–
56). Cournand and Motley showed that reduction in cardiac
output was inversely proportional to the pressure delivered
(57). This reduction in cardiac output is exaggerated in the
Fontan circuit, also reducing antegrade flow from the SVC
into the branch pulmonary arteries. These findings highlight
the importance of early extubation and/or minimizing positive
pressure post-operatively after Fontan completion (23, 58).
Jardin et al. proposed that in otherwise healthy patients with
respiratory distress syndrome, leftward displacement of the
interventricular septum limits LV filling and cardiac output (56).
Ventricular–ventricular interaction is also present in Fontan
patients with Fogel et al. demonstrating marked differences in
the wall motion of systemic right ventricles depending on the
presence of a left ventricle, through a magnetic resonance tagging
technique (59). They concluded that this ventricular–ventricular
interaction plays a significant role in the mechanisms of the
systemic ventricle in the Fontan circulation. However, the role
of respiratory-dependent septal shift in “biventricular” Fontan
patients (i.e., those with two ventricles present) is unknown.

Since the nineteenth century, negative pressure ventilation
(NPV) has been used in paralyzed patients with respiratory
insufficiency. It has been shown to improve both pulmonary
blood flow and cardiac output, particularly in the Fontan
circulation, and is associated with improved systemic venous
return (15, 60–63). NPV applies sub-atmospheric pressures to the
thorax during inspiration, causing the thorax to expand, thereby
reducing alveolar pressures, lowering PVR, and augmenting
systemic venous return (64).

Shekerdemian et al. converted patients in intensive care
after Fontan completion from PPV to NPV and demonstrated
acute improvement in pulmonary antegrade flow (15). This
was associated with improved mixed venous saturations and
increasing cardiac output, without changes in heart rate, by over
50% during both the acute and late post-operative periods (15),
highlighting the importance of the respiratory system in the
post-operative Fontan circulation. Charla et al. also examined
the role of 10min of NPV and biphasic ventilation (BPV)
in the ambulatory Fontan population (65). Using CMR, they
also found baseline low pulmonary blood flow compared with
controls. With both NPV and BPV, there was a significant
improvement in both pulmonary blood flow and cardiac output
compared with controls. This is most likely secondary to changes
in intrathoracic pressures, as previously demonstrated with
normal inspiration (22). They saw a greater improvement with
BPV, which was postulated as being due to BPV supporting
both the inspiratory phase and maintaining intra-abdominal
pressures during expiration, thereby minimizing retrograde flow

(65). This was supported by their demonstration of increased
IVC and hepatic venous flows. In addition, subjects tolerated
short-term external ventilation well and their willingness to
continue external ventilation correlated with the improvement
in pulmonary blood flow (65). These studies examining NPV
in Fontan patients have assessed acute hemodynamic response
only. Long-term safety, tolerability, and efficacy of NPV remain
an interesting area for future research.

RESTRICTIVE LUNG DISEASE

Reduced Lung Volumes
Lung volume, alveolar surface area, and number increases from
29 weeks’ gestation to at least 12 weeks postnatally, with a close
association to body weight (66). During the first 3 years of life,
increases in lung volume are predominantly due to increases in
alveolar number rather than size. Subsequently, alveoli increase
in both number and size, continuing through childhood and
into adolescence, although at a reduced rate, with 95% of
alveolar surface area in adults being formed after birth (67).
Lung development is altered, with abnormal lung parenchyma
and pulmonary vasculature, in subjects with congenital heart
disease, even in the absence of medical procedures and surgical
intervention (68).

Prior to Fontan completion, neonatal palliation of pulmonary
blood flow may result in abnormalities of pulmonary vascular
development. After Fontan completion, pulmonary blood flow
is non-pulsatile with altered wall shear stress and reduced
pulmonary endothelial function (46). The degree to which
alveolar development is impacted by abnormal pulmonary
vascular development in patients with a Fontan circulation
remains to be determined. Lung development may also
be adversely impacted by other factors commonly seen in
patients with congenital heart disease: desaturation, mechanical
ventilation, lymphatic dysfunction, multiple sternotomies and
thoracotomies, scoliosis or pectus deformity, and postoperative
complications such as pleural adhesions and diaphragmatic
palsy. Diaphragmatic palsy, for example, can reduce ventilatory
function by ∼25%, particularly in the setting of generalized
respiratory muscle weakness (69).

Animal studies have demonstrated abnormal lung
parenchyma after Fontan completion (70). Kanakis et al.
(70) demonstrated normal lung parenchyma in 8 pigs at baseline,
with rapid development of a mononuclear infiltration, in keeping
with bronchiolitis, within 2 h of Fontan completion. Pulmonary
capillary recruitment has also been demonstrated in isolated dog
lungs, with rises in pulmonary arterial pressure and pulsatile flow
(71). This finding suggests that long-term non-pulsatile flow,
in the setting of Fontan circulation, causes adverse parenchyma
lung remodeling and increases in PVR. Numerous studies have
shown reduced total lung capacity and vital capacity in Fontan
patients, suggestive of small lungs (7, 8, 72–77). The prevalence of
restrictive lung disease is high at 58–60%, with all studies finding
reduced forced expiratory volume in 1 s (FEV1), forced vital
capacity (FVC), and a normal or high FEV1/FVC ratio (9, 10, 77).
Ohuchi et al. found reduced total lung capacity (TLC), vital
capacity, and functional residual capacity in Fontan subjects
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compared with controls (8). Although their Fontan cohort had
normal residual volumes, RV/TLC ratio was increased indicative
of air trapping. These authors speculated that repeated surgical
interventions lead to reduced mechanical mobility of the lungs,
causing air trapping (8). Matthews et al. also found an increased
RV/TLC ratio but an increased residual volume when measured
by plethysmography (Z-score 2.46 ± 1.87) compared with the
standard helium dilution single breath test used in other studies
(72). They speculated that the difference between methods was
due to the single breath test only measuring gas communicating
with large airways.

In a large cohort of Fontan subjects aged 6–18 years from
the Pediatric Heart Network Fontan Cross-Sectional study,
Opotowsky et al. found a high percentage (45.8%) of subjects
with low FVC (76). This low FVC was not associated with
any demographic or clinical variable. Guenette et al. found
significantly reduced FEV1 and FVC in their Fontan cohort
compared with controls, with 65% having a restrictive pattern
(78). Moderate restriction was identified in 44% of subjects
studied by Turquetto et al., which was associated with presence
of postural deviations (e.g. kyphosis and scoliosis) and previous
thoracotomies (9). Restrictive lung disease has also been
associated with number of interventions, low body mass index,
scoliosis, and diaphragmatic paralysis (10).

Ohuchi et al. found that vital capacity was associated with
the number of other previous surgical procedures performed
(average of 1–2.4 procedures) and demonstrated that during
follow-up (0.7–17.5 years), vital capacity decreased significantly
(73). The significance of the restrictive lung disease is highlighted
by Callegari et al. finding a correlation between FEV1 %predicted
and self-reported quality of life scores, related to physical
functioining (10).

Ventilatory Limitation to Exercise in
Patients With a Fontan Circulation
In Fontan subjects, reduced FVC is associated with low peak
oxygen consumption (VO2) and reduced exercise capacity, and
is a predictor of survival in adults with congenital heart disease
(6, 79). In adults with congenital heart disease, presence of
restrictive lung disease is a strong predictor of exercise capacity
(79). It is now recognized that a significant proportion of patients
with a Fontan circulation have ventilatory rather than circulatory
limitations to exercise capacity (10, 76, 78).

Guenette et al. reported higher activity-related dyspnea
in their Fontan cohort compared with controls (78). In
keeping with previous studies, Guenette et al. also found
significantly reduced FEV1, FVC, maximal voluntary ventilation,
and diffusing capacity of carbon monoxide (DLCO), with
a restrictive ventilatory pattern (78). They examined the
cardiopulmonary response to exercise in Fontan subjects, noting
significantly reduced peak minute ventilation (VE) compared
with controls, secondary to reduced peak tidal volume. Fontan
subjects adopted a more rapid breathing pattern at any
given exercise intensity. To further characterize ventilatory
limitation to exercise, these authors performed inspiratory
flow-volume loops during exercise. This demonstrated a

higher end inspiratory lung volume, indicative of reduced
inspiratory reserve volume. There was no evidence of dynamic
lung hyperinflation. Ventilatory equivalence of carbon dioxide
(VE/VCO2) slope, a marker of ventilatory efficiency, during
exercise was significantly elevated. Their findings suggest
that the restrictive pattern of lung function in Fontan
subjects contributes to an abnormal ventilatory response to
exercise. Previous studies have also shown elevated ventilatory
equivalence of oxygen (VE/VO2) at both rest and exercise in
functionally single ventricle patients (80) Like other studies
(9, 10), Turquetto et al. also found a strong correlation
between peak VO2 and lung function parameters (FEV1,
FVC, total lung capacity, and diffusing capacity of carbon
monoxide) (9).

Impairments in pulmonary function can impact exercise
capacity, with Opotowsky et al. demonstrating that a low FVC
was predictive of low peak VO2, and a stronger determinant
than ventricular morphology or dysfunction (76). They also
showed that Fontan subjects with an elevated VE/VCO2 slope
were more likely to have a low breathing reserve (BR), suggestive
of ventilatory limitation of exercise. In comparing those with
ventilatory limitation of exercise (defined as BR < 20%) and
those with presumed cardiac limitation (BR > 20%), low FVC,
high VE/VCO2 slope, and high body mass index independently
predicted ventilatory limitation.

REDUCED DLCO

DLCO is a measure of lung gas transfer from alveolar gas to
hemoglobin within the pulmonary capillaries. It is affected by
diffusion across the alveolar-capillary membrane, hemoglobin
levels, and capillary blood volume. Therefore, reduced DLCO
may be secondary to reduced capillary blood volume available
for gas transfer, reduced alveolar volume, and/or abnormal
alveolar membrane conductance. DLCO is strongly associated
with aerobic capacity, measured by peak VO2 (81).

Fontan patients have reduced DLCO, ranging from Z-scores
of −2.85 to −3.1 (7–9, 72, 74). Matthews et al. proposed that
the reduction in DLCO may be due to two mechanisms: (1)
the non-pulsatile nature of the pulmonary blood flow inducing
changes within the pulmonary bed and causing thickening of
the alveolar capillary membrane; (2) recurrent microembolism
(72). Larsson et al. also proposed that the non-pulsatile nature
of pulmonary blood flow impairs gas exchange within the lungs
(7). This is in keeping with Levy et al. who demonstrated thick-
walled distal pulmonary arteries, with wall thickness correlating
to outcomes (48). Idorn et al. examined the etiology of reduced
DLCO in more detail through assessing different components
of DLCO (74). In their cohort, they found reduced pulmonary
capillary blood volume but normal diffusing capacity across
the alveolar membrane. Their data suggested preserved alveolar
membrane function and reduced pulmonary perfusion. These
authors also found an increase in DLCO and increased capillary
blood volume in the supine compared with sitting position. They
speculated that this may be secondary to improved perfusion
of the upper lobes, secondary to blood flow being more gravity
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dependent in the absence of a sub-pulmonary pump. In a
small cohort of 19 Fontan patients, del Torso et al. also found
abnormalities in lung perfusion in 8 of their 19 patients,
with majority being localized perfusion defects (82). Matsushita
et al. went on to demonstrate normal ventilation in Fontan
patients (83) and like others showed gravity-dependent blood
redistribution (84, 85).

Further studies potentially utilizing double diffusion
(DLCO and the diffusing capacity of nitric oxide, DLNO) are
required to determine the exact etiology of low DLCO in the
Fontan population.

RESPIRATORY MUSCLE WEAKNESS IN
PATIENTS WITH CONGENITAL HEART
DISEASE

Greutmann et al. have documented generalized muscle weakness
involving the skeletal and respiratory muscles in patients with
congenital heart disease (86). They studied 41 subjects with
congenital heart disease, including 11 subjects with single
ventricle physiology. Maximal inspiratory pressure (MIP) was
significantly reduced in the congenital heart disease group,
measuring 75 ± 26 cmH2O (77±27%) compared with 102
± 32 cmH2O in the control group. Inspiratory muscle
weakness was greater than expiratory muscle weakness. MIP
and maximal expiratory pressure (MEP) correlated significantly
with peak VO2. In addition, subjects with globally reduced
respiratory muscle strength (both MIP and MEP) had lower
maximal voluntary minute ventilation, which at peak exercise
was also associated with peak VO2. Similarly, Turquetto
et al. examined respiratory muscle strength in 27 Fontan
patients (9) by using two non-invasive modalities, MIP and
sniff nasal inspiratory pressure (SNIP). They also found
reduced muscle strength, measuring MIPs of 76 ± 23 cmH2O
(63 ± 16% predicted) in males and 81 ± 33 cmH2O
(71 ± 32% predicted) in females. SNIP was measured at
99 ± 24 cmH2O (72 ± 31%) in males and 84 ± 13
cmH2O (82 ± 12%) in females. Furthermore, they found an
association between SNIP and peak VO2. This respiratory muscle
weakness may contribute to reduced lung volumes, as seen in
Fontan patients.

IMPROVING FONTAN OUTCOMES BY
IMPROVING PULMONARY FUNCTION

With the identification of pulmonary abnormalities in Fontan
patients, research studies are now determining ways to improve
lung function, with the hope to improve exercise capacity, quality
of life, and morbidity. With the identification of reduced skeletal
and respiratory muscle strength, and better understanding of
altered cardiopulmonary interactions in the Fontan circulation,
mechanisms to improve lung function have been proposed.

Respiratory Muscle Training
Like skeletal muscles, respiratory muscles can be trained with
regular pressure loading. Respiratory muscle weakness affects

exercise capacity by predisposing them to fatigue and an
increased perception of dyspnea (87). During maximal exercise,
14–16% of cardiac output supplies the respiratory muscles (88).
It has been speculated that strengthening respiratory muscles can
augment skeletal blood flow by reducing blood diverted to the
respiratory muscles.

IMT has been studied in a number of conditions
including chronic heart failure (89–91). It has been shown
to improve exercise capacity through strengthening of the
inspiratory muscles and attenuating the exaggerated peripheral
vasoconstriction in exercising limbs (92).

We were the first to show that 6 weeks of IMT improved
inspiratory muscle strength (measured by MIP), ventilatory
efficiency of exercise (measured by VE/VCO2), and resting
cardiac output in young Fontan patients (31). This was
performed with patients training for 30min a day at 30% of
individual MIP, with an increase in threshold at 3 weeks. MIP
improved from 69 ± 22 cmH2O to 103 ± 32 cmH2O, which
is more comparable with MIP found in healthy controls (9).
In a subsequent pilot study, Wu et al. assessed the effects of
12 weeks of IMT for 30min a day at 40% of their initial
measured MIP. Although they found no improvement in
MIP, there was an improvement in peak work rate, and a
trend toward improved peak VO2 and ventilatory efficiency
(93). Fritz et al. looked at a longer 6-month period of
IMT, with subjects training for 10–30 repetitions a day and
a load that was increased at the patient’s discretion. They
found improvement in resting oxygen saturations, indicative
of improvement in ventilation/perfusion matching, but no
improvement in lung function or exercise capacity (94). They
proposed that the differences in study findings are secondary to
different IMT regimes.

More recently, Turquetto et al. performed a randomized
controlled trial looking at combined IMT and aerobic training
(95). Fontan subjects were randomized to either personalized
aerobic training or IMT, and a non-exercise group was used as
a control. Their IMT regime consisted of 3 sets of 30 repetitions
at 60% of individual MIP for 4 months, with adjustment in load
throughout the duration. Aerobic training consisted of 60-min
supervised, individually prescribed exercise training (treadmill,
light resistance, and stretching) 3 times a week for 4 months.
They found an improvement in peak VO2 with both these
training regimes, but a higher improvement in the aerobic
training group.

Ait Ali et al. explored this concept further through the
assessment of controlled breathing (respiratory training) in
Fontan patients, training both the inspiratory and expiratory
muscles (96). They used a method that forms the basis of a
yoga practice, involving conscious diaphragmatic contraction
and relaxation. This involved weekly 2-h sessions for 3 months
of respiratory training. Diaphragmatic respiration increased
intrathoracic negative pressure, optimizing systemic venous
return. They demonstrated improvement in peak VO2 and
endurance time.

These studies are suggestive that with the correct training
regime, including adjustments of the load according to
the patient’s individual MIP, both IMT and respiratory
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training have the potential to improve exercise capacity.
However, larger studies need to be undertaken to determine
the potential benefits, particularly in the setting of other
physical activity programs. IMT is a simple and safe
intervention that can be used to improve respiratory
muscle strength.

Resistance and Endurance Training
Due to the effects of gravity, when exercising, peripheral skeletal
muscles need to pump against gravity tomaintain diastolic filling.
In the Fontan circulation, pulmonary blood flow is dependent
on IVC return. Lower limb venous compliance correlated with
calf surface area and muscle mass (97). Cordina et al. therefore
hypothesized that enhancement of lower limb muscle mass could
improve cardiac output (98). They achieved this through a
20-week gym-training program where they found that isolated
muscle resistance training improved exercise capacity.

Hedlund et al. examined the effects of endurance training
on Fontan patients, through individualized endurance training
programs, including supervised weekly training sessions for
45min over the duration of 12 weeks (75). These programs
consisted of a variety of sports running, dancing, cycling, and
swimming. They reported increases in vital capacity after 3
months of training, which was not observed in their control
group. In a separate study, they also found improved quality
of life, as reported by the Fontan patients and their parents,
highlighting the importance of some form of exercise in this
population (99). The benefits on lung function of aerobic and/or

resistive exercise programs in patients with a Fontan circulation
remain to be tested.

CONCLUSION

Patients with a Fontan circulation have abnormal
cardiopulmonary interaction, in the setting of their systemic
and pulmonary circulations being in series. Due to this, the
physiological changes with inspiration are more pronounced
in subjects with a Fontan circulation, and respiration has a
more crucial role in regulating cardiac output. The critical
dependence of ventilation in determining cardiac output in the
Fontan circulation is highlighted by the acute use of NPV or
BPV immediately post-Fontan completion to improve antegrade
pulmonary blood flow and cardiac output. Fontan patients have
been shown to have reduced lung volumes with restrictive lung
disease, and abnormal lung gas transfer. The exact etiology of
these changes still needs to be studied in more detail. In addition,
Fontan patients have reduced skeletal and respiratory muscle
strength, further limiting exercise capacity. We and others have
shown potential benefits to respiratory muscle training. The
benefits of aerobic and skeletal muscle training with or without
respiratory muscle training remain to be determined.
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