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A B S T R A C T

Background: Early detection of spinal cord injury (SCI) is conducive to improving patient outcomes. In addition, 
many studies have revealed the role of immune cells in the progression or treatment of SCI. The objective of this 
study was to identify the early signature genes and clarify how they are related to immune cell infiltration in SCI.
Methods: We analysed and identified early signature genes associated with SCI via bioinformatics analysis of the 
GSE151371 dataset from the GEO database. These genes were subsequently verified in the GSE33886 dataset and 
qRT–PCR. Finally, the CIBERSORT algorithm was used to examine the immune cell infiltration in SCI and its 
relationship with signature genes.
Results: Seven SCI-related signature genes, including ARG1, RETN, BPI, GGH, CCNB1, HIST1H2AC, and 
HIST1H2BJ, were identified, and their expression was verified via an external validation cohort and qRT–PCR. 
Moreover, the ROC curves revealed the diagnostic value of these genes. In addition, on the basis of immune cell 
infiltration analysis, plasma cells, M0 macrophages, activated CD4+ memory T cells, γδ T cells, naive CD4+ T 
cells, and resting CD4+ memory T cells may participate in the progression of SCI.
Conclusion: This study identified seven early signature genes of SCI that may serve as biomarkers for the early 
diagnosis of SCI and contribute to our understanding of immune changes during the pathology of SCI.

1. Introduction

Spinal cord injury (SCI) occurs when an external force causes tem-
porary or permanent damage to the spinal cord that can lead to motor 
and sensory dysfunction and even paralysis (Huang et al., 2021). Ac-
cording to statistics, approximately 0.9 million total cases of SCI were 
reported in 2019. The age-standardized incidence rate of SCI is 12 cases 
per 100,000 (Ding et al., 2022). Early detection of SCI is conducive to 
clinical intervention and improves the outcomes of patients (Sterner and 
Brooks, 2022). At present, the International Neurological Classification 
of Spinal Cord Injury (ISNCSCI) is the most common tool used to 
determine and evaluate the severity of SCI in clinical practice. However, 
owing to its subjectivity, the results are not completely reliable (Franz 
et al., 2022). In addition, conventional MRI can reveal the changes in 
intramedullary macrostructures such as haemorrhage and oedema after 
injury and is used as the gold standard for the diagnosis of SCI. Unfor-
tunately, the results are sometimes affected by metal implants. Although 
quantitative MRI, such as diffusion imaging, can reveal the changes in 

the microstructure of neuraxis, its clinical application is limited by im-
aging technology (Freund et al., 2019). Like the study of cancer bio-
markers, the detection of SCI biomarkers is helpful for the diagnosis and 
evaluation of the disease and can reflect the efficacy of treatment from a 
biological point of view, compensating for the shortcomings of previous 
diagnostic methods (Li et al., 2024; Kwon et al., 2019). In addition, the 
discovery of biomarkers can provide a new direction for the research of 
therapeutic targets. For example, Liu discovered that the majority of 
pyroptosis-related genes (PRGs) exhibit elevated expression levels in SCI 
patients through bioinformatics methods and that inhibiting the 
expression of PRGs contributes to recovery after SCI (Liu et al., 2024). 
The development of suitable biomarkers is therefore needed to improve 
the early diagnosis of SCI.

Currently, the treatments for SCI include drug therapy (Karsy and 
Hawryluk, 2017), early surgical decompression (Ma et al., 2020), cell 
therapy (Assinck et al., 2017), tissue engineering, and gene therapy 
(Gong et al., 2022). However, these methods do not significantly 
improve the sensory and motor functions of patients (Badhiwala et al., 
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2019). In fact, it is challenging to develop new medications or treat-
ments because there is no obvious molecular cause of SCI. Hence, 
determining the precise molecular mechanism underlying the patho-
physiology of SCI is necessary.

Complicated pathological events are involved in SCI, in which the 
inflammatory cascade plays a central role. Inflammatory cells worsen 
the injury by producing reactive oxygen species and releasing proin-
flammatory factors (Chen et al., 2017). Notably, the immune system is 
essential for controlling inflammation (Li et al., 2022a,2022b). Many 
studies have revealed the role of immune cells in the progression or 
treatment of SCI. For example, the inhibition of astrocyte hemichannels 
can reduce gliosis and improve neuronal survival (Zhang et al., 2021). 
Leukocyte protease inhibitors, which are secreted by neutrophils, can 
reduce inflammation and aid in axonal regeneration (Ghasemlou et al., 
2010). Macrophages control tissue remodelling, which can accelerate 
spinal cord healing (Hong et al., 2017). C-C motif chemokine ligand 20 
(CCL20) aggravates neuroinflammation after SCI by regulating Th17 cell 
recruitment, indicating that CCL20 may emerge as a novel therapeutic 
target (Hu et al., 2016). Therefore, the progression of SCI must be 
studied for any potential mechanisms involving different immune cells, 
which is crucial for identifying new immunotherapeutic targets.

Here, we first identified SCI signature genes via bioinformatics 
methods, which may serve as novel markers for the early diagnosis of 
SCI. In addition, these genes were confirmed via an external dataset and 
molecular experiments. Next, we evaluated the infiltration of 22 im-
mune cell subsets in SCI. Finally, we analysed the relationships between 
signature genes and immune cells with significant differences in infil-
tration to understand the molecular immune mechanisms involved in 
the pathological process of SCI.

2. Material and methods

2.1. Data sources and identification of DEGs

Two datasets, namely GSE151371 and GSE33886, were downloaded 
from the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih. 
gov/geo). The training dataset, GSE151371 include 38 SCI and 20 
non-SCI blood samples, whereas the validation dataset, GSE33886, 
include 3 SCI and 4 non-SCI muscle samples.

Differentially expressed genes (DEGs) between SCI and non-SCI 
samples in GSE151371 were analysed via the “limma” R package, 
with an adjusted p value < 0.05 and a | log2-fold change (FC)| > 1. 
Volcano plot and heatmaps were generated to display these DEGs.

2.2. Functional and pathway enrichment analyses of DEGs

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses were performed via DAVID 6.8 (http://d 
avid-d.ncifcrf.gov/). GO terms and KEGG pathways with a p value <
0.05 and a count ≥ 2 were considered as significant enrichment 
thresholds. To display the enrichment results more intuitively, we used 
the “ggplot2” R package.

2.3. Identification and diagnostic efficacy analysis of signature genes

A protein-protein interaction (PPI) network with confidence = 0.9 
was constructed from the DEGs via the STRING database (https://strin 
g-db.org/) and visualized via Cytoscape software. The CytoNCA plug- 
in of Cytoscape software was used to analyse the degree of connectiv-
ity of the genes in the PPI network. Candidate genes were screened ac-
cording to a degree of connectivity≥ 30. The “glmnet” R package with 
20-fold cross-validation was subsequently used for the least absolute 
shrinkage and selection operator (LASSO) regression analysis to further 
determine signature genes. Finally, the receiver operating characteristic 
(ROC) curves were used to evaluate the diagnostic performance of these 
signature genes in the training dataset and the validation dataset 

respectively.

2.4. Signature gene enrichment analysis

To explore the relationships between signature genes and signaling 
pathways, the ClueGo plug-in of Cytoscape software was used to 
perform functional enrichment analysis of signature genes. A p value <
0.05 was considered a significant enrichment threshold.

2.5. Immune cell infiltration analysis

The CIBERSORT algorithm was used to analyse the immune cell 
infiltration. First, we calculated the proportions of 22 immune cells in 
the SCI group and non-SCI group. We subsequently analysed the dif-
ferences in immune cells between the two groups and identified immune 
cells with significant differences in infiltration. Finally, Spearman 
analysis was used to calculate the correlation between signature genes 
and immune cells with significant differences in infiltration.

2.6. Sample collection and quantitative real-time PCR

Peripheral blood samples were collected from 11 SCI patients and 11 
healthy controls. The study was approved by the Ethics Committee of 
Shaanxi Provincial People’s Hospital. All the participants provided 
written informed consent.

Total RNA from the SCI and non-SCI samples was extracted via 
TRIzol reagent (Cat. No.15596–026, Ambion, USA). Next, HiScript II Q 
RT SuperMix for qPCR (Cat. No. R233–01, VazymE, Nanjing, China) was 
used for cDNA synthesis of total RNA. The expression level of each 
signature gene was subsequently determined by qRT–PCR using SYBR 
Green Master Mix (Cat. No. Q111–02, VazymE, Nanjing, China) and 
calculated via the 2-ΔΔCT method. The results were normalized to 
GADPH expression. The primer sequences are listed in Table 1.

2.7. Statistical analysis

All the statistical analyses were performed with R software (version 
4.0.0). Comparisons between the two groups were performed via the 
Wilcoxon test. A p value < 0.05 was considered statistically significant 
unless otherwise specified.

3. Results

3.1. Identification of DEGs

Fig. 1 shows the flow chart of this research. Between the SCI and non- 
SCI samples, 1159 DEGs were found, including 791 upregulated genes 
and 368 downregulated genes. Figs. 2A and 2B display the volcano plots 
and heatmaps of the DEGs, respectively.

3.2. Functional and pathway enrichment analyses of DEGs

The GO terms (BP, CC, and MF) are displayed in Fig. 3A. In the BP 
analysis, telomere organization, chromatin silencing at rDNA, and DNA 
replication-dependent nucleosome assembly were significantly 
enriched. The CC analysis revealed that these DEGs were associated 
mainly with nuclear chromosomes, extracellular regions, and extracel-
lular exosomes. In addition, protein heterodimerization activity, histone 
binding, and arachidonic acid binding play critical roles in MF. The 
KEGG pathway analysis revealed that the DEGs were related mainly to 
inflammation and immune-related diseases, including systemic lupus 
erythematosus, haematopoietic cell lineage, complement and coagula-
tion cascades, inflammatory bowel disease (IBD), the NOD-like receptor 
signalling pathway, and the T cell receptor signalling pathway (Fig. 3B).
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3.3. Identification and diagnostic efficacy analysis of signature genes

The PPI network, composed of 1914 interaction pairs and 416 nodes, 

was visualized by Cytoscape software (Fig. 4A). with the CytoNCA plug- 
in, 20 genes were subsequently identified as candidate genes associated 
with SCI, and seven signature genes were subsequently obtained from 

Table 1 
Primer sequences for qRT-PCR.

Genes Forward Reverse

GAPDH TCAAGAAGGTGGTGAAGCAGG TCAAAGGTGGAGGAGTGGGT
ARG1 TGGCAGAAGTCAAGAAGAACG TACAGGGAGTCACCCAGGAGA
RETN CTCCCTGTCCTGGGGCTGTTGGTGT ACTGGCAGTGACATGTGGTCTCGGC
BPI TGCTTCAGCCTCACCAGAAC TGCAGCCTTAGCCCTTGAAA
GGH 

CCNB1 
HIST1H2AC 
HIST1H2BJ

TGCTGATTAGTGGAGAGTGCTT 
TTTTGGTTGATACTGCCTC 
CCTGGCGGCGGTGTTAGAGTA 
TCTGCTCCCGCCCCGAAAAAG

ATCTTGCCATCTGTATTTGTAG 
ATTTTGGTCTGACTGCTTG 
CAGAAGCACGGCCTGGATGTT 
CCTGCGATGCGCTCGAAAATG

Fig. 1. The flow chart for this study.

Fig. 2. Identification of the DEGs. (A) Volcano plot showed 791 upregulated (red) and 368 downregulated (blue) DEGs were determined between the SCI and non- 
SCI groups. (B) The heatmap showed all DEGs.
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those candidate genes via the LASSO algorithm (Table 2, Fig. 4B).
Compared with those in the non-SCI group, these signature genes 

were significantly overexpressed in the SCI group, which implies that 

these genes might potentially be involved in SCI (Fig. 5A-G). In addition, 
these genes had areas under the ROC curves (AUCs) of the ROC that 
were as follows: 0.946 for ARG1, 0.914 for RETN, 0.916 for BPI, 0.899 
for GGH, 0.821 for CCNB1, 0.820 for HIST1H2AC, and 0.768 for 
HIST1H2BJ (Fig. 5H-N). Moreover, the expression of ARG1, RETN, BPI, 
GGH, and CCNB1 in the external validation dataset and the AUC values 
of the ROC curve were mostly consistent with those in the training 
dataset (Fig. 6).

3.4. Signature gene enrichment analysis

To further understand the role of signature genes in SCI, we 

Fig. 3. Functional and pathway enrichment analyses of DEGs. (A) The top 10 functional enrichment terms in the BP, CC, and MF analyses, respectively. (B) The top 
10 results of the KEGG analysis.

Fig. 4. Identification of signature genes through PPI network and LASSO algorithm. (A) Identifying candidate genes through PPI network. (B) Identifying signature 
genes using LASSO algorithm.

Table 2 
The list of candidate genes and signature genes.

Analysis Genes

PPI HIST1H2BJ, HIST1H2AD, HIST1H2AC, HIST1H2BB, QSOX1, C3AR1, 
HIST2H2AC, CCNB1, CKAP4, GGH, HIST1H2BO, HIST1H2AJ, ORM1, 
HIST1H2BN, HIST1H2BL, ARG1, ELANE, RETN, BPI, MAPK14

LASSO ARG1, RETN, BPI, GGH, CCNB1, HIST1H2AC, HIST1H2BJ
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performed functional enrichment with the ClueGO plug-in (Fig. 7, 
Supplementary Table 1). The results revealed that a total of 33 func-
tional pathways were enriched. For ARG1, the GO-BP terms included 
“regulation of type 2 immune response”, “positive regulation of 
neutrophil-mediated cytotoxicity”, “and negative regulation of T-helper 
2 cell cytokine production”. RETN, BPI and GGH all relate to GO-CC 
terms “azurophil granule lumen” and “specific granule lumen”. The 
GO-BP terms for CCNB1 included “histone H3-S10 phosphorylation”, 
“response to DDT”, “positive regulation of cell cycle G2/M phase tran-
sition”, and “cellular response to iron (III) ion”. HIST1H2BJ was 
involved in the innate immune response in the mucosa according to the 
GO-BP analysis.

3.5. Immune cell infiltration analysis

We evaluated the immunological characteristics of SCI according to 
the infiltration of immune cells. Fig. 8A shows the percentages of 22 
types of immune cells in all the samples. Furthermore, compared with 
the non-SCI group, the SCI group presented greater numbers of plasma 
cells, activated CD4+ memory T cells, gamma delta (γδ) T cells, and M0 
macrophage infiltration, and lower naive CD4+ T cell, and resting 
memory CD4+ T cell infiltration (Fig. 8B). All signature genes were 
positively correlated with the infiltration of M0 macrophages. ARG1, 
RETN, BPI, and GGH were negatively correlated with naive CD4+ T cells 
and resting CD4+ memory T cells and positively correlated with plasma 
cells, activated CD4+ memory T cells, and γδ T cells (Fig. 8C).

3.6. Validation of signature genes

We determined the expression of these signature genes via qRT-PCR 
analysis. These seven biomarkers were expressed at high levels in the 
SCI group (Fig. 9), which was consistent with our previous bioinfor-
matics results.

4. Discussion

Dynamic biomarkers are objective and easily available tools for SCI 
diagnosis (Stukas et al., 2023). They can provide additional diagnostic 
information and are an effective supplement to clinical information and 
MRI images. Furthermore, a previous study indicated that neuro-
inflammation and the immune response are closely related to SCI (Ali-
zadeh et al., 2018). In this study, we screened SCI-related signature 
genes derived from blood samples (ARG1, RETN, BPI, GGH, CCNB1, 
HIST1H2AC, and HIST1H2BJ). We subsequently validated these genes 
in external validation cohorts and molecular experiments.

Among these genes, ARG1, RETN, BPI, GGH and CCNB1 in the SCI 
group were all significantly different in the training dataset, validation 
dataset and molecular experiments. ARG1 is an enzyme that regulates 
cellular nitrogen homeostasis. In addition, it has increasingly been 
investigated as a crucial immune system component associated with 
inflammation (Li et al., 2022a,2022,b; Zhu et al., 2015). In our study, we 
observed high expression of ARG1 in the SCI group, which is consistent 
with the findings of other studies (Zhang et al., 2020). Previous studies 

Fig. 5. The diagnostic value of the signature genes in GSE151371. (A-G) The expression of signature genes between the SCI and non-SCI groups. (H-N) ROC showed 
the diagnostic value of the signature genes.

Fig. 6. The diagnostic value of the signature genes in GSE33886. (A-G) The expression of signature genes between the SCI and non-SCI groups. (H-N) ROC showed 
the diagnostic value of the signature genes.
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Fig. 7. Signature genes enrichment analysis.

Fig. 8. Immune cell infiltration in SCI. (A) The relative percentage of 22 types of immune cells. (B) The immune cell infiltration between the SCI and non-SCI groups. 
(C) The correlation between signature genes and immune cells with significant differences in infiltration. *p < 0.05, **p < 0.01, ***p < 0.001.
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have shown that increased levels of ARG1 induce M2 micro-
glia/macrophage polarization and that M2 microglia/macrophage can 
play a neuroprotective role in SCI through anti-inflammatory effects and 
tissue repair (Lund et al., 2022; Cai et al., 2019). These findings suggest 
that ARG1 is a neuroprotective factor in the development of SCI. In 
addition, ARG1 can promote structural and functional recovery of the 
injured spinal cord by restoring axonal regeneration (Fu et al., 2022). 
However, the specific mechanism by which ARG1 plays a protective role 
in SCI by regulating inflammation and the immune response is unclear. 
Our study revealed that ARG1 was associated with the regulation of the 
type 2 immune response, the positive regulation of neutrophil-mediated 
cytotoxicity, and the negative regulation of T-helper 2 cell cytokine 
production.

In the past, RETN was generally considered as an adipokine that links 
obesity with diabetes (Gao et al., 2021). Research has showen that it is 
also an inflammatory cytokine, that is mainly secreted by macrophages 
(Sudan et al., 2020). For example, high levels of RETN are associated 
with sepsis and intrahepatic inflammation (Wang et al., 2022; Meng 
et al., 2017). BPI is an antimicrobial protein (Theprungsirikul et al., 
2021). It has been reported that BPI can reduce the inflammatory re-
action in patients with colitis and arthritis (Kong et al., 2021; Scanu 
et al., 2022). GGH is a widely expressed enzyme that controls the 
metabolism of folate inside cells, and its high expression is often asso-
ciated with poor cancer prognosis (Melling et al., 2017; Yu et al., 2022). 
In fact, to date, the potential functions and expression levels of these 
three genes in SCI have not been reported. In our study, their expression 
was increased in SCI patients, and they were enriched in specific granule 
lumens and azurophil granule lumens. Azurophil granules and specific 
granules are primary and secondary granules, respectively, in the sub-
cellular fraction of neutrophils, which contain a large amount of gran-
ular protein that orchestrates the inflammatory response by interacting 
with innate and adaptive immune cells (Cassatella et al., 2019; Othman 
et al., 2022).

CCNB1 is a protein that regulates the transition of the cell cycle from 
the G2 phase to mitosis (Zhang et al., 2018). A previous study revealed 
that CCNB1 participates in the acute phase of SCI (Shi et al., 2019). In 
addition, CCNB1 expression was significantly increased in patients with 

SCI compared with healthy individuals (Baek et al., 2019). The present 
study revealed that CCNB1 was involved mainly in histone H3-S10 
phosphorylation, the response to DDT, the cellular response to iron 
(III) ions, the regulation of chromosome condensation, and the positive 
regulation of mitochondrial ATP synthesis coupled with electron 
transport, similarly, it was highly expressed in the SCI group.

Interestingly, in our results, two SCI-related genes were upregulated 
only in the training dataset and molecular experiments, whereas the 
expression of these genes was not different between the validation 
dataset and the non-SCI group. HIST1H2AC and HIST1H2BJ belong to 
histone members. At present, there are few reports about HIST1H2AC 
and HIST1H2BJ. It was reported that high levels of HIST1H2AC and 
HIST1H2BJ are related to monkeypox infection and poor cancer prog-
nosis (Xuan et al., 2022; Liu et al., 2020). In addition, HIST1H2BJ can 
participate in wound healing through an immune response mechanism 
(Wang et al., 2019). In our study, HIST1H2AC and HIST1H2BJ were 
highly expressed in the SCI group, and HIST1H2BJ was involved in 
innate immune response in the mucosa.

In immune infiltration analysis, we observed that the infiltration of 
plasma cells, activated CD4+ memory T cells, γδ T cells, and M0 mac-
rophages was increased in the SCI group, which means that there is a 
certain relationship between them and SCI. In fact, although plasma cell 
infiltration is very rare in SCI, a study observed CD138+ IgG + plasma 
cells in the lesioned spinal cord of some SCI patients (Zrzavy et al., 
2021). γδ T cells, a subset of T cells, are essential for regulating the 
immune response in the central nervous system (Wo et al., 2020). In a 
previous study, it was discovered that T lymphocytes were detectable in 
the cerebrospinal fluid of SCI patients as well as in the lesion sites in SCI 
model mice one day after damage (Sun et al., 2018). Another study 
showed that γδ T cells were recruited to the SCI site through CCL2/CCR2 
signalling, which promotes inflammatory response and aggravates 
neurological injury (Xu et al., 2021). M0 macrophage is an inactive 
macrophage subtype (Tang et al., 2021). One study found that the 
infiltration of M0 macrophages was increased in SCI model mice (Cao 
and Li, 2022. At present, there is no report on the link between activated 
CD4+ memory T cells and SCI. It is worth mentioning that immune cells 
have dynamic characteristics at different stages of SCI. Therefore, the 

Fig. 9. Validation of signature genes. The expression of seven signature genes between the SCI and non-SCI groups was measured by qRT-PCR. *p < 0.05, **p < 0.01, 
***p < 0.001.
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molecular mechanism of immune cell infiltration in SCI needs further 
study.

Concerning the connections between immune cells and signature 
genes, ARG1, RETN, BPI, and GGH were positively correlated with M0 
macrophages, plasma cells, activated CD4+ memory T cells, and γδ T 
cells and negatively correlated with naive CD4+ T cells and resting 
CD4+ memory T cells. In addition, M0 macrophages and γδ T cells 
exhibited positive correlations with CCNB1, while naive CD4+ T cells 
exhibited negative correlations. HIST1H2AC was positively correlated 
with M0 macrophages and negatively correlated with naive CD4+ T 
cells. HIST1H2BJ was positively correlated with M0 macrophages. A 
previous study showed that the functional connection between CD4+ T 
cells and myeloid ARG1, that is, inhibition of either of them can inhibit 
tumour formation (Van de Velde et al. 2021). In addition, ARG1 inhibits 
the proliferation of CD4+ T cells by depleting L-arginine (Salminen 
2021; Soileau et al., 2022). It was reported that RETN stimulated CD4+
T cells chemotaxis through activated Src- and phosphoinositol 3 -kinase 
(Walcher et al., 2010). In addition, RETN promotes the expression of 
COX-2 in macrophages, regulating inflammatory response (Zhang et al., 
2010). A study showed that the interaction between BPI and 
gram-negative bacteria can enhance the phagocytosis of macrophages 
(Balakrishnan et al., 2016). Additionally, in clinical samples, the 
expression of GGH was positively associated with CD4+ T cell infiltra-
tion in colon cancer (Chen et al. 2022). It was reported that the high 
expression of CCNB1 was related to the increased proliferation of mac-
rophages (Wang et al., 2008). The increased expression of HIST1H2BJ 
may promote the phagocytosis of macrophages (Wang et al., 2019). Due 
to the limited information about the complicated interaction mechanism 
between signature genes and immune cells, further studies should be 
carried out based on the above bioinformatics analysis results.

Our study also has some limitations. On the one hand, there are fewer 
publicly available datasets on acute SCI, and we were only able to select 
two datasets for analysis and validation. On the other hand, the diag-
nostic value of several signature genes in the validation dataset is 
limited. We hypothesize that there are three reasons for this result: first, 
the SCI samples in the training and validation datasets were collected at 
different times. The samples in the training dataset were collected at 
30.3 ± 18.9 h post-injury (Kyritsis et al., 2021), whereas those in the 
validation dataset were samples with SCI lesions more than 4 years old 
(Lammers et al., 2012). Second, the tissue sources for the training 
dataset and validation dataset were also different. Since the genetic 
information of the SCI subjects in the validation dataset was only present 
in the muscle samples, we ultimately chose the muscle samples instead 
of the blood samples consistent with the training dataset (Lammers 
et al., 2012). Finally, the sample size of the validation dataset is small, 
thus the validation efficacy is limited. Notably, our clinical samples may 
have confirmed our analysis to some extent. Hence, more acute SCI data 
are needed for our future studies. Additionally, the specific mechanism 
of these signature genes in SCI should be further confirmed using in vivo 
and in vitro experimental validation. This will be the main topic of our 
upcoming research.

5. Conclusion

In summary, we identified seven early signature genes of SCI through 
bioinformatics and molecular experiments, namely ARG1, RETN, BPI, 
GGH, CCNB1, HIST1H2AC, and HIST1H2BJ. These genes may serve as 
biomarkers for the early diagnosis of SCI and contribute to our under-
standing of immune changes during the pathology of SCI.
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