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Abstract

Alzheimer’s disease (AD) is the leading cause of dementia. The two histopathological markers of AD are amyloid plaques
composed of the amyloid-β (Aβ) peptide, and neurofibrillary tangles of aggregated, abnormally hyperphosphorylated tau
protein. The majority of AD cases are late-onset, after the age of 65, where a clear cause is still unknown. However, there
are likely different multifactorial contributors including age, enviornment, biology and genetics which can increase risk for
the disease. Genetic predisposition is considerable, with heritability estimates of 60–80%. Genetic factors such as rare
variants of TREM2 (triggering receptor expressed on myeloid cells-2) strongly increase the risk of developing
AD, confirming the role of microglia in AD pathogenesis. In the last 5 years, several studies have dissected
the mechanisms by which TREM2, as well as its rare variants affect amyloid and tau pathologies and their
consequences in both animal models and in human studies. In this review, we summarize increases in our
understanding of the involvement of TREM2 and microglia in AD development that may open new therapeutic
strategies targeting the immune system to influence AD pathogenesis.
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Background
Alzheimer's disease (AD) was first described more than a
century ago by the German neuropsychiatrist, Dr. Alois
Alzheimer ([1], English translation [2]), and today is the
leading cause of dementia worldwide [3–5]. In the United
States, deaths attributed to AD have increased by 71% be-
tween 2000 and 2013, ranking this disease as the 6th lead-
ing cause of death [6]. Although symptoms can vary
greatly from one patient to another, AD results in progres-
sive memory loss and irreversible cognitive decline. The
two histopathological markers of AD are extracellular
amyloid plaques composed of the amyloid-β peptide (Aβ),
and neurofibrillary tangles (NFTs) within neurons derived
from abnormally aggregated, hyperphosphorylated tau
protein [3–5]. These defining protein aggregates are ac-
companied by synaptic and neuronal loss.
In addition to protein aggregation, neuroinflammatory

changes are present in AD brains, including alterations in
the morphology, activation and distribution of microglia
and astrocytes (microgliosis and astrogliosis) as well as

increased expression of inflammatory mediators [7–9].
However, the exact contributions of both microgliosis and
astrogliosis in AD are not clear. While first hypothesized to
contribute to AD neuropathology, gliosis and neuroinflam-
mation seem to have more complex effects and could be ei-
ther beneficial or damaging in those with AD (for review
[10]). For example, reactive microglia and astrocytes can
contribute to the clearance of Aβ [11–13]. Conversely, the
production of pro-inflammatory cytokines like TNFα
(Tumor necrosis factor α) or IL1-β (Interleukin 1β) result-
ing from glial activation are harmful and toxic to neurons
(for review [14, 15]). Many studies also suggest that neuro-
inflammation exacerbates tau phosphorylation [16–18].
Altogether, these data suggest the possibility that gliosis and
neuroinflammation have neuroprotective roles early in AD
by controlling amyloid load, but later can become toxic to
neurons and act as a catalyst for neurodegeneration.
Recent genomic studies have identified several novel

genetic risk factors linking neuroinflammation and AD.
Highly penetrant mutations in APP, PSEN1, and PSEN2
are known to cause rare, autosomal dominant AD, where
individuals develop the disease in mid-life [19]. However,
the majority of AD cases are sporadic and late-onset, the
causes of which are still unknown. Late-onset AD (LOAD)
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seems to be multifactorial, with age, environmental, and
genetic factors contributing to disease risk, manifestation
and progression. Interestingly, the genetic predisposition
in LOAD patients is considerable, with a heritability esti-
mate of 60–80% [20]. The most common genetic risk fac-
tor is the apolipoprotein E (ApoE) gene (for review [21]).
APOE is encoded by three common alleles: ε2, ε3, and ε4.
One copy of the ε4 allele of APOE increases LOAD risk
approximately 3-4 fold while two ε4 copies increases
LOAD risk by as much as 12-fold [22, 23]. Interestingly,
the ε2 allele is associated with a decreased risk for LOAD
and a later onset of disease. There are several mechanisms
by which ApoE appears to play a role in AD pathogenesis.
One important effect is that ApoE isoforms influence Aβ
clearance, aggregation and metabolism [24–26]. In
addition, recent studies suggest that ApoE modulates
tau-mediated neurodegeneration in an isoform-specific
manner [27].
For the last ten years, new whole-genome sequencing

studies and genome wide association studies (GWAS)
have made it possible to highlight several novel genetic
factors linked with increased risk of LOAD. Several of
these genetic risk factors encode proteins involved in
microglial function and inflammation including TREM2,
CD33, CR1, ABCA7 and SHIP1 (for reviews [28, 29]). In
this review, we summarize the recent explosion of stud-
ies aiming to understand the role of microglia in LOAD.
In particular, we focus on TREM2, a receptor of the in-
nate immune system expressed in several types, as vari-
ants in the TREM2 gene have been found to increase
LOAD-risk by 2-4 fold, similarly to what has been ob-
served in patients with one copy of APOE ε4. Many new
models have been created to better understand the con-
tributions of TREM2 in LOAD in light of this finding.
Thus far, TREM2 studies further reiterate both the bene-
ficial and detrimental effects of gliosis on neuronal
health and degeneration, which are dependent on the
context of the pathological insult and stage of disease.
We further explore potential mechanisms by which
TREM2 signaling may alter LOAD neuropathology. A
better understanding of TREM2 and its impact in the
disease is critical as TREM2 is currently being explored
as a therapeutic target in LOAD.

1) TREM2 structure and expression
TREM2 belongs to a family of receptors referred to as the
triggering receptors expressed on myeloid cells (TREM).
Members of the TREM family are cell surface transmem-
brane glycoproteins with V-immunoglobulin extra-cellular
domains and cytoplasmic tails [30]. The TREM2 gene is
located on human chromosome 6p21 and encodes a
230-amino acid glycoprotein [31]. The TREM2 gene is
expressed in a subgroup of myeloid cells including den-
dritic cells, granulocytes, and tissue-specific macrophages

like osteoclasts, Kuppfer cells and alveolar macrophages
[32–38]. In the brain, TREM2 is exclusively expressed by
microglia [39–44]; however, there is some discordance re-
garding the level of its expression//translation [45–47]
and whether or not TREM2 is present in all or only a sub-
group of microglia [48] in mice and humans. Interestingly,
the expression of TREM2 varies depending on the par-
ticular region of the central nervous system (CNS) [39,
49], with a higher expression in the hippocampus, the
spinal cord and the white matter [41]. Its expression is
modulated by inflammation, although inflammatory ef-
fects appear to be opposite in vitro and in vivo. Expression
of anti-inflammatory molecules enhances TREM2 expres-
sion [50] while expression of pro-inflammatory molecules,
such as TNFα, IL1β or lipopolysaccharide (LPS), decrease
TREM2 expression in vitro [32, 51, 52]. TREM2 expres-
sion is up regulated in pathological conditions such as
Parkinson’s disease (PD) [53], Amyotrophic lateral scler-
osis (ALS) [54], stroke [55], traumatic brain injury [56]
and AD [47, 57–59]. In AD, increased expression of
TREM2 has been confirmed in patients [47, 57–59] and
in mouse models of amyloid and tau pathology [45, 60–
63] and seems to be associated with the recruitment of
microglia to amyloid plaques [59, 64]. Interestingly, aging
is also a factor that increases TREM2 expression in both
mice and humans [41, 60]. We could speculate that the
acute inflammation mimicked by in vitro studies first in-
duces a decrease of TREM2 expression while chronic in-
flammation observed in pathological conditions, such as
AD, results in an increase of TREM2 expression.

2) TREM2 signaling and ligands
TREM2 acts principally through the intracellular adaptor
DAP12 (DNAX-activation protein 12, also known as TYR-
OBP) through its short cytoplasmic tail [32, 65, 66]. In-
deed, ligand-bound TREM2 is incapable of initiating
intracellular signaling without DAP12 [43]. The associ-
ation of TREM2 with DAP12 is coordinated by an electro-
static interaction between a conserved positively-charged
lysine in TREM2 (aa186) and a negatively- charged aspar-
tic acid residue in DAP12 (Figure 1) [66, 67]. TREM2
ligation generates tyrosine phosphorylation of DAP12
within its immunoreceptor tyrosine-based activation mo-
tifs (ITAMS) by Src family kinases (Figure 1). This phos-
phorylation creates a docking site for the SH2 domains of
several molecules, initiating a signaling cascade and subse-
quent immune response [66]. The principal kinase
recruited by the ITAM region of DAP12 is Syk, which ac-
tivates downstream signaling components including phos-
phatidylinositol 3-kinase (PI3K), Akt, mitogen-activated
protein kinases (MAPK) and increases intracellular cal-
cium levels [43, 68–70]. TREM2 can also act through the
DAP-10 adaptor, a relative of DAP-12, allowing the re-
cruitment of PI3K [71].
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The exact identities of ligands that activate TREM2 re-
main uncertain. Early studies found that the TREM2
extracellular domain is able to bind microbial products
such as LPS or lipoteichoic acids (LTA) [72]. Similarly to
other TREM family members [73], lipids can bind and
activate TREM2. Indeed, the putative structure of
TREM2 contains a potential phospholipid binding site
[73], which is confirmed by its crystal structure [74]. In
addition, several studies demonstrated binding between
TREM2 and lipids from cell membranes and lipoprotein
complexes [73, 75, 76]. TREM2 has been reported to
bind high-density lipoproteins (HDL), low-density lipo-
proteins (LDL) and several apolipoproteins such as
ApoA1, ApoA2, ApoB and clusterin (ApoJ) [76–79].
However, one of the most well documented ligands of
TREM2 is ApoE [76, 78, 79]. In vitro studies have
demonstrated that lipidation of ApoE is not required
for TREM2-ApoE binding [76, 78–80], although Yeh

et al. suggested that ApoE lipidation enhanced this
interaction [76].
It is interesting to note the interaction between

TREM2, ApoE, and clusterin because all three are im-
portant genetic risk factors for LOAD, although binding
between TREM2 and ApoE occurs with similar affinities
between the three different AD-associated ApoE iso-
forms [64, 78, 79]. In addition, a recent paper character-
ized Aβ as a ligand of TREM2 [81]. The authors found
that Aβ was able to directly bind to TREM2 and activate
TREM2 signaling through DAP12 in vitro. Interestingly,
an immunoprecipitation assay demonstrated a strong
enhancement of TREM2-Aβ interaction with oligomeric
forms of Aβ compared to monomers [81]. While most
ligands of TREM2 have been identified in vitro, a recent
in vivo study by Ulrich et al. strongly argues that ApoE
and TREM2 are in the same pathway [82]. Given that a
lack of TREM2 expression impairs plaque-associated

Fig. 1 TREM2 ligands, signaling and functions. Ligands binding to TREM2 induce the association of TREM2 to DAP12 through an electrostatic
interaction between a conserved positively-charged lysine in TREM2 (aa186) and a negatively- charged aspartic acid residue in DAP12, generating
tyrosine phosphorylation of DAP12 within its immunoreceptor tyrosine-based activation motifs (ITAMS) by Src family kinases
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microgliosis in amyloid models, Ulrich et al. tested
whether a lack of ApoE expression similarly affected the
microglial response to amyloid plaques. They observed
that mice lacking ApoE phenocopied mice lacking
TREM2 in regards to the plaque-associated microglial
response.

3) TREM2 functions
While the identities of TREM2 ligands remain uncertain,
several functions of TREM2 have been well character-
ized in the last decade. TREM2 enhances the rate of
phagocytosis. In vitro, loss of TREM2 in microglia and
macrophages results in decreased phagocytosis of apop-
totic neurons [43, 55, 78, 83], cellular debris [43] and
bacteria or bacterial products [84–87]; increasing
TREM2 expression improved phagocytosis rate of these
substrates [43, 63, 85, 87, 88]. Moreover, TREM2 has
been associated with Aβ uptake in vitro, which will be
discussed in a following section. In vivo, TREM2 KO
mice had decreased levels of activated microglia and
phagocytes in an experimental stroke model [55]. In a
mouse model of multiple sclerosis, TREM2-transduced
myeloid cells with lentivirus showed increased lysosomal
and phagocytic activity [88]. It is noteworthy that lentivi-
ruses and adeno-associated viruses (AAVs) have not
been shown to transduce these cells in the brain effi-
ciently. Regarding Aβ, microglia from 5XFAD mice with-
out TREM2 internalized less methoxy-×04 (indicative of
fibrillar Aβ) compared to microglia from 5XFAD mice
with TREM2 [89]. In the same mouse model, Aβ content
was significantly reduced within CD68-immunolabeled
microglial phagosomes when TREM2 was absent [90].
These findings in TREM2 deficient mice from multiple
pathological models corroborate in vitro studies regard-
ing TREM2’s role in phagocytosis.
TREM2 also modulates inflammatory signaling. Most

studies agree on the anti-inflammatory properties of
TREM2. Indeed, Toll-like receptor (TLR) stimulation
induced a higher release of pro-inflammatory cytokines,
including TNFα and IL6, by bone marrow-derived macro-
phages lacking TREM2 [50] or DAP12 [91]. Anti-inflam-
matory effects of TREM2 after TLR stimulation have been
confirmed in several cell lines [88, 92, 93]. In microglia,
the knockdown of TREM2 signaling increased TNFα and
NO synthase-2 transcription (NOS2), while overexpres-
sion of TREM2 decreased gene transcription of TNFα,
IL1β and NOS2 [43]. TREM2 also appears to signal
through anti-inflammatory pathways in several patho-
logical mouse models [55, 88, 94]. A recent study demon-
strated that TREM2 mediates the switch from a
homeostatic to a neurodegenerative microglia phenotype
in APPPS1 and SOD1 (ALS mouse model) mice by indu-
cing APOE signaling, a negative regulator of the homeo-
static microglia transcription program [95]. Conversely,

some studies reported that TREM2 promoted
pro-inflammatory signaling [32, 96]. Inspection of genes
with the highest connectivity to TREM2 revealed both
anti- and pro-inflammatory gene clusters in the brain [41].
These last findings strongly suggest a more complex ac-
tion of TREM2 on inflammatory processes.
TREM2 has also been shown to modulate myeloid cell

number, proliferation and survival. The ability of TREM2
to influence and, more specifically, to increase the number
of myeloid cells is mostly described in disease contexts
[55, 56, 84]. TREM2 enhances proliferation of several
myeloid cell populations including microglia. In vitro, re-
duction of TREM2 in primary microglia cultures resulted
in cell cycle arrest at the G1/S checkpoint [97]. Similarly, a
decrease of microglial proliferation has been observed in
different disease models when deficient for TREM2 [89,
98]. Finally, several studies suggested TREM2 as a key fac-
tor for myeloid cell survival. Indeed, Zheng et al. reported
decreased survival of primary microglia and BV2 micro-
glial cells along with an alteration of the Wnt/β-catenin
activation pathway when TREM2 expression was reduced
[97]. In accordance with these data, bone marrow derived
macrophages and microglia deficient for TREM2 showed
a lower survival rate after CSF1 starvation [75, 77, 99]. On
the other hand, TREM2 activation improved dendritic cell
survival through activation of the ERK pathway [32].
The functions of TREM2 previously described demon-

strate the importance of TREM2 at the physiological and
pathological level. Somehow, the loss of these functions in
humans with homozygous loss-of-function mutations in
TREM2 suffer from a severe form of dementia with bone
cystic lesions known as Nasu-Hakola disease [100, 101].
How and why this particular disease occurs due to loss of
TREM2 function is not yet clear. Several TREM2 variants
in the human population are able to impair but not block
functional TREM2 signaling and impact the onset and
progression of AD as will be described in an upcoming
section of this review. It is noteworthy that studies have
also associated some TREM2 variants with other neurode-
generative diseases such as ALS [54, 102], Parkinson’s dis-
ease [102, 103] and frontotemporal dementia [104–106],
although these observations are still somewhat controver-
sial [102, 104, 107].

4) TREM2 variants and Alzheimer’s disease
Thanks to the recent development of whole genome se-
quencing and genome-wide association studies (GWAS),
several genetic variants have been identified that in-
crease the risk of developing LOAD. Among them, sev-
eral rare variants in TREM2 have emerged that
significantly increase LOAD risk by 2- to 4- fold, com-
parable to the increased risk associated with having one
copy of APOE ε4. The most common and most well
studied TREM2 variant known to increase the risk of
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AD is rs75932628, a single nucleotide polymorphism en-
coding an arginine-to-histidine missense substitution at
amino acid 47 (R47H). The R47H variant was first iden-
tified as a risk factor for LOAD in 2013 by two inde-
pendent studies on subjects of people of European or
North American descent [108] and Icelandic subjects
[109]. The association between the R47H variant and
LOAD in populations of European descent was there-
after corroborated by several studies [104, 107, 110–
118]. However, this risk variant has mostly present in
European populations and the association of the R47H
mutant with increased LOAD risk does not seem to exist
in Chinese and African-American populations [119–
123]. LOAD patients with the R47H variant display an
earlier onset of symptoms [107, 109] and faster cognitive
decline [124] compared to non-carriers, although these
results are not always consistent between studies [107,
117, 125]. Interestingly, in a European cohort, the R47H
variant of TREM2 increased the level of total tau protein
in the CSF without affecting Aβ42 [102]. These data sug-
gest a link between AD-associated pathologies and the
R47H TREM2 variant. Other TREM2 variants have also
been suggested as risk factors for developing LOAD, in-
cluding R62H (rs143332484), D87N (rs142232675),
T96K (rs2234353), L211P (rs2234256) and R136Q
(rs149622783) [77, 108, 110, 112, 115, 126].
Identification of these new TREM2 variants as LOAD

genetic risk factors has prompted many scientists to
study their impact on TREM2 functions. Most of the
studies have determined that AD-associated TREM2 var-
iants do not affect folding, expression, stability or struc-
ture of TREM2 in AD brains [58, 77, 85]. However,
Kober et al. do suggest that the R47H mutation induces
a small, but measurable, conformational change in
TREM2, and that the R47H and R62H TREM2 variants
exhibited slightly decreased stability compared to the
common variant [74]. AD-associated variants do appear
to affect the affinity of TREM2 for its ligands. Indeed,
binding assays revealed that R47H, R62H and D87N vari-
ants exhibit impaired interactions with lipoprotein ligands
including ApoE, LDL and clusterin in vitro [74, 76, 78,
79]. Conversely, Kober et al. reported that the T96K vari-
ant increased TREM2 affinity to cell-surface ligands, while
confirming reduced binding of cell-surface ligands by
R47H [74]. AD-associated variants disturb TREM2 signal-
ing in a pattern similar to that observed for affinity: R47H
and R62H negatively affect TREM2 activity in vitro, while
T96K activity was enhanced compared to the common
variant of TREM2 [75, 77]. However, this correlation be-
tween affinity and signaling strength does not apply to the
D87N variant, which induces a decrease in ligand binding
but an increase in TREM2 signaling [77]. This highlights
the need for better understanding of the complex action
of TREM2. Finally, R47H and R62H variants have been

shown to slightly alter phagocytic functions of TREM2 in
vitro [76, 85]. Moreover, R47H missense mutation impairs
TREM2 maturation and alters shedding by α-secretase
[85]. Finally, Yeh et al. demonstrated a decrease of
Aβ-lipoprotein complex uptake by blood
monocyte-derived macrophages from patients heterozy-
gous for the R62H variant [76].
Over the last 5 years, considerable efforts have been

made to better understand how different TREM2 vari-
ants can affect the risk of AD in vitro. These studies
have found that these variants result in a decrease of
TREM2 functions. It is now essential to confirm and fur-
ther explore these data in vivo using animal models of
AD and in patients in order to elucidate the precise
mechanisms linking the TREM2 variants to AD.

5) TREM2 and amyloid pathology in AD
TREM2 and amyloid burden
A large majority of in vivo studies aimed at understand-
ing the link between TREM2 and AD have focused on
amyloid pathology. Most of these studies used different
mouse models of amyloid deposition with total or partial
deletions of TREM2. Unfortunately, while in vitro stud-
ies suggested that TREM2 is strongly involved in Aβ40
and Aβ42 uptake by microglia [63, 85, 127], experiments
performed in vivo found more inconsistent results re-
garding TREM2 function in Aβ uptake by microglia.
The APPPS1-21 [128] and 5xFAD [129] mouse models
have mainly been used to assess the effect of TREM2 de-
ficiency or haplo-insufficiency on Aβ accumulation. In
APPPS1-21 mice, TREM2 haplo-insufficiency did not
affect Aβ accumulation in the cortex [130]. A total dele-
tion of TREM2 in the APPPS1-21 mouse model resulted
in a decreased Aβ burden in the cortex of 2-month-old
mice but in a higher Aβ accumulation in the cortex of
8-month-old mice [131]. In 5xFAD mice, Wang et al. re-
ported that TREM2 deletion increased Aβ pathology (in-
soluble Aβ42 and Aβ load) in the hippocampus but not
in the cortex of 8.5-month-old mice, with an intermedi-
ate phenotype in TREM2-haplo-insufficient mice [75,
89]. These data suggest an age-dependent or Aβ burden-
dependent effect of TREM2 on Aβ deposition. There-
fore, TREM2 could result in greater Aβ deposition in the
early stages of the disease and then result in less Aβ de-
position in later stages. A time course analysis of Aβ
burden in these two TREM2-deficient models will be
necessary to confirm this hypothesis. Moreover, the use
of a less aggressive model of Aβ deposition will be useful
in order to finely dissect the effect of TREM2 on Aβ
accumulation. [45, 75, 130] [132, 133]

TREM2 and microglial function
Whereas the effect of TREM2 on Aβ deposition remains
unclear, studies have unanimously reported decreased
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microglial activation in APPPS1-21 and 5xFAD mice de-
ficient or haplo-insufficient for TREM2, resulting in a
subsequent reduction of plaque-associated microglia [45,
75, 130]. Importantly, microglia also failed to cluster
around plaques in APPPS1-21 mice haplo-insufficient or
deficient for DAP12 [90], confirming the need for
TREM2 signaling to activate microglia and recruit them
to the plaques. The inability of microglia to cluster
around plaques without TREM2 was associated with de-
fects in plaque compaction, microglia proliferation, and
increased levels of dystrophic neurons [75, 89, 90].
Moreover, microglia that lacked TREM2 exhibited strong
metabolic defects, including low ATP levels and elevated
stress markers such as autophagic vesicles. This was
caused by defective mammalian Target Of Rapamycin
(mTOR) signaling [134]. These results suggest that
TREM2 provides trophic support for microglia in stressful
conditions. In cases of prolonged stress or activation, as
seen in AD, a defective TREM2 could then alter microglial
functions and survival through deficient mTOR signaling,
resulting in exacerbation of AD neuropathologies.
Recently, Lee at al. used a BAC transgene to induce hu-

man TREM2 (hTREM2) expression in 5xFAD mice [135].
Compared to 5xFAD mice deficient or haplo-insufficient
for TREM2 [75, 89, 136], 5xFAD mice expressing human
TREM2 exhibited reduced insoluble and soluble Aβ42,
diminished plaque area, more compact plaques and fewer
dystrophic neurites in the cortex [135]. The authors
demonstrated that expression of hTREM2 resulted in a re-
programmed microglial gene expression signature. Inter-
estingly, human TREM2 expression was associated with
the upregulation of some “disease-associated microglial
genes” involved in microglial function, such as phagocyt-
osis. Following this observation, the authors confirmed
that phagocytic microglia markers such as CD68 and
Lgasl3 in were increased in 5xFAD mice expressing
hTREM2. This study confirmed several TREM2 functions
previously described in TREM2-deletion mouse models
and suggested that reprogrammed microglial gene expres-
sion is a key function of TREM2 in the Aβ-deposition
models.
Recent findings by Zhao et al. revealed that TREM2 is

an Aβ receptor that mediates microglial functions [81,
137]. As previously mentioned, the authors demonstrated
TREM2-Aβ interactions using co-immunoprecipitation,
cell-free, solid-phase and cell-based binding assay; this
interaction was stronger with oligomeric forms of Aβ
compared to monomers [81, 137]. Aβ/TREM2 binding
activated TREM2 signaling and induced microglia
depolarization and Aβ degradation. Moreover, microglia
without TREM2 displayed defective clearance of Aβ, with
longer internalization of Aβ and an impaired Aβ-induced
pro-inflammatory response. In vivo, Zhao et al. described
alterations in Aβ degradation as well as microglial

proliferation and apoptosis in Aβ-injected TREM2 defi-
cient mice [81]. Altogether, these data suggest that oligo-
meric forms of Aβ may activate TREM2 signaling through
direct binding resulting in a pro-inflammatory response,
Aβ degradation and microglial proliferation. Moreover,
these results could explain why TREM2 is necessary for
the recruitment of microglia to plaques.
Importantly, Zhao et al. also reported that the R47H

and R62H hTREM2 variants compromised the inter-
action between oligomeric Aβ and TREM2-Fc [81]. We
can therefore speculate that the mechanism by which
TREM2 variants increase the risk of LOAD is by altering
TREM2’s Aβ-receptor functions. However, these in vitro
data have not yet been confirmed by in vivo studies [82].
Indeed, Ulrich et al. demonstrated that a lack of ApoE
expression affects microglial recruitment to amyloid pla-
ques, which is phenotypically similar to what has been
observed in mice lacking TREM2 expression. These in
vivo observations suggest that if TREM2 is able to bind
Aβ, as suggested by in vitro studies, it does not seem
able to bind Aβ in plaques in the absence of ApoE to re-
sult in microglial recruitment and reduce neuritic dys-
trophy. Further studies characterizing AD-associated
TREM2 variants in the context of amyloid pathology are
thus needed to confirm this hypothesis and better
understand how TREM2 variants promote LOAD.

The biologic impacts of hTREM2 variants
Two studies aimed at clarifying the impact of human
TREM2 variants in LOAD have been published to date.
In the first of these studies, Song et al. generated trans-
genic mice expressing the common variant or R47H
variant of human TREM2 via BAC transgenes in a
TREM2-deficient 5xFAD mouse background [132]. They
reported that only the common variant of TREM2 was
able to restore microgliosis and microglial activation in-
duced by amyloid pathology in this model, while mice
expressing the R47H variant displayed impaired micro-
glial activation and recruitment to plaques. These results
are similar to the observations made in TREM2-deficient
5xFAD mice [132]. Moreover, the authors found that
soluble TREM2 released from microglia membranes is
found in plaques and neurons of 5xFAD mice with the
common variant of TREM2, but not in 5xFAD mice with
the R47H variant of TREM2. Importantly, soluble
TREM2 (corresponding to the TREM2 ectodomain pre-
viously described) was identified as a receptor for oligo-
meric Aβ [81, 137]. This suggests a possible direct
binding between soluble TREM2 and plaques in the
brains of 5xFAD mice expressing the common variant of
TREM2 but not in the brains of mice expressing the
R47H variant [81, 137]. However, the impact of this pos-
sible interaction between soluble TREM2 and oligomeric
Aβ on AD remains to be further explored.
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In a subsequent study, Cheng-Hathaway et al. used
APPPS1-21 mice in which CRISPR/Cas9 was used to
knock in the R47H TREM2 variant into the endogenous
mouse TREM2 gene [133]. APPPS1-21 mice heterozy-
gous for the R47H TREM2 variant exhibited reduced as-
sociation of microglia to plaques, lowered Aβ-induced
microglial activation and proliferation, more diffuse
amyloid plaques and increased plaque-associated neur-
itic dystrophy. These results are comparable to observa-
tions made in both Aβ-deposition and APPPS1-21
mouse models that are haplo-insufficient or deficient for
TREM2 [45, 75, 89, 130, 131]. Surprisingly, a strong re-
duction of TREM2 mRNA was observed in APPPS1-21
mice heterozygous for the R47H TREM2 variant, which
differs from a human study that reported no change in
TREM2 expression in the brain of AD patients heterozy-
gous for the R47H variant [58]. Interestingly, a similar
decrease of plaque-associated microglia, the presence of
less compact plaques and higher neuritic dystrophy
around plaques has also been observed in AD patients
expressing the R47H variant of TREM2 compared to
those patients expressing the common TREM2 variant,
confirming the partial loss-of-function caused by the
R47H variant [136]. Taken together, these in vivo studies
confirmed the suspected partial TREM2 loss-of-function
phenotype of the LOAD-associated R47H variant. Im-
portantly, a new study by Xiang et al. has explored the
cause of TREM2 RNA reduction in this CRISP/Cas9
model [138]. They reported that the R47H variant acti-
vated a cryptic splice site, which introduced a premature
stop codon in mice but not in human TREM2, resulting
in haplo-insufficiency of the Cheng-Hathaway et al.
model. These data strongly suggest that results obtained
with this model should be interpreted carefully and may
not be directly translatable to humans.
To conclude, these studies in mouse models of amyl-

oid deposition indicate a critical function for TREM2 in
the clustering of microglia around plaques, plaque com-
paction, and microglia proliferation and activation,
which may be disturbed by some rare TREM2 variants.
TREM2 signaling appears to both positively and nega-
tively affect amyloid pathology depending on disease
progression. AD-associated TREM2 variants may induce
partial loss-of-function phenotypes, resulting in an in-
ability of microglia to cluster around plaques. These
findings advance our understanding of TREM2 involve-
ment in the response of microglia to Aβ aggregation and
its consequences and strongly encourage targeting and
enhancing TREM2 expression and/or signaling early in
AD pathogenesis to reduce Aβ-induced brain injury as-
sociated with TREM2 defects in AD. However, the Aβ
deposition phase of AD occurs predominantly prior to
symptom onset in humans. Questions still remain re-
garding the role of TREM2 and its different variants in

later stages of AD, in particular in tau pathology and tau
seeding.

6) TREM2 and tau pathology in AD
First clues linking TREM2 to tau pathology
Numerous findings in the literature suggest a link be-
tween tau pathology and TREM2 in LOAD. Indeed, in
the cerebrospinal fluid (CSF) of AD patients, soluble
TREM2 has been shown to correlate with total and
phosphorylated tau (Thr181) levels, but not with levels
of Aβ42 [139]. Moreover, AD patients harboring the
R47H variant of TREM2 display higher levels of both
total tau and phosphorylated tau (Thr181) in CSF com-
pared to non-carriers, without any change in Aβ42 levels
[102, 140]. Importantly, levels of phosphorylated tau in
the CSF correlate with tau pathology burden in the brain
(both in terms of neurofibrillary tangles and hyperpho-
sphorylated tau loading) [141] and with neuronal loss
and cognitive decline in AD patients [141–143]. Import-
antly, a study reported increased tau hyperphosphoryla-
tion and axonal dystrophy around amyloid plaques in
humans harboring the R47H variant of TREM2 [90]. A
study also found a positive correlation between TREM2
mRNA levels and tau burden in a cohort of 20 AD pa-
tients and 12 controls [57]. Additionally, microglia have
been strongly characterized as key players in tau path-
ology and propagation [144–147]. Indeed, in a mouse
model of tau propagation using an injection of AAV2/
6-SYN1 promoter driving the expression of human
P301L tau 1–441 mutant into the entorhinal cortex, Asai
et al. report that depleting microglia dramatically sup-
pressed the propagation of Tau [147]. Moreover, Luo et
al. demonstrated that microglia degrade human tau spe-
cies released from AD brains and eliminate NFTs from
PS19 mice, a mouse model of tauopathy harboring the
P301S human tau mutation [145]. In hTau mice, another
tauopathy mouse model, microglial activation has been
shown to correlate with a deficit in spatial memory and
the spread of tau pathology [146]. While preliminary,
these data suggest a role for microglia in tau pathology
and tau propagation in AD, which can be affected by
AD-associated TREM2 variants. However, only a few
studies have investigated the link between tau and
TREM2 compared to the extensive number of studies
aimed at understanding the link between TREM2 and
Aβ.
Some studies have assessed tau phosphorylation in

Aβ-deposition mouse models deficient for TREM2.
However, the results reported in these studies are incon-
sistent, and demonstrate either an increase [89] or de-
crease [45] of phosphorylated tau in mice deficient for
TREM2. This may be because of differences in the
mouse models used (5xFAD vs. APPPS1). A recent study
also suggested that overexpression of TREM2 through
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ICV injection of AAV encoding the murine TREM2 gene
was able to decrease surgery-induced tau hyperpho-
sphorylation in APPswe/PS1dE9 mice [148]. However, it
is important to note that robust microglial transduction
has not been reported in vitro using commonly used
AAVs (1-9).

TREM2 functions in models of pure tau pathology
Although investigating the effects of TREM2 on tau
pathology in the context of amyloid pathology is essen-
tial to better understand AD, studies of the direct link
between TREM2 and tau pathology are very rare. Only 5
studies of TREM2 in pure tau pathology exist today in
the literature. Two of these studies have been done by
Jiang et al. in PS19 mice, a model of tauopathy harboring
the P301S mutation [149, 150]. In the first study, the au-
thors suggested that the silencing of brain TREM2 via
injection of a lentivirus containing TREM2 shRNA was
able to exacerbate tau phosphorylation through
neuroinflammation-induced hyperactivation of tau ki-
nases [150]. Moreover, data presented in this study sug-
gests an exacerbation of neurodegeneration and higher
spatial learning deficits in PS19 mice expressing TREM2
shRNA compared to mice not deficient in TREM2. In
the second study, they induced TREM2 overexpression
in microglia of PS19 mice with a lentivirus containing
TREM2 cDNA. In agreement with their first study, the
authors observed that overexpression of TREM2 in
microglia reduced neurodegeneration, spatial cognitive
impairments and tau hyperphosphorylation through the
suppression of neuroinflammation-induced hyperactiva-
tion of tau kinases [149]. Although both articles have
relevant hypotheses and provide encouraging results, a
significant technical issue exists in these studies. Clear
evidence that the lentiviruses utilized were able to infect
and alter TREM2 levels in microglia is lacking. In the
first study, the authors were able to confirm an increase
in TREM2 mRNA levels specifically in microglia during
disease progression in PS19 mice [150]. However, they
did not use the same technique to assess the efficiency
of their lentiviruses and only assessed TREM2 mRNA
levels in whole cortex and hippocampus (not only in
microglia) [149, 150]. To confirm that the lentiviruses al-
tered TREM2 expression in microglia, they performed
TREM2 immunofluorescence staining in mouse brains
but the authors mention possible non-specific binding
with the antibodies utilized [149, 150]. To summarize,
due to the lack of important controls, results obtained in
these studies are not sufficient to confidently understand
how TREM2 affects tau pathology.
Three recent studies tackled this problem by crossing

TREM2 knockout mice with two different murine
models of tauopathies [151–153]. In the first study,
Leyns et al. reported a decrease in neurodegeneration as

well as attenuated microgliosis and astrogliosis in the
brains of PS19 mice deficient for TREM2 [152]. Interest-
ingly, no differences were observed for tau phosphoryl-
ation and insolubility in PS19 mice with or without
TREM2. These unexpected results suggest that TREM2
promotes neuroinflammation and neurodegeneration in
the context of tauopathy. In a second study, Sayed et al.
[153] found that TREM2 haplo-insufficiency, but not
complete loss of TREM2, increased tau pathology. Fur-
ther, whereas complete TREM2 deficiency protected
against tau-mediated microglial activation and atrophy
as seen by Leyns et al. [152], TREM2 haplo-insufficiency
elevated expression of proinflammatory markers and ex-
acerbated atrophy at a late stage of disease. Taken to-
gether, these 2 studies suggest that partial or normal
TREM2 function contributes to tauopathy as well as
tau-mediated damage and that complete loss of function
also decreases tau-mediated brain injury. In a third
study, Bemiller et al. crossed TREM2 knockout mice
with hTau mice [151], which is a mouse model of tauo-
pathy expressing all human Tau isoforms in a murine
tau knockout background [154]. Bemiller at al. con-
firmed the decrease of microgliosis in TREM2-deficient
hTau mice, as previously seen in TREM2-deficient PS19
mice [151–153]. However, unlike studies on PS19 mice,
complete deletion of TREM2 in hTau mice exacerbated
tau phosphorylation and insolubility. The authors sug-
gest that these changes are driven by the activation of
stress-related tau protein kinases in TREM2-deficient
hTau mice. Neurodegeneration was not evaluated in this
study. These pure tauopathy mouse models suggest a
complex relationship between TREM2 and Tau path-
ology, which requires further research. hTau and PS19
mice are independent mouse models and develop dis-
tinctive pathologies, which may explain differences be-
tween these models. Given the results of the current
studies, it will be important to understand the effects of
human TREM2 and human TREM2 variants in both
pure tauopathy models that develop tau pathology and
neurodegeneration as well as the effects of TREM2 in
models that develop both Aβ and tau pathology.
Recently, an interesting study evaluated molecular and

pathological interactions between Aβ42, tau, TREM2,
and DAP12 in Drosophila models [155]. They created
flies that expressed human tau in photoreceptor neurons
and either WT or R47H TREM2/DAP12 complexes in
glia cells simultaneously. Results obtained in this new
model demonstrated that glial expression of both
TREM2WT/DAP12 and TREM2R47H/TDAP12 complexes
significantly exacerbated tau-mediated neurodegenera-
tion without affecting tau phosphorylation and insolubil-
ity, in agreement with the Leyns et al. and Sayed et al.
studies in TREM2 deficient PS19 mice [152, 153]. On
the other hand, a recent in vitro study using a microglia/
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neuron co-culture model, reported that depletion of
TREM2 exacerbated tau phosphorylation via an increase
in the microglial inflammatory response [156]. These re-
sults are in agreement with the findings reported by
Bemiller et al.
Taken together, studies assessing the link between tau

pathology and TREM2 suggest a biphasic effect of TREM2
loss-of-function, similar to what has been seen for amyloid
pathology. In the early stages of the disease, dysfunctional
TREM2 can promote tau pathology (both hyperphosphor-
ylation and aggregation), while the complete loss of
TREM2 function in advanced stages of the disease seems
to protect from neurodegeneration.

7) TREM2 and ApoE: a close partnership in AD
pathogenesis?
Beyond the direct contribution of TREM2 and its
AD-related variants on the two histopathological
markers of LOAD (i.e. amyloid plaques and NFTs), a
new hypothesis has started to emerge suggesting a col-
laboration between ApoE and TREM2 in LOAD patho-
genesis. This hypothesis is based on a combination of
several observations. First, APOE and TREM2 are, to
date, the two largest genetic risk factors that influence
the development of LOAD [157]. Second, ApoE is now
well-characterized as a TREM2 ligand in vitro, which
may stimulate TREM2 functions [76, 78–80]. Interest-
ingly, binding between TREM2 and ApoE occurs to a
similar extent between the three different ApoE isoforms
[64, 78–80]. Another study showed higher TREM2 ex-
pression in patient-derived mononuclear blood cells
from ApoE ε4-carriers with mild cognitive impairment
and AD compared to non-carriers [158]. Moreover, de-
crease of TREM2 in microglia has been reported in mice
expressing ApoE ε4 [159]. Recently, Murray et al. sug-
gested that ApoE ε4 is required in TREM2 R47H
variant-carriers for AD to develop, although larger co-
horts and statistical analyses are needed to support this
hypothesis [160].
At the microglial level, quantification of ApoE tran-

scripts isolated from both WT and TREM2-deleted mice
using fluorescence-activated cell sorting and nanostring
technology revealed a downregulation of ApoE expres-
sion in TREM2-deleted mice [161]. In PS19 mice, Leyns
et al. reported the accumulation of ApoE-positive puncta
specifically in microglia [152]. Deletion of TREM2 in
this model strongly lowered the number of microglia
containing ApoE puncta, and decreased the gene expres-
sion of ApoE in the cortex. Moreover, the same reduc-
tion in neurodegeneration induced by tau pathology in
PS19 mice has been reported when mice lack TREM2
[152] or ApoE [27]. This suggests a strong contribution
of TREM2 and ApoE in neurodegeneration in this
model. Recent findings by Ulrich et al. also suggest that

ApoE and TREM2 are in the same pathway [82]. Indeed,
amyloid mice lacking ApoE phenocopied mice lacking
TREM2 in regards to the plaque-associated microglial
response. Taken together, these data suggest a pos-
sible relationship between TREM2 and ApoE in AD,
although the exact nature of this alliance and its con-
sequences in AD remained, until recently, poorly
understood.
A new study has shed light on the function of the

TREM2/ApoE connection in neurodegenerative diseases
including AD [95]. In this study by Kraesmann et al., a spe-
cific molecular signature has was identified in microglia
from several mouse models of neurodegenerative diseases,
including AD [95]. This neurodegeneration-associated
phenotype acquired by microglia (MGnD) is characterized
by transcriptional changes, including decreased expression
of 68 homeostatic genes, and increased expression of 28 in-
flammatory genes. Because the downregulation of ApoE
observed in microglia during development is correlated
with a homeostatic profile, the authors next aimed to assess
the role of ApoE in the induction of MGnD in microglia
[162]. To this end, they performed transcriptomic analysis
in APOE-deleted microglia and observed that ApoE regu-
lates the MGnD transcriptional program. Moreover, be-
cause TREM2 binds ApoE, the authors then evaluated if
the ApoE-induced switch from a homeostatic profile to
MGnD in microglia was TREM2-dependent. Deletion of
TREM2 in APPPS1-21 mice suppressed the MGnD profile,
locking microglia in the homeostatic phenotype. This sug-
gests that the TREM2/ApoE pathway is able to drive the
switch from homeostatic microglia to neurodegenerative
microglia, MGnD being less effective at preventing neur-
onal loss. This novel study provides many answers regard-
ing the relationship between TREM2 and ApoE in
neurodegenerative diseases. However, it is still not clear
whether ApoE or TREM2 are upstream or downstream of
each other in this pathway.
Altogether, these data indicate a strong collaboration

between TREM2 and ApoE in several neuropathological
hallmarks of LOAD. However, these discoveries raise
new questions regarding the exact mechanism under-
lying this collaboration and the origin of ApoE involved
in this partnership, which require further investigation.
Moreover, these data reveal that a more exhaustive study
of ApoE specifically in microglia is now necessary to bet-
ter understand the link between AD and microglia.

8) TREM2: a brain teaser for therapeutic strategy in AD
Despite more than a century of research on AD, there is
currently no treatment to prevent or cure the disease.
Current treatments aiming to slow the progression of
the disease target neurotransmission pathways altered in
AD. The U.S. Food and Drug Administration has ap-
proved two types of medications that aim to slow down
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AD: cholinesterase inhibitors (Aricept, Exelon, Raza-
dyne) and the NMDA receptor antagonist memantine
(Namenda). However, the efficiency of these drugs has
often been questioned (for review [163]). Although a
considerable effort has been made to find new treat-
ments, none have been met with any success yet in clin-
ical trials.
While a great interest in TREM2 as a therapeutic tar-

get in AD is emerging, many impediments make its use
potentially challenging. First, TREM2 risk variants are

found in less than one percent of the population. In
comparison, ApoE ε4-carriers represent 20% of the
population [113, 164]. Although several studies suggest
that, in certain conditions, targeting TREM2 could de-
crease AD-related pathologies as previously described, it
is still unknown whether a potential TREM2-targeting
treatment will be effective in non-carrier AD patients,
which represent the majority of cases. Moreover, it re-
mains to be determined whether a therapeutic strategy
targeting TREM2 should activate or inhibit it. Indeed, as

Table 1 Summary of the major findings on TREM2 in AD context

AD context Major TREM2-AD related findings Source Citations

Risk factors ❖ Rare variants in TREM2 increase LOAD risk
by 2- to 4- fold

AD patients [104, 107–118]

Amyloid pathology ❖ Loss of functional TREM2 decreases microgliosis
around plaques

5xFAD mice
APPPS1-21 mice

[45, 75, 130, 132, 133]

❖ Loss of functional TREM2 decreases plaque
compaction

5xFAD mice
APPPS1-21 mice

[75, 89, 90, 133]

Tau pathology ❖ TREM2 deletion decreases tau-mediated
neurodegeneration

PS19 mice [152, 153]

❖ TREM2 deletion (1) or haploinsuficiency (2)
increase tau pathology

hTau mice (1)
PS19 mice (2)

[151] (1)
[153] (2)

ApoE ❖ ApoE is a TREM2 ligand in vitro [76, 78, 79]

❖ ApoE-induced switch from homeostatic to
neurodegenerative microglia is TREM2-dependent

APPPS1-21 mice [95]

Fig. 2 Schematic summary of the role of TREM2 and its variants in AD. a. Functional TREM2 has been suggested to allow microglia activation (by
amyloid and NFTs for example), promote microglia clustering around plaques, amyloid uptake (early stage of the disease) and plaque compaction
through binding to plaque-associated ApoE or directly to oligomeric Aβ. b. AD-associated TREM2 variants resulting in TREM2 partial loss-
of-function abolished microglia clustering around plaque and phagocytic activity. These changes could be caused by a blockage of microglia in
homeostatic stages because of less plaque-associated ApoE or other reasons. The consequences are filamentous plaques associate with increased
dystrophic neurites and a possible increase of tau pathology (in early stages)
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previously discussed, TREM2 can be either beneficial or
pathological in AD depending on the disease models
used, the context of the pathological insult, and the
stages of pathology. To date, the best strategy seems to
involve stimulating TREM2 signaling in the early stages
of the disease, when amyloid deposition starts and be-
fore tau pathology and neuronal loss occurs. However,
because of the dual role of TREM2 in AD, this hypoth-
esis must be carefully tested to avoid worsening disease
pathology. A similar strategy would be to stimulate
TREM2 even before amyloid deposits form in the brain.
Indeed, TREM2 deficiency prevents the transition of
microglia to the MGnD phenotype, which prevents the
beneficial effects of microglia on amyloid pathology
[165]. Stimulating the microglial transition from homeo-
static states to MGnD prior to amyloid accumulation
may therefore delay the evolution of AD. Conversely, the
observation that deletion of TREM2 in APPPS1-21 mice
decreased the Aβ burden in 2-months-old animals but
resulted in higher Aβ accumulation in the cortex of
8-months-old animals [131] suggests that MGnD
could be beneficial in the later stages of amyloid
pathology. This example highlights the complexity of
targeting TREM2.
While the timing of when to stimulate TREM2 in

order to treat AD pathology needs to be resolved, the
question of how to target TREM2 also remains unad-
dressed. Immunotherapy using antibodies to stimulate
TREM2 signaling are being developed by a number of
groups. TREM2-activating antibodies have been tested
in vitro and have been shown to induce activation of cal-
cium and ERK signaling in human dendritic cells [32].
Such a strategy requires particular thoughtfulness be-
cause antibodies could alter binding of TREM2 ligands
[75]. Modulating TREM2 expression or protein levels is
another strategy of interest. Indeed, overexpression of
TREM2 in vitro decreases inflammation and promotes
phagocytosis [43]. In vivo, lentiviral approaches aiming
to increase TREM2 expression in the brains of mice at-
tenuated both cognitive and neuropathologic alterations
[63]. However, it is important to note that lentiviral
strategies cannot be used in humans because of the high
risk of inducing oncogenic transformation.
Regardless of the strategy chosen to modulate TREM2

in AD, it is important to remember that microglia are
not the only cells that express TREM2. Targeting of this
receptor outside the brain will need to be assessed to
make sure there are not unwanted side effects. Further,
even in the brain, microglial functions are not limited to
inflammatory responses (for review [166]) and modulat-
ing TREM2 signaling could induce several deleterious
side effects that will have to be assessed. It seems obvi-
ous that the targeting of TREM2 in AD is a promising
avenue to explore. However, there are clearly several

obstacles that will need to be addressed before moving
forward with such a strategy. The growing interest in
TREM2, especially in the context of AD, may hopefully
provide a better characterization of its roles and thus
help to find a way around the possible barriers to its
therapeutic targeting.

Conclusion
Despite a continually growing number of cases, AD is
still under-characterized. In addition to the role of amyl-
oid pathology, it is now clear that the pathogenesis of
AD involves many alterations in the brain that interact
synergistically, ultimately resulting in neuronal death.
Beyond tau and amyloid pathologies, growing evidence
suggests that neuroinflammation plays a crucial role in
AD. Recent genetic studies (GWAS and whole genome
sequencing) have confirmed this by identifying numer-
ous genetic risk factors for AD associated with the im-
mune system. Within these new genetic risk factors, a
special interest has been directed at TREM2 in the last 5
years. Together, the data presented in this review
strongly suggest an important role of TREM2 in AD at
the level of amyloid and tau pathologies and inflamma-
tion, alone or in collaboration with other molecules such
as ApoE (Table 1). Figure 2 illustrates current thinking
and hypotheses regarding the role of TREM2 and its
rare AD-associated variants in AD pathogenesis. Studies
on TREM2 in the context of AD highlight its complex-
ity. Indeed, in vivo studies suggest that TREM2 is injuri-
ous in the early stages of the disease and then becomes
beneficial in the later stages. Finally, both ApoE and
oligomeric forms of Aβ are able to bind and activate
TREM2 making the elucidating of the TREM2 mechan-
ism of action in AD difficult.
Therefore, there are many outstanding questions that

require further investigation. Most of the previously per-
formed studies evaluated how TREM2 influences AD
pathogenesis through partial or total deletion of TREM2.
However, AD-related risk factors have also been associ-
ated with partial loss-of-function of TREM2. Conse-
quently, further studies are needed to understand how
these specific human risk variants affect AD. Further-
more, it is also necessary to understand the dual role of
TREM2 in AD, which can reflect the often-reported dual
role of neuroinflammation in this disease. In the same
way, how TREM2 variants exactly alter AD remains un-
clear. Is it because of altered phagocytosis resulting in
the accumulation of amyloid plaques and damaged neu-
rons? Perhaps TREM2 variants increase the expression
of pro-inflammatory molecules. Is TREM2 role in AD
dependent of its interaction with ApoE? Is ApoE up-
stream or downstream of TREM2? It would be interest-
ing to assess if similar TREM2 partial loss-of-function is
observed in AD patients without AD-related TREM2
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risk variants. This may occur through the interaction be-
tween TREM2 and APOE or oligomeric forms of Aβ,
both of which are able to bind TREM2 and modulate its
functions. Data obtained during the last 5 years has pro-
vided many answers regarding the role of TREM2 in
AD, and has identified TREM2 as a therapeutic target.
However, substantial questions regarding the potential
targeting of TREM2 remain unclear. Is TREM2 benefi-
cial or damaging at particular disease stages? The trigger
of the disease? Or just a catalyst of an inevitable AD?
The complexity of TREM2 in AD is beyond doubt and
brings new questions with each new discovery. Address-
ing these questions first will be necessary to explain the
role of TREM2 and microglia in AD and will help deter-
mine whether targeting it is a viable therapeutic strategy.
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