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Abstract

The interplay between life sciences and advancing technology drives a continuous cycle of chemical data growth; these data
are most often stored in open or partially open databases. In parallel, many different types of algorithms are being
developed to manipulate these chemical objects and associated bioactivity data. Virtual screening methods are among the
most popular computational approaches in pharmaceutical research. Today, user-friendly web-based tools are available to
help scientists perform virtual screening experiments. This article provides an overview of internet resources enabling and
supporting chemical biology and early drug discovery with a main emphasis on web servers dedicated to virtual ligand
screening and small-molecule docking. This survey first introduces some key concepts and then presents recent and easily
accessible virtual screening and related target-fishing tools as well as briefly discusses case studies enabled by some of
these web services. Notwithstanding further improvements, already available web-based tools not only contribute to the
design of bioactive molecules and assist drug repositioning but also help to generate new ideas and explore different
hypotheses in a timely fashion while contributing to teaching in the field of drug development.
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Introduction

The development of new drugs is characterized by high cost,
long development cycles and low success rate [1-3]. The field
faces numerous challenges but at the same time new opportu-
nities are appearing. Numerous diseases tend to be much more
complex than originally thought while the potential of genomic
medicine to revolutionize health care will take much more time
than anticipated [4, 5]. Despite important progress, there are
still many medical conditions for which treatments are inad-
equate or missing. Fortunately, experimental high-throughput

technologies generate a significant amount of data that facili-
tate, in some cases, the understanding of molecular mechanisms
involved in the health and disease states and the development
of novel drugs. However, with big data comes also novel chal-
lenges that will need to be addressed so as to fully benefit from
advances in artificial intelligence, virtual screening and machine
learning approaches [6-18].

There are different types of therapeutic molecules (e.g. small
chemical compounds and biologics) and here we will focus on
small molecules although many web services or online tools
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are also available to assist the development of biologics such
as therapeutic antibodies and peptides. The traditional drug
discovery process, in simple terms, encompasses several stages,
starting with identification of targets or molecular pathways
likely involved in the investigated disease and the search for hit
compounds that modulate the putative target(s) and pathway(s)
[19] (NB: the steps are different when the studies start with phe-
notypic screening [20, 21]. Then, various properties of the initial
hit compounds have to be optimized (e.g. affinity, solubility,
toxicity at the required dose..., usually performed during the
so-called hit to lead step and beyond) up to the identification of
clinical candidates. Different experimental approaches/skills are
required to identify and optimize these early stage compounds
(screening, biophysical methods, biochemistry, medicinal
chemistry...). Considering only the initial discovery and
preclinical studies (and thus not mentioning the clinical phases),
the first steps of the process are known to be time consuming
(5-6 years) and expensive (~$430 millions) [2, 22, 23]. To
assist this highly challenging process, various types of in silico
approaches are being used, depending on the available data and
the stage of the discovery process.

In silico approaches contribute to drug discovery [24-30] but
many algorithms, often not yet integrated in commercial pack-
ages, could be very valuable for a given project but can be
difficult to install, redevelop and/or use. To improve the usabil-
ity of such computational resources, new in silico approaches
are often implemented online. These web applications and/or
databases help not only wet-lab researchers but also computa-
tional experts to quickly integrate many different types of data
and advanced drug design tools in their everyday research tasks.
Some online tools allow users to create an account and manage
their data. On most systems, data are automatically deleted
within a few days. It should also be born in mind that uploading
highly confidential data online can be risky and as such users
may have to check with the web developers for potential secu-
rity issues. Indeed, these recent years, one observes that new
databases and algorithms that attempt to solve new questions
and better address known or emerging drug discovery chal-
lenges are reported almost every week [31-44]. Of importance,
these resources can also assist teaching, for example chemistry
databases, online tools and freely available software packages
are being used in different universities for that purpose [44-47].

In the present communication, among the different com-
putational approaches that can be used in drug discovery, we
essentially focus on recently reported and easily accessible
virtual screening web servers. The first part of the review intro-
duces the field of virtual screening and some related computa-
tional approaches that might be required prior to or after virtual
screening experiments. We then discuss ligand-based virtual
screening (LBVS) and structure-based virtual screening (SBVS)
tools. Along the presentation, we mention, when documented
(i.e. some tools are very new and have not yet been used by wet-
lab scientists), some experimental case studies that made use of
these web applications. The tools that we report are essentially
peer-reviewed published methods with URLs tested in February
2020 (i.e. tools with broken links after several trials during
2-4 weeks are not described) and tools that we have identified
by internet search. The list of tools might not be exhaustive yet
the searches have been performed twice a week in PubMed and
in several scientific journals during these last 10 years. Citations
of the tools were investigated via Google Scholar. The URLs of
the various tools are reported in three tables but are also stored
online, updated on a regular basis and made available on the
shortlist page at www.vls3d.com [39, 44].
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Virtual ligand screening: key concepts
and related tools

Virtual screening or virtual ligand screening, first coined in
the literature in 1997 [48], is a computational technique that
is used, in general, in the early stages of the drug discovery
process, to search libraries of small molecules in order to identify
chemical compounds that are likely to bind to one or several drug
targets [49-59]. This type of computation can be conceived as a
sort of experimental biochemical high-throughput screening
(HTS) performed in silico [60, 61]. In general, virtual screening
computations associated with interactive analysis of the data
will generate a list of about top 30-500 compounds (or more)
that will then need to be validated experimentally. The in silico
methods are of course not without pitfalls [62, 63] and are
generally used prior to or in parallel to experimental screening.
As compound collections for experimental screening usually
contain from about 50 000 (academic lab) to 5 million (big
pharma) compounds, the time and cost required for a project
can be significantly reduced with in silico screening, not only
in terms of purchasing biological and chemical materials but
also in terms of analysis of the HTS results (i.e. it can take
several months to identify false-positives...) [64]. Further, as the
chemical space is almost infinite [65, 66], virtual screening can
explore novel regions of the chemical space and even molecules
that are not yet synthesized but yet ‘medchem friendly’ [67, 68].
Key computational methods to identify hits and/or perform the
first rounds of compound optimization can be subdivided in two
broad categories, LBVS and SBVS approaches. In addition, several
other computational approaches (a.k.a. in this review named
‘related tools’) can be used prior to or after in silico screening
(e.g. investigation of absorption, distribution, metabolism,
excretion and toxicity—ADME-Tox—properties, predictions
of binding pocket, evaluation of flexibility via molecular
simulations...) (Fig. 1).

For the first category (LBVS), 2D or 3D chemical structures or
molecular descriptors of the known actives are used to retrieve
other (‘similar’) compounds of interest in a database using dif-
ferent types of similarity measures or by seeking a common
substructure or pharmacophore between the query molecule
and the scanned libraries. The methods rely on the knowledge of
small molecules (the queries) that bind to the target(s) of interest
(for example obtained after mining annotated compound collec-
tions or after a first round of experimental screening). The main
tools that are used in ligand-based screening are 2D molecular
similarity approaches, 3D similarity searches (pharmacophore,
molecular shapes colored or not by physicochemical properties,
energy fields around the molecules such as electrostatic prop-
erties) and 2D/3D QSAR (quantitative structure-activity rela-
tionship) modeling. In 2D molecular similarity methods, the
molecular fingerprint of known ligands that bind to a target is
used to find molecules with similar fingerprints in the electronic
libraries [69-73]. Various types of similarity or distance met-
rics can be used among which the Tanimoto coefficient values
between 0 and 1. Here, the higher the threshold, the closer the
compounds in the database are to the input query [74]. In ligand-
based pharmacophore modeling (a pharmacophore is a molec-
ular framework that defines the essential features responsible
for the biological activity of a compound), usually performed
in 3D, common and key structural features of the ligands that
bind to a target are identified and used to do develop a model
and to screen a compound collection with that model such
as to identify compounds that match the model requirements
[75-77]. Other 3D similarity methods involve shape similarity.
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Figure 1. Virtual screening online. Several research laboratories worldwide provide online virtual screening services. In the present survey, the identified main countries
offering online virtual screening services (active URLs in February 2020) are (by alphabetic order): Austria, Australia, Brazil, Canada, China, Czech Republic, Denmark,
France, Germany, India, Israel, Italy, Japan, Poland, Republic of Ecuador, Republic of Korea, Saudi Arabia, Spain, Switzerland, The Netherlands, Taiwan, Turkey, the UK and
the USA. The map chart was created with Mapchart.net. The main LBVS methods are 2D similarity search, pharmacophores, QSAR models and shape/field alignments
while for SBVS, the approaches involve docking, scoring and rescoring with various methods including consensus scoring, or different flavors of free energy calculations.

Here again, the algorithms can be used for virtual screening
but also in molecular target prediction, drug repositioning and
scaffold hopping. A wide range of methods have been developed
to describe the molecular shape and to determine the similarity
between shapes (including electrostatic similarity or ‘force field’
colored shape similarity) [78-83]. Machine learning and QSAR
modeling are computational methods that model the relation-
ship between a set of selected features (e.g. molecular descrip-
tors like fingerprint and/or various physicochemical properties)
of the ligands that bind to a target and the corresponding biolog-
ical activity effect. In contrast to traditional similarity searches,
here the knowledge of true active and true inactive compounds
is, in general, needed to develop statistical predictive models,
although in some cases artificial decoys can be used to repre-
sent inactive molecules [13, 84-96]. Predictive machine learning
models (e.g. classification, regression and clustering) can thus
provide a list of compounds that is different or that comple-
ments the one obtained with, for instance, 2D or 3D similarity
search [17, 97]. Of importance, different types of metrics can be
used to evaluate statistical models and explanations about the
applicability domain have to be provided to users [13, 86, 96]. As
described in this section, most of these approaches are available
online and in some cases, the same web servers can indeed offer
different types of computations.

For the second category (SBVS), compounds (or fragments)
from a database are docked into a binding site (or over the entire
surface or in several binding sites or taking into account distance
constraints such as in covalent docking) and are ranked using
generally one (e.g. force field based, empirical or knowledge-
based) scoring function [98-108].

The targets are in general proteins, but other macromolecules
can also be investigated such as nucleic acids. Different types of

postprocessing steps can be applied such as consensus scoring
or consensus docking and scoring, rescoring with more rigorous
binding free energy calculations or with machine learning scor-
ing functions. Other types of rescoring approaches involve vari-
ous types of molecular interaction fingerprints as the different
ligands of a given target often share key molecular interaction
patterns. In SBVS, no prior knowledge on known ligands hitting
the investigated target is required, although, of course, knowl-
edge about binders (e.g. known ligands with some affinity for the
target of interest or cocrystallized compounds) helps to calibrate
(or select) the best available computational method(s). De novo
ligand design can be performed in 2D [109] but structure-based
approaches tend to be used more and more as the amount of
structural data increases. Thus in the structure-based category
of tools, approaches such as fragment-based de novo ligand
design are being used [110-113]. Receptor-based pharmacophore
screening fits also in this category of structure-based screening
(i-e. in this situation knowledge of the binding pocket is used in
generating pharmacophore models) [75-77]. Other computations
that are not SBVS per se can be used and combined with SBVS.
For example, ligand may not need to be docked into a binding
pocket but can be transposed (pocket matching algorithms) as
some binding sites are very similar despite the fact that the 3D
structures of the targets can be very different [35,114-117]. Along
the same line of reasoning, databases of comparative structure
models of drug-target interactions can be built [118].

The structure-based methods are applicable when the 3D
structure of the target has been determined with biophysical
methods such as X-ray, cryo-electron microscopy and nuclear
magnetic resonance, but homology models can also be used
[119-125]. Molecular dynamics (or related approaches) are fre-
quently used in structure-based screening to explore the likely



poses of a compound, to rescore molecules, to investigate the
importance of water molecules, the pathways of interaction (e.g.
kinetics of binding, unbinding events) and to investigate target
flexibility, explore binding pockets and/or discover cryptic pock-
ets and to rationalize allosteric events [126-131]. In some con-
ditions, ligand (including machine learning models) and SBVS
can be combined such as, for instance, in the case of hierarchi-
cal screening with various types of ligand-based filtering steps
followed by docking and rescoring [132-135].

Ligand-based and SBVS approaches are most often used to
search libraries of compounds for molecules that are most likely
to bind to a specific target. However, these approaches can also
be used, with some modifications, to identify the most likely
targets of a query molecule. One goal here is to try to predict the
bioactivity or mechanism of action of compound, to, for instance,
detect drug polypharmacology, predict potential adverse effects,
help rationally design multitarget drugs or assist drug reposi-
tioning endeavors [25, 30, 136-141]. This is often referred in the
literature to as target-fishing or in silico profiling. The popular
approaches to perform target-fishing involve ligand-based or
structure-based approaches. The simplest methods for target
prediction are based on chemical similarity and make use of
the known bioactivity of millions of small molecules stored in
databases. In this case, the putative targets of a molecule can
be predicted by identifying proteins with known ligands that are
highly similar to the query compound. 2D similarity search, 3D
search and machine learning approaches are available. It is also
possible to dock a query compound into a small or large database
of prepared receptor 3D structures. This process of target-fishing
relies on inverse or reverse docking methods.

A first step prior to virtual screening computations usually
involves gathering information about targets and compounds.
Numerous databases are freely available and can be mined (e.g.
target already drugged, novel targets, search for approved drugs,
commercially available compounds, medicinal chemistry aware
virtual compounds, natural products, small macrocycles, short
peptides, toxic compounds, compounds reported in patents...).
Three very recent reviews on chemistry databases [42, 142] and
Omics and target databases [143] have just been reported and
cover all the major databases that most users will need to
embark in a virtual screening project.

Further, as mentioned above, for most receptor-based
screening experiments, it is important to define (or refine) the
likely binding pocket for the putative ligands. Often, this zone is
known from the literature (e.g. a catalytic site) but, if not or in
case the researchers need to screen outside these well-known
binding cavities, different types of computational methods have
been developed. Of importance, pocket with a point mutation
identified in patients could be of major importance for drug
discovery endeavors. The tools to predict, prepare, compare
and explore putative binding pockets have been reviewed [115,
144-151]. Some recently (since 2017) reported web services
dedicated to pockets or allowing the exploration of target
plasticity are reported in Supplementary Table S1.

Most projects at some point will require the investigation of
the ADME-Tox properties of the small molecules. Undesirable
pharmacokinetic properties or potential toxicity or the presence
of assay interfering chemical (sub)structures can be evaluated
in silico. Recent reviews about some available in silico tools and
the way these approaches are being used have been reported
[34, 42, 152-167]. Different concepts are explored with these
computational approaches. A first level of in silico prediction
involves various types of physicochemical property filtering
together with addition of flags or even removing molecules
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that contain some ‘risky’ structural alerts (i.e. either toxicity
alerts or unwanted promiscuous binders and frequent hitters).
Other approaches predict more specific toxicity endpoints.
Further, once some initial hit compounds are obtained, opti-
mization is usually required (e.g. increasing the affinity to the
target while improving solubility and reducing potential binding
to antitargets) (see Supplementary Table S1). Of course, ligand-
based and structure-based tools can be used, but more specific
engines can be valuable to assist the process, for instance
methods that enable fast and user friendly searches for
bioisoteric replacements or tools that attempt to optimize
several ADME-Tox properties at the same time (multiparameter
optimization) (see Supplementary Table S1).

LBVS and target-fishing web servers

The different tools are reported in Table 1.

2D similarity search utilities on some selected
well-known databases

As mentioned above, we will not cover compound databases
in the present review. We here highlight some well-known ser-
vices where it is possible to carry out ligand-based similarity
search. Users can usually upload or draw a compound of interest,
for example known to be active on a given target and search
for similar compounds present in the investigated database
(e.g. ChEMBL [168], SureCheMBL [169], PubChem [170], DrugBank
[171], hmdb [171], SuperDRUG [172], ZINC [173] etc.). Most often,
one or several structural fingerprints are available to carry out
the search [174, 175]. Fingerprints in general encode the pres-
ence of substructural fragments. A similarity measure can be
obtained by determining the numbers of chemical substructures
in common between the query compound and the molecules in
the database. These so-called similar compounds are expected
to have similar activities following the Similar Property Prin-
ciple (see for instance [176] and comments in [175]). It is also
important to note that the experimental data available in these
databases can be very valuable to assist compound validation
and optimization while giving some hints about the putative
targets of the investigated compound.

2D or 3D similarity search, structural diversity and
computation of molecular descriptors

Balanced rapid and unrestricted server for extensive ligand-aimed
screening

It is a web tool for 3D shape (e.g. computed with Screen3D [177],
WEGA [178]) and pharmacophore (computed with SHAFTS [179])
searches in libraries extracted for instance from ChEMBL, KEGG
or DrugBank [180]. A wide panel of shape and pharmacophore
similarity algorithms is combined. Balanced rapid and unre-
stricted server for extensive ligand-aimed screening (BRUSELAS)
was tested against related servers (e.g. USR-VS [181], Swiss-
Similarity [182] and ChemMapper [183]) to search for potential
antidiabetic drugs.

ChemDes

In many projects, it will be necessary to compute molecular
descriptors and fingerprints (e.g. for machine learning, similarity
search, etc.). Most of the tools needed to compute these
properties are distributed as standalone software or packages
that require in some cases complex installation or programming
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efforts. Second, many of the tools can only calculate a subset
of molecular descriptors, and the results from multiple tools
need to be manually merged to generate a comprehensive set
of descriptors. Third, some packages only provide application
programming interfaces and are implemented in different
computer languages, which pose additional challenges to the
integration of these tools. ChemDes is a free web-based platform
for the calculation of 2D or 3D molecular descriptors (Chemopy,
CDK, RDKit, Pybel, BlueDesc and PaDEL descriptors) and
fingerprints; currently, it computes 3679 molecular descriptors
and 59 types of molecular fingerprints such as topological
fingerprints, electro-topological state (E-state) fingerprints,
MACCS keys, FP4 keys, atom pairs fingerprints, topological
torsion fingerprints and Morgan/circular fingerprints among
others [184].

ChemMine tools

This is an online service for small molecule data analysis [185].
The primary functionalities of this service fall into five major
application areas: data visualization, structure comparisons,
similarity searching, compound clustering and prediction of
chemical properties. Users can upload compound data sets
and use utilities such as compound viewing, structure drawing
and format interconversion. Pairwise structural similarities
among compounds can be quantified. Interfaces to ultrafast
structure similarity search algorithms are available to mine
the chemical space in the public domain databases (PubChem
or ChEMBL). The service also includes a clustering toolbox
to enable systematic structure- and activity-based analyses.
Further, physicochemical property descriptors of compound
sets can be calculated and, for instance, use for QSAR studies.
The tools were, among others, used to analyze molecules
inhibiting Chikungunya virus-induced cell death [186] or to plot
a dendogram showing structural similarity of hit compounds
acting on Dengue viruses [187].

Macromolecule extended atom-pair fingerprint

Seven million of the currently 94 million entries in the Pub-
Chem database break at least one of the four Lipinski con-
straints for oral bioavailability while 183 185 of which are also
found in the ChEMBL database. These non-Lipinski PubChem
(NLP) and ChEMBL (NLC) subsets can be of interest in many
projects. The macromolecule extended atom-pair fingerprint
(MXFP) web-based application has been developed to explore
larger molecules and to position users’ compounds in this chem-
ical space [188]. MXFP is a 217-D fingerprint tailored to ana-
lyze large molecules in terms of molecular shape and pharma-
cophores. The approach can perform MXFP nearest neighbor
searches in the NLP and NLC space.

pepMMsMIMIC

This tool is a web-oriented peptidomimetic compound virtual
screening tool based on a multiconformers 3D similarity search
strategy [189]. Key to the development of pepMMsMIMIC has
been the creation of a library of 17 million conformers calcu-
lated from 3.9 million commercially available chemicals. Using
as input the 3D structure of a peptide bound to a protein,
pepMMsMIMIC suggests which chemical structures are able to
mimic the peptide using both pharmacophore and shape simi-
larity techniques. The tool was for instance used for the devel-
opment of Mdm2 small molecule modulators [190].

PharmaGist

This is a tool for ligand-based pharmacophore detection and
does not require the 3D structure of the target [191]. The input
is a set of structures of drug-like molecules that are known to
bind to the receptor of interest. The output consists of can-
didate pharmacophores that are computed by multiple flexi-
ble alignment of the input ligands. The method handles the
flexibility of the input ligands explicitly and in deterministic
manner within the alignment process. This tool was, for exam-
ple, used to study pregnane X receptor ligands, a xenobiotic
sensor [192].

Pharmit

This tool provides an online, interactive environment for
the virtual screening of large compound databases (over
200 million compounds in total) using pharmacophores,
molecular shape and energy minimization [193]. Users can
import, create and edit virtual screening queries in an interactive
browser-based interface. Queries are specified in terms of
a pharmacophore, a spatial arrangement of the essential
features of an interaction, and molecular shape. Search
results can be further ranked and filtered using energy
minimization. In addition to nine prebuilt databases of
popular compound libraries (e.g. ChEMBL, molecules from
chemical vendors...), users may submit their own compound
libraries for screening. The Pharmit web service was, for
example, used to search for novel cholinesterase inhibitors,
molecules that could be used in the treatment of Alzheimer’s
disease [194].

Rchempp

Rchempp is a web service that identifies structurally similar
compounds (structural analogs) in large compound databases
[195]. The service allows compounds to be queried in the widely
used ChEMBL (version 18) and DrugBank (version 4.0) databases
mentioned above and the Connectivity Map database [196].
Rchemcpp utilizes similarity functions, i.e. molecule kernels,
as measures for structural similarity. By exploiting information
contained in public databases, the web service facilitates many
applications crucial for the drug development process, such as
prioritizing compounds after screening or reducing adverse side
effects during late phases.

SwissSimilarity

This is a web tool for rapid LBVS of small to large libraries of small
molecules [182]. Screenable compounds include drugs, bioactive
(databases used: ChEMBL, Chemical Entities of Biological Inter-
est (ChEBI), G protein-coupled receptor (GPCR) ligands, hmdb
and ligands from the protein data bank (PDB)) and commercial
molecules (databases used: Zinc, Asinex, Aldrich, ChemBridge,
ChembDiv, Enamine...), as well as over 280 million virtual com-
pounds (Sigma Aldrich library) readily synthesizable from com-
mercially available synthetic reagents. Predictions can be carried
out on-the-fly using six different screening approaches, includ-
ing 2D molecular fingerprints (e.g. FP2 fingerprints) as well as
3D similarity methodologies (e.g. Shape-IT, Align-IT). SwissSim-
ilarity was for instance used to find analogs of novel inhibitors
of the membrane-associated inhibitory kinase PKMYT1 [197] or
to generate a screening library to find histamine H3 receptor
ligands [198].



Ultrafast Shape Recognition-Virtual Screening (USR-VS)

It is a web server that uses two validated ligand-based 3D
methods (Ultrafast Shape Recognition (USR) or its pharma-
cophoric extension (USRCAT)) for large-scale prospective virtual
screening [181]. Total 93.9 million 3D conformers, expanded from
23.1 million purchasable molecules, are screened and the 100
most similar molecules to the user 3D query input compound in
terms of 3D shape and pharmacophoric properties are shown.
USR-VS also provides interactive visualization of the similarity
of the query molecule against the hit molecules as well as vendor
information to purchase selected hits.

ZINCPharmer

This is an online server for searching the purchasable com-
pounds of the ZINC database using the Pharmer pharmacophore
search technology [199]. The commercial collection MolPort
can also be screened. A pharmacophore describes the spatial
arrangement of the essential features of an interaction.
Compounds that match a well-defined pharmacophore serve
as potential lead compounds for drug discovery. ZINCPharmer
provides tools for constructing and refining pharmacophore
hypotheses directly from an input molecular structure. A
search of 176 million conformers of 18.3 million compounds
is performed. The results can be analyzed interactively, or the
aligned structures can be downloaded for offline analysis.

Machine learning models and LBVS
ChemSAR

Predictive models based on machine learning techniques have
proven to be effective in drug discovery. However, to develop
such statistical models, researchers usually have to use mul-
tiple tools and the process requires many different steps (e.g.
RDKit or ChemoPy package for molecular descriptor calcula-
tion, ChemAxon Standardizer for structure preprocessing, scikit-
learn package for model building and statistical analysis and
ggplot2 package for data visualization, etc.). Strong program-
ming skills are needed to develop such models. ChemSAR is a
web-based pipelining platform for generating SAR classification
models (random forest, support vector machine, naive bayes, K-
nearest neighbors and decision tree) of small molecules [200].
The capabilities of ChemSAR include the validation and stan-
dardization of chemical structure representation, the computa-
tion of 783 1D/2D molecular descriptors and 10 types of widely
used fingerprints for small molecules, the filtering methods for
feature selection, the generation of predictive models via a step-
by-step job submission process, model interpretation in terms
of feature importance and tree visualization, as well as a helpful
report generation system.

DPubChem

This is a web tool for deriving QSAR models that implement
the state-of-the-art machine learning techniques (classification
models with random forest, AdaBoost, support vector machine,
naive Bayes, K-nearest neighbors and decision tree) to enhance
the precision of the models and enable efficient analyses of
experiments from PubChem BioAssay database [201]. DPubChem
has a simple interface that provides various options to users.
Users select a PubChem BioAssay, compute chemical features
(e.g. various fingerprints and molecular descriptors are available)
and correction for class imbalance can be turned on. Once the
statistical model is built, users can screen molecules. DPubChem
predicted active compounds for 300 datasets with an average
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geometric mean and F1 score of 76.68% and 76.53%, respectively.
Furthermore, DPubChem builds interaction networks that high-
light novel predicted links between chemical compounds and
biological assays. Using such a network, the tool successfully
suggested a novel drug for the Niemann-Pick type C disease.

DeepScreen

This is a web server with integration of the state-of-art deep
learning algorithm, which utilizes either annotated databases
such as ChEMBL or user-provided datasets and performs virtual
screening to propose chemical probes or drugs for a specific
target [202]. With DeepScreening, users can construct a deep
learning model to generate target-focused compound libraries.
The constructed classification or regression models can then be
subsequently used for virtual screening against chemical vendor
collections or other libraries (e.g. Specs, Enamine, ion channels,
epigenetics, DrugBank or GPCR libraries) or a de novo compound
library can be generated via the de novo module.

Machine learning-based virtual screening tool

As discussed above, virtual screening can be used in the
early-phase of drug discovery. Because there are thousands
of bioactive compounds, it might be possible to partially
distinguish drug-like and nondrug-like molecules. Statistical
machine learning methods can be used for classification
purpose. Machine learning-based virtual screening tool (MLViS)
is a tool that attempts to classify molecules as drug-like and
nondrug-like based on various machine learning methods,
including discriminant, tree-based, kernel-based, ensemble and
other algorithms [203]. The application can also create heat map
and dendrogram for visual inspection of the molecules through
hierarchical cluster analysis. Moreover, users can connect the
PubChem database to download molecular information and to
build 2D structures of the selected compounds.

Online Chemical Modeling Environment

The Online Chemical Modeling Environment (OCHEM) is a web-
based platform that aims to automate and simplify the typi-
cal steps required for QSAR modeling [204, 205]. The platform
consists of two major subsystems: the database of experimental
measurements and the modeling framework. A user-contributed
database contains a set of tools for easy input, search and modi-
fication of the records. The OCHEM database is based on the wiki
principle and focuses primarily on the quality and verifiability of
the data. The database is tightly integrated with the modeling
framework, which supports all the steps required to create a
predictive model: data search, calculation and selection of a
vast variety of molecular descriptors, application of machine
learning methods (e.g. neural networks, K-nearest neighbors,
support vector machine, multiple linear regression, partial least
square, decision tree and random forest), validation, analysis
of the model and assessment of the applicability domain. The
system was for instance use to model human ether-a-go-go
related gene (hERG) K+ channel blockage, an important protein
that can be involved in cardiotoxicity [206].

Ligand-based target-fishing or disease/target specific
ligand-based screening

Anglerfish

The tool performs similarity search combining several different
molecular fingerprints (which can be chosen by the users such as
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the ones computed by RDKit, OpenBabel FP3, MACCS166...) and
by searching in-house prepared ChEMBL activity data to predict
potential new targets for the query molecules. (Drs Garcia-Vallve
and Pujadas team, EURECAT Technology Centre of Catalonia).

ChemProt-3

The tool compiles multiple chemical-protein annotation
resources integrated with diseases and clinical outcomes
information. The data sources include ChEMBL [168], BindingDB
[207], DrugBank [171], STITCH [208]... information from the
Anatomical Therapeutic Classification System and side effect
data from Sider [209]. Biological data were for instance obtained
from KEGG [210], Reactome [211], GeneCards [212]... All the
compound bioactivity data were stored in the ChemProt
database following an internal curation procedure [213].
Compounds can be compared with the Daylight-like fingerprints
as implemented in RDKit and calculation of the Tanimoto
coefficient. The Similarity Ensemble Approach [214] is also
implemented. Naive Bayes classifier models have also been
developed for about 850 proteins (i.e. for proteins with sufficient
compound bioactivity data) and a visual interface that enables
navigation of the pharmacological space for the identified small
molecules is also available. In the last version of the service, the
authors take the example of caffeine as a query compound and
show that the molecule is similar to 105 compounds present in
the database and could possibly be associated to 449 proteins.
The visual heatmap display shows weak-to-strong association
with the different proteins identified [213].

DIA-DB

This server aims at identifying novel antidiabetic drugs [215]. A
database of approved and experimental has been collected. A
query compound can then be compared with existing molecules
via shape similarity search (performed with WEGA [178] or
SHAFT [179]). Aligned molecules are returned to users of the
service.

HitPickV2

Thisis aligand-based approach for the prediction of 2739 human
druggable protein targets (e.g. identified in STITCH [208]) for
compounds provided by a user [216]. For each query compound,
the server predicts up to 10 distinct targets. The Functional-Class
Fingerprints (FCFP)-like circular Morgan fingerprints as imple-
mented in RDKit are used. The tool places the query compounds
into its surrounding chemical space of annotated compound-
target interactions using k-nearest neighbor (k-NN) chemical
similarity search. Then HitPick scores these 10 targets based
on three parameters: the computed Tanimoto coefficient (Tc)
between the query and the most similar compound interacting
with the target, a target rank that considers Tc and Laplacian-
modified naive Bayesian target models scores and a parameter
that considers the number of compounds interacting with each
target.

MolTarPred

The service predicts potential targets for an input query com-
pound [217]. Tanimoto similarities between the Morgan finger-
prints of the query molecule and that of each of the 607 659
molecules extracted from the ChEMBL database are computed
(these compounds act on 4553 targets). A list of putative targets
is returned with an estimated confidence score. Molecules can
be visualized online with the percent of similarity.

Multifingerprint Similarity Search aLgorithm (MuSSel)

MusSSel is a predictive tool to find putative protein drug targets
for a query compound. Predictions are automatically made by
screening a large collection of 611 333 small molecules having
high-quality experimental bioactivity data covering 3357 protein
drug targets selected from the ChEMBL database [218, 219]. Eigh-
teen different fingerprints are calculated, different similarity
threshold values were investigated and the notion of activity
cliffs was also explored and the approach was then implemented
online.

PPB2

The first version of the tool proposes putative protein targets
for a query compound [220]. It searches through a database con-
taining the ligands of 4613 targets extracted from the ChEMBL
database. PPB performs target prediction using 10 different fin-
gerprints separately and returns the predefined number (by
default 20) of the top predicted targets using each of them.
The result is provided as a consolidated table of annotated
targets and the similarity values for each selected fingerprints
are shown. Links to the ChEMBL compounds and targets are
available and results can be downloaded. Another version of
PPB is available and is named PPB2. In this version, 1720 targets
were extracted from the ChEMBL database. Ligand similarities
are computed with three main types of fingerprints and machine
learning approaches are also used (e.g. nearest neighbor, Naive
Bayes) [221]. The tools were used to study the polypharma-
cology profile of a potent inhibitor of TRPV6 transmembrane
calcium channel. Twenty-four targets were selected based on the
prediction and several targets could be validated experimentally.

RFQSAR

This web server applies LBVS model comprising 1121 target
structure-activity relationships models built using a random
forest algorithm to predict the activity of ligands toward each
target and ranking candidate targets for a query ligand using
a unified scoring scheme [222]. This approach is thus at the
frontier between ligand-based screening, machine learning and
target-fishing. The user interface is user friendly and intuitive,
offering many useful information and cross references.

SEA

The tool takes a query molecule as input and performs
predictions for about 4160 targets using annotated chemical data
extracted from the ChEMBL database [214]. A list of predicted
targets annotated with P-values and Tanimoto coefficients of
the most similar ligand of each of the predicted targets of
the query molecule are provided. SEA only returns predicted
targets for which P-values are significantly low. SEA uses the
concept of raw similarity scores coupled with a statistical
model to compare query molecules to another set of ligands.
Pairwise extended-connectivity fingerprints (ECFP4) Tanimoto
coefficient similarity is initially computed (using the RDKit
toolbox). The significance of the score is then further assessed
by using a statistical model built on a random distribution
of the raw scores. At the end, raw scores are converted in
z-scores and P-values (i.e. the P-value for a target indicates the
probability of chance similarity between ligands of a target and
a query compound). SEA was, for example, used to identify
new targets for known drugs [214]. Out of 30 novel drug-
target interactions suggested by prediction, 23 were confirmed
experimentally.



SuperPred

The web server comprises two methods, one for drug classifi-
cation based on approved drugs classified by the World Health
Organization (WHO) and one for target prediction based on
available compound-target interaction data [223]. The drug clas-
sification method takes into account 2D and fragment similarity
and a method for 3D superposition of the small molecules.
The consensus of these methods is taken into account. If at
least two methods predict the same ATC class, that class is
considered as final prediction. If three different ATC classes are
predicted, a threshold for every method is used to decide for
the most probable ATC class. The method for target prediction
uses the similarity distribution among ligands for estimating
the targets’ individual thresholds and probabilities to avoid false
positive predictions. The ECFP (that belongs to the class of radial
fingerprints) was found to exhibit the best performance and
the calculated fingerprints are then subsequently compared by
computing Tanimoto similarity scores. Data were extracted from
the ChEMBL database (~341 000 compounds, ~1800 targets and
~665 000 compound-target interactions). Structural information
about drug-target are also provided when available.

SwissTargetPrediction

The tool performs predictions by searching for similar molecules,
in 2D and 3D, within a collection of 376 342 compounds
known to be experimentally active on an extended set of
3068 macromolecular targets (extracted from ChEMBL). The
quantification of similarity is 2-fold. In both cases, it consists
in computing a pairwise comparison of 1D vectors describing
molecular structures: the 2D measure uses the Tanimoto index
between path-based binary fingerprints (FP2), whereas the 3D
measure is based on a Manhattan distance similarity quantity
between Electroshape 5D (ES5D) float vectors. For both 2D and 3D
similarity measures, the principle is that two similar molecules
are represented by analogous vectors, which exhibit a quantified
similarity close to 1. The SwissTargetPrediction model was
trained by fitting a multiple logistic regression on various ligand
size-related subsets of known actives to weight 2D and 3D
similarity parameters in a so-called combined score [224, 225]. A
list of putative targets (maximum 100) is reported with various
graphical views and links to UniProt and GeneCard. The data can
be downloaded in various formats and so are the list of SMILES
and list of interactions used by the service. Moreover, targets
tagged ‘by homology’ are predictions based on similar molecules
active on proteins showing sufficient level of homology. Users
can also select a species for the target predictions: Homo sapiens,
Mus musculus and Rattus norvegicus. SwissTargetPrediction ranks
the targets based on these combined scores, which are converted
to probabilities that give an estimate of the likelihood of correct
predictions. The tool was for instance used to find putative
targets for cudraflavone C, a naturally occurring flavonol
with reported antiproliferative activities, that were validated
experimentally [226].

TargetNet

Users here can submit query compounds and the server predicts
the activity of the user’s molecules across 623 human proteins
using 623 QSAR models related to these proteins. Seven types
of fingerprints can be selected. Data were obtained from Bind-
ingDB. After curation, the final database used contained 623
protein targets, 228 415 compounds and 359 353 bioactivity data
[227].
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Weighted deep learning and random forest (WDL-RF)

The server uses weighted deep learning and random forest, to
model the bioactivity of GPCR-associated ligand molecules [228].
The protocol consists of two consecutive stages: (i) molecu-
lar fingerprint generation through a new weighted deep learn-
ing method and (ii) bioactivity calculations with a random for-
est model. GPCRs data were taken from the UniProt database
and from the GPCR-Ligand Association (GLASS) database, which
included over 519 000 unique GPCR-ligand interaction entries.
Compounds in SMILES format can be uploaded and the user
selects the GPCR name/type for activity predictions.

SBVS, compound docking and target-fishing
web servers

The different tools are reported in Table 2.

Screening and receptor-based pharmacophore
screening

Auto Core Fragment in silico Screening

Fragment-based drug design is an effective approach for lead
discovery. In silico it is however not easy to discriminate binders
as fragments are small and can bind in many different regions
with similar predicted affinity. Auto Core Fragment in silico
Screening (ACFIS) is a web-server for fragment-based drug
discovery [229]. It offers three modules to perform fragment-
based drug design. ACFIS can, for instance, generate core
fragment structure from the active molecule using fragment
deconstruction analysis and perform in silico screening by
growing fragments to the junction of core fragment structure.
Fragments are linked using a modified version of the AutoGrow
algorithm [230]. An integrated advanced energy calculation
rapidly identifies which fragments fit the binding site. The
interface enables users to view top-ranking molecules in 2D
and the binding mode in 3D for further exploration. The tool
was assessed on many protein crystal structures and was very
accurate. It was recently used to dock a small fragment in the
binding site of VEGFR-2 kinase (31677447).

CaverWeb

Protein tunnels and channels are key transport pathways that
allow ligands to pass between proteins’ external and internal
environments. CaverWeb (combine Caver and CaverDock imple-
mented online) is a new tool for analyzing the ligand passage
through the biomolecules [231, 232]. The method uses a modified
version of the AutoDock Vina docking algorithm for ligand place-
ment docking and implements a parallel heuristic algorithm to
search the space of possible trajectories. It can assess many
ligands in contrast to many other tools that typically involve the
use of molecular dynamics. The tool was found more robust than
two related packages SLITHER [233] and MoMA-LigPath [234] on
the evaluated datasets. In its present form, CaverDock cannot
robustly address the conformational dynamics of the protein
structure.

DOCK blaster

The service allows users to dock ligands obtained from the ZINC
database or from the Directory of Useful Decoys (DUD) Decoy
maker service in the protein of interest using the program DOCK
[235]. The tool was benchmarked and found to give reasonable
results and half the time, the known bioactive ligands ranked
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http://chemyang.ccnu.edu.cn/ccb/server/ACFIS/
http://chemyang.ccnu.edu.cn/ccb/server/ACFIS/
https://loschmidt.chemi.muni.cz/caverweb/
https://loschmidt.chemi.muni.cz/caverweb/
http://blaster.docking.org/
http://covalent.docking.org/
https://dockthor.lncc.br/v2/
https://easyvs.unifei.edu.br/
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https://chemoinfo.ipmc.cnrs.fr/LEA3D/index.html
https://chemoinfo.ipmc.cnrs.fr/LEA3D/index.html
http://dxulab.org/software
http://iscreen.cmu.edu.tw/basic.php&#x0023;
http://iscreen.cmu.edu.tw/basic.php&#x0023;
https://bioserv.rpbs.univ-paris-diderot.fr/services/MTiOpenScreen/
https://bioserv.rpbs.univ-paris-diderot.fr/services/MTiOpenScreen/
https://bioserv.rpbs.univ-paris-diderot.fr/services/MTiOpenScreen/
http://pharmit.csb.pitt.edu
http://www.scfbio-iitd.res.in/sanjeevini/sanjeevini.jsp
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http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php
http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php
http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php
http://bioquimio.udla.edu.ec/compscore/
http://bioquimio.udla.edu.ec/compscore/
http://biosig.unimelb.edu.au/csm_lig/
http://biosig.unimelb.edu.au/csm_lig/
http://www.ufip.univ-nantes.fr/tools/docknmine/
http://www.ufip.univ-nantes.fr/tools/docknmine/
https://dokhlab.med.psu.edu/medusadock/
https://dokhlab.med.psu.edu/medusadock/
http://moma.laas.fr
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Table 2. Continue

References

Input/output open and/or registration Data policy

Method

URL

Tools

[286]

n/a

Main input: provide protein sequence or select

Docking with AutoDock
Vina or HADDOCK

http://gomodo.grs.kfa-juelich.de/php/

begin.php

GOMoDo

sequence from the human GPCRs database and
upload a compound structure in pdb or sdf

format or select a ligand from the ‘odor ligand’
tab Main output: compound docked into the

predicted structure can be downloaded Open

[289]

Data privacy and data

management
documented

Main input: ligand file can be uploaded in .sdf,
.pdbqt, .pdbg, .mol, .mol2, .pdb, or .smi format.
The compounds are then docked to gut

Docking with AutoDock

Vina

http://gut-dock.miningmembrane.co
m/

GUT-DOCK

hormone GPCRs Main output: the docking poses
of the ligands can be downloaded as PDB files
and visualized online with Ligplot Open

[290]

n/a

Major input: upload a ligand file in cif, pdb,

Inverse docking with

http://idtarget.rcas.sinica.edu.tw
MEDock

idTarget

mol2, or pdbqt format. Compounds are cross

docked to representative pockets Major output:

the can be interactively visualized online Open
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among the top 5% of 100 physically matched decoys chosen on
the fly. The tool was for instance used to find opioid analgesics
[236] or allosteric modulators of the M2 muscarinic acetylcholine
receptor [237].

DOCKovalent

The server allows for the screening large virtual libraries of elec-
trophilic small molecules [238]. This is an adaptation of DOCK
3.6 [239] allowing for covalent docking and targeting proteins’
nucleophiles such as cysteine residues. Given a pregenerated
set of ligand conformation and a covalent attachment point in
the target protein, it exhaustively samples ligand conformations
around the covalent bond and selects the lowest energy pose
using a physics-based energy function. It was applied to discover
reversible covalent fragments that target distinct protein nucle-
ophiles, including the catalytic serine of AmpC B-lactamase and
noncatalytic cysteines in RSK2, MSK1 and JAK3 kinases.

DockThor

This web server is dedicated to protein-ligand docking simu-
lation [240]. The DockThor program uses a grid-based method
that employs a steady-state genetic algorithm as a search engine
and the MMFF94S force field as the scoring function for pose
evaluation. The webserver provides the major steps of ligand
and protein preparation, it is possible to change the protonation
states of the target amino acid and to define the degree of flex-
ibility of the ligand. At present, it is possible to perform virtual
screening experiments with a maximum of 100 compounds as
a guest user or 1000 compounds as a registered user. Several
optimizations have been introduced in the tool and the last
version, DockThor 2, has been shown very efficient to dock
flexible ligands such as peptides [241].

EasyVS

It is a web-based platform built to simplify molecule library
selection and virtual screening. With an intuitive interface, the
tool allows users to go from selecting a protein target with a
known structure and tailoring a purchasable molecule library to
performing and visualizing docking in a few clicks. The docking
is performed with AutoDock Vina. After docking, NNScore 2.01
[242] is used as an external scoring function to estimate Kd val-
ues between the target and ligands. This tool has been developed
by Wandré N. de P. Veloso, Pamela M. Rezende, David Ascher,
Carlos H. da Silveira and Douglas E. V. Pires.

e-LEA3D

The web server integrates several complementary tools to per-
form computer-aided drug design based on molecular fragments
[243]. It can be considered as 2D or 3D depending on the algo-
rithm selected by the user. In drug discovery projects, there is a
considerable interest in identifying novel and diverse molecular
scaffolds. The de novo drug design module based on LEA3D
[244] is used to invent new ligands to optimize a user-specified
scoring function. The composite scoring function includes both
structure- and ligand-based evaluations. A heuristic based on
a genetic algorithm rapidly finds which fragments or combi-
nation of fragments fit a QSAR model or the binding site of a
protein. The approach is well-suited for scaffold hopping and
the module also allows a scan for possible substituents to a user-
specified scaffold. The second module offers SBVS computations
(docking with PLANTS [245]) and the filtering of an uploaded


http://gomodo.grs.kfa-juelich.de/php/begin.php
http://gomodo.grs.kfa-juelich.de/php/begin.php
http://gut-dock.miningmembrane.com/
http://gut-dock.miningmembrane.com/
http://idtarget.rcas.sinica.edu.tw
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library of compounds. The third module addresses the combina-
torial library design that is based on a user-drawn scaffold and
reactants coming, for example, from a chemical supplier.

ezCADD

This is a web-based modeling environment that allows users to
perform different types of computations [246]. The service was
also noted to be an effective tool for promoting science, tech-
nology, engineering and mathematics education. The different
services include ezSMDock (Small-Molecule Docking), ezPPDock
(Protein-Protein Docking), ezPocket (Binding Site Detection),
ezLigPlot (2D/3D Visualization of Protein-Ligand Interactions),
ezHTVS (High-Throughput Virtual Screening), ezGrow (de Novo
Lead Optimization), ezTargetSearch (An Integrative Cross-
Database Molecule Search Engine for Drug Discovery, Drug
Repurposing and Drug Safety Research), ezPocketSearch (Drug
Target and Polypharmacology Identification) and ezFAERS
(Drug Repurposing using the Food and Drug Administration
(FDA) Adverse Event Reporting System). In brief, the docking
application ezSMDock requires the uploading of a Protein Data
Bank file or entering a PDB file ID. The ligand structures can
be provided in different formats. Docking is performed via
AutoDock Vina [247] or Smina [248].

iScreen

This server is dedicated to virtual screening, it uses the tradi-
tional Chinese medicine (TCM) database [249] for the compound
collection and PLANTS [245] for docking. The service offers a pro-
tein preparation tool that both extracts protein of interest from
a raw input file and estimates the size of the ligand bind site.
For customized docking, several services are available including
standard, in-water, pH environment and flexible docking modes.
TCM de novo drug design can also be carried out via iScreen.

MTiOpenScreen

This tool performs docking and virtual screening of small
molecules, offering the possibility to screen in one run up to
5000 molecules uploaded by the user or up to 10 000 molecules
taken from different compound collections provided by the
system including approved drugs, food compounds, natural
products or putative inhibitors of protein-protein interactions
(PPI) [250-252]. Two services, MTiAutoDock and MTiOpenScreen,
are available. MTiAutoDock, based on AutoDock [247], performs
docking into a binding pocket defined by the user or blind
docking over the entire protein surface. MTiOpenScreen based
on AutoDock Vina [247] (19499576) docking performs automated
virtual ligand screening. MTiOpenScreen was for instance used
to search for proteasome inhibitors [253].

Pharmit

This tool provides an online, interactive environment for the vir-
tual screening of large compound databases [193]. As seen above,
Pharmit can be used as a ligand-based pharmacophore screen-
ing tool, but it can also perform receptor-based pharmacophore
screening when the 3D structure of a ligand-protein complex is
available. Pharmit uses the Volumetric Aligned Molecular Shapes
method to search shapes. The shape queries may be provided by
the user or extracted directly from the Protein Data Bank code of
the protein-ligand complex.

Sanjeevini

The server allows users to dock Lipinski compliant ligands
present in several in-built databases or to draw and dock specific
ligands [254]. Sanjeevini performs a series of computational
steps such as preparation of the protein and the ligand from the
files uploaded, docks the candidate molecule at the binding site
via a Monte Carlo algorithm (for protein or nucleic acid targets),
minimizes and scores the docked complex (three scoring
functions are available, one for protein-ligand complexes, one
for Zn containing metalloproteinase and one for nucleic acid
targets) in an automated mode. The binding pocket can be
specified by the users or predicted.

Dock/undock or rescoring tools

Automatic Molecular Mechanics Optimization for in silico Screen-
ing (AMMOS2) is a web server for protein-ligand-water com-
plexes refinement via molecular mechanics [255]. The proto-
col employs atomic-level energy minimization of experimental
ligand-protein complexes or of ligands docked for instance via
SBVS computations. The web server is based on the standalone
software Automatic Molecular Mechanics Optimization for in
silico Screening (AMMOS). AMMOS utilizes the physics-based
force field AMMP sp4 and performs optimization of protein-
ligand interactions at five levels of flexibility of the protein
receptor. In AMMOS2, the users can also include explicit water
molecules and individual metal ions during the minimization.
The 3D structure of the complexes can be visualized and specific
protein-ligand interactions can be seen using Protein-Ligand
Interaction Profiler (PLIP) computations [256].

CompScore

This web service implements an algorithm that searches for
the combination of docking scoring functions components that
maximizes any of the BEDROC or Enrichment Factor virtual
screening metrics through a genetic algorithm search [257]. It is
also possible to rescore a dataset using the CompScore method.

CSM-Lig

Accurately predicting binding affinities is a challenging and
difficult task. This a web server tailored to predict the bind-
ing affinity of protein-small-molecule complex based on struc-
tural signatures. CSM-Lig was first built and evaluated on PDB-
bind data [258]. Over the PDBbind core set, a blind test of 195
diverse complexes with binding affinities ranging from mil-
limolar to picomolar indicates that the models outperformed
many well established scoring functions and predictors. CSM-
Lig should there be valuable to helping assess docking poses,
the effects of multiple mutations, including insertions, deletions
and alternative splicing events, in protein-small-molecule affin-
ity, unraveling important aspects that drive protein-compound
recognition.

dockNmine

This portal aims at gathering public and private data into a
unique service [259]. Automated queries on protein targets
and ligand definitions are performed to UniProt, PubChem
and ChEMBL to enhance the results of precomputed docking
experiments. When available, public data are automatically
added to the docking results to produce protein-ligand binding
analysis such as receiver operating characteristic (ROC) curves
or enrichment analysis. Users can also upload their own private



data. The docking results are categorized into three classes (e.g.
good, AutoDock or Vina scores, kcal/mol, are <—10; intermediate,
—10 > energy < —6.5; and bad, higher scores).

MedusaDock

Existing flexible docking approaches model the ligand and
receptor flexibility either separately or in a loosely coupled
manner, which usually captures the conformational changes
inefficiently. MedusaDock allows for flexible docking and
models both ligand and receptor flexibility simultaneously with
sets of discrete rotamers [260]. The ligand rotamer library is
built on-the-fly during docking simulations. Initially, coarse
docking computations are performed with representative ligand
conformations, at this stage the ligand is kept rigid. Then
the top 10% lowest energy poses are selected for a round
of more extensive docking computations. Constraints can be
incorporated. The authors tested the approach on several targets
(e.g. cyclin-dependent kinase 2, vascular endothelial growth
factor receptor 2, HIV reverse transcriptase, and HIV protease)
and found significant improvements in virtual screening
enrichments when compared to rigid-receptor methods.

MoMA-LigPath

Protein-ligand interactions taking place far away from the active
site, during ligand binding or release, may determine molecular
specificity and activity. However, obtaining information about
these interactions with experimental or computational methods
remains difficult. The computational tool MoMA-LigPath is
based on a mechanistic representation of the molecular system,
considering partial flexibility (in the current version, flexibility
is considered for the ligand and all the protein side chains),
and on the application of a robotics-inspired algorithm to
explore the conformational space [234]. Such a purely geometric
approach, together with the efficiency of the exploration
algorithm, enables the simulation of ligand unbinding within
short computing time. Ligand unbinding pathways generated
by MoMA-LigPath represent a first approximation that can be
explored further with other molecular modeling approaches.
Thus, for example, starting from the model of a protein-ligand
complex, MoMA-LigPath computes the ligand exit path from the
active site to the protein surface. As such, the tool proposes
residues that could be important for binding despite being
far away from the binding pocket. The tool was, for instance,
used to investigate the unbinding of compound inhibiting
phosphatidylinositol 3-kinase-gamma (PI3Ky) an important
target in oncology [261].

Analysis of PrOtein-Ligand Interactions (nAPOLI)

Protein-ligand recognition is mostly driven by specific nonco-
valent interactions. The large-scale data sets of protein-ligand
complexes are available to study recognition. nAPOLI combines
large-scale analysis of conserved interactions in protein-ligand
complexes at the atomic level, interactive visual representations
and comprehensive reports of the interacting residues/atoms
to detect and explore conserved noncovalent interactions [262].
The tool was, for example, used to study kinases and human
nuclear receptor proteins.

PlayMolecule

This is a platform that offers different applications for
preparing a target, search for cryptic and druggable cavities, run
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molecular dynamics, machine learning and rescoring. For
instance, DeepSite is a protein-binding site predictor tool that
uses 3D-convolutional neural networks [263], KDEEP allows
to protein-ligand absolute binding affinity prediction via 3D-
convolutional neural networks [264] and BindScope, a web
application for large-scale active-inactive classification of
compounds based on deep convolutional neural networks [265]
(30169549).

PRODIGY-LIG

PROtein binDIng enerGY (PRODIGY prediction) is a collection
of web services focused on the prediction of binding affinity in
biological complexes as well as the identification of biological
interfaces from crystallographic one. PRODIGY-LIG aimed at
the prediction of affinity in protein-small ligand complexes
[266]. The original predictive method was readapted for
small ligand by making use of atomic instead of amino acid
contacts. It was successfully applied for the blind predic-
tion of 102 protein-ligand complexes during the D3R Grand
Challenge 2.

Screening explorer

This is a web-based application that allows for an intuitive
evaluation of the results of screening experiments using
complementary metrics [267]. The service facilitates screen-
ing results by linking different metrics interactively in an
interactive usable web-based application. Charts representing
predictiveness, ROC, enrichment curves, scores and active
compounds distributions can be obtained. Simple consensus
scoring methods based on scores normalization, standardization
(z-scores), and compounds ranking to evaluate the enrichments
that can be expected through methods combination are also
available.

SwissDock

This is a web server dedicated to ligand docking [268], either
on a known binding site or on the entire surface. It is based
on the protein-ligand docking program EADock dihedral space
sampling (DSS) [269]. Ligand and protein files can be prepared
using UCSF Chimera (https://www.cgl.ucsf.edu/chimera/) and
the results visualized online or downloaded. As the tool is based
on the accurate physics-based estimation of binding modes and
free energies using the Chemistry at HARvard Macromolecular
Mechanics (CHARMM) force field [270], it cannot handle many
ligands but should be used after a fast screening engine (e.g.
AutoDock Vina) to further validate a small list of preselected
compounds. The tool was, for instance, used to dock molecules
into the muscarinic acetylcholine receptors [271], to investigate
potential antiprion compounds [272] or inhibitors of Dub3, a
protein playing a role in cancer [273].

Webina is an open-source library and web app that runs
AutoDock Vina in a web browser (Durrant’s lab). The service
allows users to upload a prepared receptor structure and a
ligand. Several parameters can be selected, for instance users
can upload a reference experimental ligand structure and decide
about the docking box where the search will be performed
among others. The tool outputs the docked ligand poses and
offers efficient interactive visualization. The service has been
tested on several ligands and proteins including La-related pro-
tein 1 and poly-(ADP-ribose)-polymerase 1.


https://www.cgl.ucsf.edu/chimera/
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Designed to investigate 3D protein—protein interfaces
AnchorQuery

This is a web application for the rational structure-based design
of PPI inhibitors [274]. A specialized variant of pharmacophore
search is used to rapidly screen libraries consisting of more
than 31 million synthesizable compounds biased by design to
preferentially target PPIs. AnchorQuery provides all the tools
necessary for users to perform online interactive virtual screens
of millions of compounds, including pharmacophore elucidation
and search, and enrichment analysis.

farPPI

Designing PPI inhibitors is difficult as often, the binding pockets
tend to be more flat and larger than regular binding sites such
as those found in enzymes or in membrane receptors. The
Fast Amber Rescoring webserver offers a freely available service
for rescoring the docking poses of PPI inhibitors by using the
MM/PB(GB)SA methods [275].

Receptor-based target-fishing or docking into specific
protein families

Auto in silico Consensus Inverse Docking (ACID)

The ACID server combines the results of four docking methods
into a consensus inverse docking scheme [276]. The selected
docking tools involve AutoDock Vina [277], LEDOCK (http://www.
lephar.com), PLANTS [245], and PSOVina [278]. The reasons for
this choice mentioned by the authors is that the docking meth-
ods use different conformational search algorithms and dif-
ferent scoring functions and that in general, combining dif-
ferent tools has been shown beneficial in term of hit finding.
In addition, the server applies a Molecular Mechanics/Poisson-
Boltzmann Surface Area [279] protocol and X-SCORE [280, 281]
for the final binding energy calculations. Users can upload a
compound or draw a molecule and dock it in selected target
families.

Consensus Reverse Docking System

The CRDS docks a compound into 5254 protein X-ray structures
collected from the sc-PDB database [282]. Gold, Vina and LeDock
binding scores are reported and the targets are ranked by con-
sensus scoring. The first target seen in the output table has
thus the highest consensus score. Another output shows which
pathways the resulting top 50 targets are associated with [283].
The top 10 pathways are displayed on a pie chart.

DIA-DB

This server aims at helping users identifying potential antidia-
betic drugs [215]. As seen above, it can be used via ligand-based
shape similarity search but inverse virtual screening can also be
carried out with Autodock Vina. About 20 protein targets known
to play a role in diabetes are stored in DIA-DB. A docking score
for a novel input query compound against the different targets
is returned as well as the structure of the predicted complexes
and various graphical views of the binding pockets.

Endocrine Disruptor MONitoring (EDMON v3)

The approach [284] takes advantage of a new interface between
the virtual screening standalone package PLANTS [245] and
the web server @ TOME [285] to screen multiple conformations
in parallel. It allows users to systematically deduce a shape

restraint and binding site boundaries based on the geometry
of the original ligand from each crystal structure in a fully
automatic manner. Subsequent postprocessing is performed
using various chemoinformatics tools including several scoring
functions to predict protein-ligand affinity and select an optimal
pose. The approach evaluates the applicability of machine
learning on the docking outputs of @TOME and PLANTS and
ligand similarity measurements. Users have to supply a ligand
that is inversely docked into several nuclear hormone receptors,
an important class of targets.

GPCR Online MOdeling and DOcking server (GOMoDo)

This tool can automatically perform template choice, homology
modeling and either blind or information-driven docking [286],
with, for instance, AutoDock Vina [247, 277] or high ambiguity-
driven protein-protein DOCKing (HADDOCK) [287]. This server
was for example used to investigate muscarinic acetylcholine
receptors (M1 to M5) expressed in murine brain microvascular
endothelium and suggested that drug development should focus
on the allosteric sites of the M1 and M3 receptors [288].

GUT-DOCK

The prolonged use of many currently available drugs results in
the severe side effect of the disruption of glucose metabolism
leading to type 2 diabetes mellitus. Gut hormone receptors
including glucagon receptor (GCGR) and the incretin hormone
receptors: glucagon-like peptide 1 receptor (GLP1R) and gastric
inhibitory polypeptide receptor (GIPR) are important drug targets
for the treatment of diabetes, as they play roles in the regulation
of glucose and insulin levels and of food intake. GUT-DOCK
allows users to compute the binding affinities between a small
molecule and various class B GPCRs, gut hormone receptors,
vasoactive intestinal polypeptide receptor 1 (VIPR1) and pituitary
adenylate cyclase-activating polypeptide receptor (PAC1R) [289].
Several protein structures were modeled and simulated using
molecular dynamics. The docking procedure is carried out
with AutoDock Vina. Users have to provide the small-molecule
ligands. Short peptides can also be docked.

idTarget

This web service predicts possible binding targets of small
chemical molecules using the maximum entropy-based docking
(MEDock) program, which generates initial docking poses of the
ligands based on the divide-and-conquer docking approach.
The docking poses are rescored according to the modified
AutoDock4 scoring function that was developed on robust
regression analysis and quantum chemical charge models [290,
291]. Affinity profiles of the protein targets are used to provide
confidence levels of prediction. The program was efficaciously
used to identify many known off-targets of drugs or drug-like
compounds.

Discussion

The identification of bioactive compounds acting on thousands
of putative therapeutic targets via the experimental screening
of large compound collections is time-consuming and costly.
Virtual screening assists the process by providing a small list
of molecules to assess experimentally instead of a collection
of thousands or millions of compounds. Performing virtual
screening computations using standalone approaches is still
a challenging task. However, many online tools are available
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today to facilitate the search of bioactive compounds. This
review provides a list of web servers that should assist wet-
lab researchers identifying tools that could be beneficial for
their screening projects. We discussed different types of LBVS
engines and then reported various approaches that perform
receptor-based or SBVS computations. Experimental teams have
now not only access to different types of virtual screening
web servers but also to tools that evaluate some ADME-Tox
properties or that generate ideas for compound optimization
(see Supplementary Table S1). These approaches should help
identify new hits but it is also important to note that several
in silico screening approaches can also be used, after some
tuning, for drug repositioning, target-fishing or profiling, for
studying drugs’ adverse effects and for polypharmacology
prediction. As seen above, different types of virtual screening
computations can also be valuable for rational multitarget
drug design [292-298]. To further assist users in the selection
of virtual screening methods or in combining applications,
we provide some examples of workflows that could be used,
depending on the study questions and the available input data
(Supplementary Figure S1). Taken together, we are convinced
that novel hit compounds will be discovered by combining
online calculations and experimental studies, and possibly,
some will become drug candidates and/or will help to explore
complex disease conditions. In the era of open and big data,
the web servers developed within academic or public-private
collaborative settings should definitively play a major role in
the coming years to advance the success of drug discovery and
chemical biology projects.

Key Points

® We report ligand-based and SBVS/docking web
servers.

® Based on the description of the tools, experimentalists
should be able to identify the screening services that
best suit their needs.

® This survey can also be valuable for computer scien-
tists who aim at developing novel approaches or novel
interfaces.

Supplementary data

Supplementary data are available online at https://academi
c.oup.com/bib.
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