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Purpose: Image acceleration provides multiple benefits to diffusion MRI, with in‐
plane acceleration reducing distortion and slice‐wise acceleration increasing the 
number of directions that can be acquired in a given scan time. However, as accelera-
tion factors increase, the reconstruction problem becomes ill‐conditioned, particu-
larly when using both in‐plane acceleration and simultaneous multislice imaging. In 
this work, we develop a novel reconstruction method for in vivo MRI acquisition that 
provides acceleration beyond what conventional techniques can achieve.
Theory and Methods: We propose to constrain the reconstruction in the spatial (k) 
domain by incorporating information from the angular (q) domain. This approach 
exploits smoothness of the signal in q‐space using Gaussian processes, as has previ-
ously been exploited in post‐reconstruction analysis. We demonstrate in‐plane un-
dersampling exceeding the theoretical parallel imaging limits, and simultaneous 
multislice combined with in‐plane undersampling at a total factor of 12. This recon-
struction is cast within a Bayesian framework that incorporates estimation of smooth-
ness hyper‐parameters, with no need for manual tuning.
Results: Simulations and in vivo results demonstrate superior performance of the 
proposed method compared with conventional parallel imaging methods. These im-
provements are achieved without loss of spatial or angular resolution and require 
only a minor modification to standard pulse sequences.
Conclusion: The proposed method provides improvements over existing methods 
for diffusion acceleration, particularly for high simultaneous multislice acceleration 
with in‐plane undersampling.
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1 |  INTRODUCTION

As neuroscience studies aim for higher spatial and angular 
resolution, image acceleration is an increasingly important 
part of the diffusion MRI (dMRI) toolkit. The acquisition 
time of a dMRI sequence is determined by the number of dif-
fusion volumes (q‐space samples) and the scan time for each 
volume (in k space). The number of diffusion directions is 
critical for dMRI methods that benefit from high angular res-
olution (e.g., tractography). dMRI data are typically acquired 
using 2D echo planar imaging (EPI). While EPI is quite 
time efficient, dMRI sequences are overall very inefficient  
because ≥50% of the sequence time is typically dedicated 
to diffusion preparation. This inefficiency is compounded 
by the sequential slice acquisition, such that the scan time 
per volume is proportional to the number of slices. For fixed 
coverage, higher spatial resolution requires more slices and, 
therefore, increased scan time. When scan time is limited, 
there is a trade‐off between spatial coverage, spatial resolu-
tion, and angular resolution (density of q‐space sampling).

Recently, acquisition and reconstruction methods 
have been developed to mitigate this trade‐off. One major  
improvement is simultaneous multislice (SMS) imaging,1-3 
which can reduce the volume acquisition time, enabling more 
diffusion directions within the same scan time. SMS tech-
niques have particularly benefitted from improved k‐space 
encoding schemes like blipped‐CAIPI.3 However, due to the 
intrinsically low signal‐to‐noise ratio (SNR) of dMRI data 
and the ill‐conditioning at higher multiband (MB) factor, 
slice acceleration at 4× or above is still difficult to achieve. 
Moreover, SMS accelerations rely on the same coil hardware 
used to achieve in‐plane acceleration,4,5 which is crucial at 
high spatial resolution to reduce EPI distortion and blurring. 
The combination of in‐plane and SMS accelerations is thus 
highly desirable, but currently ill‐conditioned. Regularized 
parallel imaging methods could potentially alleviate this 
problem by enforcing some prior information in the spatial 
domain.6-10 Although undersampling factors above 10 have 
been reported in structural or functional MRI, high accelera-
tion is considerably more challenging in dMRI. For example, 
the Human Connectome Project (HCP) exhaustively evalu-
ated SMS accelerations for both functional MRI and dMRI. 
The optimized HCP 3T protocol used MB = 3 (without  
in‐plane undersampling) for dMRI, compared with MB = 8 
for functional MRI.11

An alternate approach is to accelerate in q‐space. 
Compressed sensing has been used to improve the estimation 
of diffusion profiles using a small number of q‐space sam-
ples and estimating the diffusion signal at unseen locations 
in q‐space.12-17 These approaches exploit the information  
redundancy in q‐space and impose a sparsity constraint under 
a data transform (e.g., wavelet, total variation) or in a simple 
model space (e.g., summation of tensors).

Finally, a series of methods have proposed joint k‐q  
acceleration, with data undersampling in both k space and q 
space.18-21 These methods all cast joint k‐q acceleration as a 
compressed sensing problem and differ primarily on the spe-
cific sparsifying transform or model. Most of these methods 
focus on in‐plane undersampling to enable comparable scan 
time to single‐shot acquisitions but at much lower distortion 
for a given resolution.

In this work, we propose a new method to accelerate 
dMRI acquisition by incorporating sharable information 
between q‐space samples. The smoothness of signal in  
q‐space has been exploited for acceleration.20 Gaussian 
processes (GPs)22 offer a general framework for smoothing 
and interpolating signals in a model‐independent manner. 
In diffusion imaging, this has been used to correct for eddy‐
current induced distortions and subject movement23,24 and 
replace outliers.25

Building on these approaches, we have integrated GPs 
into joint k‐q reconstruction to achieve high acceleration 
in the context of both in‐plane and slice‐wise accelera-
tion. We call this approach Diffusion Acceleration with 
Gaussian process Estimated Reconstruction (DAGER). In 
this work, we focus on k‐q reconstruction of single‐shell 
dMRI data and more generalized q‐space sampling (i.e., 
multiple shells) is not covered. We use a Bayesian frame-
work that learns the smoothness hyper‐parameters from 
the data, with no need for manually tuning reconstruction 
parameters.22 We demonstrate this approach using numer-
ical simulations and in vivo acquisitions. Two acceleration 
schemes are evaluated: a very high in‐plane undersampling 
factor (exceeding the theoretical limit of conventional par-
allel imaging) and using a high SMS acceleration factor 
with in‐plane undersampling (the primary intended appli-
cation). Both simulations and in vivo results demonstrate 
superior performance of DAGER compared with conven-
tional parallel imaging methods. These improvements 
are achieved without loss of spatial or angular resolution 
and require only a minor modification to standard pulse 
sequences.

2 |  THEORY

2.1 | GP modeling of dMRI signal
A GP is a statistical model defined as a probability dis-
tribution over functions where function values evaluated 
at any arbitrary set of input points have a joint Gaussian 
distribution.22 Consider dMRI as the output of a real‐ 
valued function S(qi). The input qi is specified by a diffu-
sion encoding direction and a b value. With GP modeling, 
any finite collection of dMRI signals u=S(q) at an input 
set q=

[
q1,q2,⋯ ,qNd

]
 follows a multivariate Gaussian 

distribution:
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which is fully specified by a mean vector � (Nd×1) and a  
covariance matrix � (Nd×Nd). u (Nd×1) contains dMRI sig-
nal from a single voxel for all diffusion volumes. Nd is the 
number of diffusion volumes. The spatial distribution of sig-
nals (i.e., covariance between voxels) is temporarily ignored 
for simplicity of notation, but will be covered in the “dMRI 
reconstruction with a GP prior constraint” section.

The GP covariance is modeled by a covariance function 
C, which is typically characterized by a small number of 
hyper‐parameters �. The dMRI signal is usually acquired 
on 1 or several q‐space shells, each corresponding to 1  
b‐value. The spherical covariance function26 has been shown 
to have good agreement with the covariance observed from 
real dMRI data.24 For single‐shell acquisition, the corre-
sponding spherical covariance function is given by:

Here, �i,j denotes the angle between the 2 vectors, gi and gj,  
pointing from the q‐space origin to the q‐space points qi 
and qj, defined as �i,j = cos−1⟨gi,gj⟩. A smaller � is associ-
ated with a larger covariance between the 2 q‐space points. 
The smoothness hyper‐parameter a governs the decay rate 
of the covariance with respect to � and serves as an angular 
threshold.

For real dMRI data, 2 other hyper‐parameters, � 
and �, are also included in the covariance function: 
C
(
qi,qj

)
=�C�

(
�i,j;a

)
+�2�i,j, where � captures the signal 

variability and �2 represents the noise variance that is uncor-
related in q‐space. �i,j is the Kronecker delta function. The 
covariance matrix can be derived accordingly

with � defined as �i,j =�C�

(
�i,j;a

)
, capturing the q‐space 

smoothness. I is an identity matrix.
If prior information about the mean signal for each dif-

fusion direction is available, the mean function can also be 
modelled explicitly.22 Otherwise, the mean of a GP model 
is usually set to zero. Note a zero‐mean prior is not a strict 
limitation, as the posterior mean is not constrained to zero.

2.2 | GP prediction of dMRI signal
GP methods allow us to place a prior distribution directly on 
the functions, which is transformed to a posterior distribu-
tion after having been fit to data. This posterior can be used 
to predict unseen dMRI signal, which has been used in data 
analysis for removing distortion and discarding outliers.23,25 

In the context of image reconstruction, it can be used to fill in 
missing data to accelerate acquisition.

Assume we have a set of dMRI images 
y=

[
y(q1),y(q2),⋯ ,y(qNd

)
]T, which contain additive noise:

The noise ni is assumed to follow an independent and 
identically distributed (i.i.d.) Gaussian with zero mean and 
variance �2

im
. The likelihood is:

If we cast our estimation of u in terms of Bayes’ theo-
rem with a GP prior (Equation 1), the maximum a posteriori 
(MAP) estimation provides a point estimate27:

whose analytical solution is given by 
ū=

(
𝜎−2

im
I+�−1

)−1 (
𝜎−2

im
y+�−1

�
)
, which is a linear combi-

nation of prior and data with weights determined by the prior 
covariance and noise variance.

2.3 | dMRI reconstruction with a GP 
prior constraint
The previous sections have described GPs in terms of a single 
voxel. In image reconstruction, we acquire data in k space 
and estimate the unknown signal in image space. The dMRI 
measurement can be described as a linear model:

where u (NvNd×1) is extended to contain the signals for 
all diffusion volumes from all voxels. Nv is the number of 
voxels. d (NvNdNc×1) denotes the acquired k‐space data for 
all Nd diffusion volumes. Note the vector y in the previous 
section is the observation in image space. Nc is the number 
of coils. A (NvNdNc× NvNd) is the system matrix combin-
ing sensitivity encoding, Fourier transform and the k‐space 
sampling operation. n (NvNdNc×1) is the measurement noise, 
which is assumed to follow an i.i.d. Gaussian distribution 
with zero mean and variance �2

k
.

We now extend the GP model (Equation 1) to include the 
spatial distribution of signals

where � and � have the size of NvNd×1 and Nd×Nd, respec-
tively. INv

 is a Nv×Nv identity matrix. ⊗ is the Kronecker 
product. The full covariance matrix (NvNd×NvNd) is:

(1)u∼N(�,�)

(2)C𝜃

�
𝜃i,j;a

�
=

⎧⎪⎨⎪⎩

1−
3𝜃i,j

2a
+

𝜃3
i,j

2a3
if 𝜃≤a

0 if 𝜃 >a

(3)�y =�+�
2I

(4)y(qi)=u(qi)+ni

(5)p (y�u,q)=
Nd∏
i=1

1√
2��2

im

exp

�
−
(y(qi)−u(qi))

2

�2
im

�

(6)ū= arg min
u

(
1

2𝜎2
im

||u−y||2
2
+

1

2
(u−�)H �−1 (u−�)

)

(7)d=Au+n

(8)u∼N
(
�,�⊗INv

)
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The covariance values are purely a function of angular 
distance between directions (i.e., Equation 2). Although each 
pair of directions may have a unique covariance value �i,j, 
there is only 1 set of hyper‐parameters to estimate.

Conventional parallel imaging aims to find the maximum 
likelihood estimate (i.e., the point estimate that does not in-
clude any prior constraints)28:

By incorporating a GP prior on the signal, the MAP esti-
mate can be obtained as27:

Disregarding the P matrix (discussed below), this is a 
straightforward extension of the MAP estimation given in 
Equation 6. This MAP formulation resembles standard linear 
image reconstructions with a regularization between 2 cost 
functions. The unusual feature here is that the regularization 
parameter (�2

k
 and �) is clearly defined based on the Bayesian 

likelihood, as discussed in the next section.
P denotes the motion‐induced phase errors and H is the 

conjugate transpose operator. The phase errors are primar-
ily driven by bulk and cardiac motion during the diffusion 
preparation and have no relation to the q‐space locations. The 
acquired complex signal thus violates the GP assumption that 
information is correlated in local q‐space. PH is included in 
the reconstruction to realign the image phase across diffusion 
volumes. The phase errors can be measured from a low‐res-
olution navigator29,30 or estimated from the imaging data.31

2.4 | GP hyper‐parameter estimation
Solving Equation 11 requires knowledge of the hyper‐ 
parameters �=[�,a,�] encapsulated in the covariance matrix 
�. Using Bayes theorem, the optimal hyper‐parameters can 
be estimated from image data by maximizing the marginal 
likelihood p(y|q,�). In practice, one typically minimizes the 
negation of the log of the marginal likelihood:

where |||�y

||| is the determinant of �
y
.

3 |  METHODS

3.1 | Image reconstruction and  
hyper‐parameter estimation
An iterative scheme is used to jointly estimate the optimal 
hyper‐parameters and the underlying images: in each itera-
tion, a set of hyper‐parameters is calculated (Equation 12) 
using the images reconstructed from the previous itera-
tion; then a new image reconstruction is conducted with the  
updated hyper‐parameters (Equation 11). As the iteration 
goes on, it is expected both the hyper‐parameter estimation 
and the image reconstruction can be improved.

The noise variance estimated from the reconstructed  
images (�2

im
) is different from the noise variance of the  

k‐space data (�2
k
), thus one cannot directly use �2

im
 in the MAP 

reconstruction (Equation 11). Nevertheless, the propagation 
of noise in parallel imaging can be quantitatively measured,5 
which provides a way to derive �k from �im.

The pipeline of the proposed method is summarized below:
Initial: Conventional sensitivity encoding technique 

(SENSE) is used to reconstruct an image initialization u0.
�k is estimated from �0

im
 in 1000 randomly chosen brain 

voxels as:

where g∗ is the noise propagation function, derived from  
the coil sensitivities S and the coil noise covariance  
matrix �.5 While the hyper‐parameter �im is updated each 
iteration, �k is calculated in the first iteration and fixed 
thereafter.

Iteration n: The optimal hyper‐parameters (an−1, �n−1, 
�n−1

im
) are estimated from the signal across all diffusion  

directions extracted for 1000 randomly chosen brain vox-
els in un−1. The final estimates are an average of the es-
timates from all voxels. A covariance matrix �n−1 is then 
constructed and the posterior mean ūn−1 is calculated ac-
cording to Equation 6.

Finally, we reconstruct all diffusion volumes using ūn−1 
and �n−1as prior constraints:

Output: We stop iterating when a fixed number of  
iterations is reached or the normalized solution update 
||un−un−1||∕||un−1|| is below a preset threshold. The last  
reconstruction (Equation 14) will be the result.

(9)�⊗INv
=

⎡
⎢⎢⎢⎢⎣

�1,1INv
�1,2INv

�2,1INv
�2,2INv

… �1,Nd
INv

… �2,Nd
INv

⋮ ⋮

�Nd,1INv
�Nd,2INv

… ⋮

… �Nd,Nd
INv

⎤
⎥⎥⎥⎥⎦

(10)u= arg min
u

||Au−d||2
2

(11)

u= arg min
u

(
1

2𝜎2
k

||Au−d||2
2
+

1

2

(
PHu−�

)H (
�⊗INv

)−1 (
PHu−�

))

(12)Θ= arg min
�

(
1

2
y

T�−1
y

y+
1

2
log

|||�y

|||+
Nd

2
log 2�

)

(13)�k =
1

1000

1000∑
i =1

�0

im(�i)
g∗(�i)

=
1

1000

1000∑
i =1

�0

im(�i)� �
(SH�S)

−1
�
�i ,�i

(14)

un = arg min
u

(
1

𝜎2
k

||Au−d||2
2
+
(
PHu− ūn−1

)H (
�n−1⊗INv

)−1 (
PHu− ūn−1

))
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3.2 | k‐q sampling
Joint k‐q reconstruction could be improved by using differ-
ent k‐space sampling patterns for different diffusion vol-
umes.19-21 Smoothness in q‐space means nearby q‐space 
points share more common features (i.e., the images are 
more similar than distant points, Figure 1A). We explore 
the extent to which we can improve the DAGER recon-
struction by using different k‐space undersampling pat-
terns within a local q‐space neighborhood. Specifically, 
we use a graph model approach to design the proposed k‐q 
undersampling.

For EPI with an undersampling factor of R, there exist 
R unique k‐space sampling patterns that can be applied 
at different q‐space points, produced by shifting the un-
dersampled trajectory along the phase‐encoding direction 
and slice direction (for SMS). For each q‐space location, a 
neighborhood is defined including itself and its R‐1 nearest 
neighbors. The task of assigning different k‐space sampling 
patterns for the q‐space points within a local neighborhood 
(Figure 1B) can be equivalently described as a graph‐col-
oring problem. In this formulation, each q‐space point cor-
responds to a vertex and an edge between 2 vertexes exists 
if the corresponding 2 q‐space points are within the same 

neighborhood. If the constructed graph can be colored using 
R different colors while obeying the constraint that no con-
nected vertexes share the same color, the resultant coloring 
scheme provides the desired k‐q undersampling. Graph col-
oring is an “NP complete” problem, which means no effi-
cient algorithms are available to provide the exact optimal 
solution. However, it also establishes an equivalence to all 
NP‐complete problems, for which several efficient algo-
rithms exist. In this work, we applied a greedy algorithm to 
approximate the solution.32

3.3 | Simulation
One common way to validate an acceleration method is to 
acquire fully sampled k‐space and retrospectively under-
sample it to generate simulation data sets. However, this  
approach is not very compatible with dMRI acquisition 
which suffers from shot‐to‐shot phase variation caused 
by subject motion. Instead, we derive simulation from a 
simplified signal model fitted voxel‐wise to high‐quality  
in vivo data. This is particularly helpful for evaluating the  
performance of DAGER with and without phase corruption. 
However, this simplified signal representation is by construc-
tion smooth in q‐space and is not perfectly representative of 

F I G U R E  1  A, DAGER reconstruction 
takes advantage of local smoothness in  
q‐space: dMRI images that are near to each 
other in q‐space look very similar.  
B, The proposed k‐q sampling scheme: 
using different k‐space sampling patterns in 
the local q‐space neighborhood. Each color 
corresponds to a different sampling pattern 
in k‐space as shown on the right. Here,  
R = 6 is used for the in‐plane undersampling 
example (without kz blips), and SMS = 3 
with R = 2 is used for the SMS example. 
One set of k‐space sampling pattern is 
displayed as red circles (for SMS) and 
dashed lines (for in‐plane undersampling) 
for better visualization
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in vivo data. These simulations thus represent a well‐condi-
tioned data environment, and ultimately it is crucial to per-
form in vivo evaluations.

Simulations were constructed based on dMRI data from 
the HCP, consisting of 3 shells (1000, 2000, and 3000 s/mm2) 
and 270 diffusion directions, which had been preprocessed to 
account for eddy currents and distortions.33 The data were fit 
with a ball‐and‐stick model,34,35 which was used to generate 
simulated data based on the same model. We simulated in‐
plane undersampling with a small number of channels, aimed 
to test the limits of the proposed method by using extreme 
acceleration along 1 dimension. We also conducted SMS 
simulations with in‐plane undersampling targeting the actual 
application we would like to achieve in practice. Therefore, 
the same number of channels were used for SMS simulation 
as for the in vivo data acquisition (the “In vivo experiments” 
section).

3.3.1 | In‐plane undersampling
Multichannel dMRI data were simulated with 128 direc-
tions, b = 1000 s/mm2 and an 8‐channel head coil (https://
www.ismrm.org/mri_unbound/simulated.htm). Complex 
random noise was added to the data. Three in‐plane  
undersampling factors R = 4,6,10 were evaluated, with  
R = 10 exceeding the theoretical parallel imaging limits for 
the simulated 8‐channel coil. Simulations were generated 
with and without acquisition‐to‐acquisition phase errors. 
The phase errors consisted of a constant offset randomly 
selected between [‐π, π] and a linear phase term in image 
space, corresponding to a shift along ky by a random dis-
tance between [0, 2Δky]. Δky is the phase‐encoding step 
size. The effects of nonlinear phase errors are demonstrated 
in the in vivo experiments.

3.3.2 | SMS with in‐plane undersampling
An SMS data set with 4‐fold acceleration (MB = 4) was 
simulated with 192 directions, b = 1000 s/mm2 and 31.5‐
mm slice gap, in‐plane undersampling factor R = 3, 
blipped‐CAIPI3,36 with a field of view (FOV)/4 interslice 
image shift. The total undersampling factor was 12. Coil 
sensitivity maps were measured using a 32‐channel coil. 
Noise and phase errors were added to the data as described 
in the previous section.

3.4 | In vivo experiments
Four subjects were scanned on a Siemens 7T scanner. 
Informed consent in accordance with local ethics was  
obtained before each scan. SMS data were acquired in all 4 
subjects, while additional in‐plane undersampling scans were 
performed on 1 subject.

3.4.1 | Sequence implementation
A 2D spin‐echo dMRI sequence was modified to include 
SMS acquisition and the blipped‐CAIPI encoding scheme.3 
After each imaging echo, a 2D navigator can optionally be 
acquired following a second refocusing pulse. Two k‐q sam-
pling strategies were implemented: “fixed” sampling with 
the same k‐space lines acquired at each q‐space location, 
and “variable” sampling using the graph‐coloring algorithm 
described above to sample different k‐space locations in a 
local q‐space neighborhood. Coil sensitivities were measured 
using the FLEET‐ACS method.37,38 For in‐plane undersam-
pling acquisitions, a bipolar diffusion‐preparation39 scheme 
was used to reduce eddy current effects and a 64 × 64 naviga-
tor was acquired.

A major challenge for SMS dMRI at 7T is specific  
absorption rate. Three aspects of the sequence implementa-
tion (including radiofrequency pulses, diffusion preparation, 
and navigator acquisition) were optimized to reduce spe-
cific absorption rate for SMS acquisitions (see Supporting 
Information Methods S1, which is available online).

3.4.2 | In‐plane undersampling
The dMRI data were acquired from subject 1 using a  
32‐channel coil. Two acceleration factors R = 3,6 were  
acquired with 1.5 × 1.5 × 1.5 mm3 resolution (matrix size 168 
× 168, 40 slices, b = 1000 s/mm2 and 128 directions, repetition 
time (TR)/echo time = 6500 ms/82 ms, total scan time 13.8 
min). The R = 3 data were acquired with partial Fourier 6/8, 
which were used as reference for comparison to R = 6 data.

Navigator and b = 0 data were reconstructed using con-
ventional SENSE, which might incur significant artifact at 
high acceleration factors. Hence, for the R = 6 imaging data, 
the navigator was undersampled by R = 4 to reduce artifacts 
while producing similar distortions as the imaging data; the 
b = 0 data were acquired using multishot EPI (6 segments). 
We acquired 5 b = 0 volumes, 1 of which had reversed phase‐
encoding direction to enable correction of susceptibility  
induced distortion.

3.4.3 | SMS with in‐plane undersampling
SMS data were acquired at MB factor of 4 using blipped‐
CAIPI with a FOV/4 interslice image shift. Twenty‐one slice 
sets with 31.5‐mm slice gap were acquired, resulting in a 
total of 84 slices (126 mm) for full brain coverage. In‐plane 
undersampling R = 3 was also applied, for a total under-
sampling factor of 12. Other scan parameters were 1.5 mm 
isotropic resolution, matrix size 156 × 156, TR/echo time = 
3500 ms/71 ms, b = 1000 s/mm2, 192 diffusion directions, 
total scan time 11 min. Four sets of b = 0 data were acquired 
using multishot EPI (12 segments), including 1 volume with 

https://www.ismrm.org/mri_unbound/simulated.htm
https://www.ismrm.org/mri_unbound/simulated.htm
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reversed phase‐encoding direction for distortion correction. 
The multishot sequence is sensitive to subject motion, which 
could be mitigated by using lower undersampling factors 
(Supporting Information Discussion S1).

Single‐band (SB) data were acquired from all subjects for 
comparison to SMS data. For the subjects 1‐3, a set of SB 
data was acquired with the same FOV (i.e., 84 slices) as the 
SMS protocol, which was used as a full‐FOV reference. For 
these scans, a longer TR (12 s) and fewer diffusion directions 
(i.e., 50) were used to achieve similar acquisition time. For 
subject 4, 3 repetitions of SB data were acquired using the 
same sequence parameters as in the SMS protocol but con-
taining only 21 slices to match the TR. The acquisition time 
was 33 min. These data were used to provide a high‐SNR 
reference to identify the degree of angular blurring incurred 
by the DAGER reconstruction.

3.5 | Reconstruction implementation
Images were reconstructed using both DAGER and con-
ventional parallel imaging methods, specifically SENSE for  
in‐plane undersampling and SMS‐SENSE for slice accelera-
tion, which were implemented with custom code.

The SMS‐SENSE implementation followed a 3D  
k‐space formulation40,41 where in‐plane undersampling 
and SMS acquisition are treated as undersampling along ky 
and kz dimension. A 2D‐SENSE42,43 method was used to  
reconstruct the data. Due to the ill‐conditioning of the recon-
struction, Tikhonov regularization was used in SENSE and 
SMS‐SENSE.40 We used the L‐curve approach44 to find the 
optimal regularization parameter (Supporting Information 
Figure S1).

3.5.1 | Phase error estimation
In simulation, the phase was estimated using the central  
k‐space (32 × 32) of the imaging data, which provides perfect 
knowledge of the simulated motion (zeroth and first‐order 
phase).

For the non‐SMS in vivo data, for which a navigator was 
acquired, conventional SENSE was applied to reconstruct the 
navigator image. This was then smoothed by a 2D hamming 
filter to suppress ringing artifacts and noise. The phase of the 
image was used as an estimate of the phase errors. We refer 
to this approach as “navigator based.”

For SMS in vivo data, which we did not acquire a naviga-
tor, the phase errors were estimated from the imaging data.31 
Images were first reconstructed using SMS‐SENSE, followed 
by a total‐variation de‐noising.45 In this work, we found the 
reconstruction with the optimal regularization parameter still 
contained some residual aliasing artifacts. As minimal alias-
ing is crucial for DAGER to achieve accurate phase estimate, a 
lower regularization parameter was used in this reconstruction 

(Supporting Information Figure S1). The reconstructed image 
was used as an initialization for DAGER reconstruction. The 
phase of the de‐noised image was used as the phase‐error esti-
mate. We refer to this approach as “navigator free.”

3.5.2 | DAGER reconstruction
The symmetric property of the diffusion signal was consid-
ered in simulation, where the covariance function was calcu-
lated with � defined as �i,j = cos−1 |||

⟨
gi,gj

⟩|||.
24 For in vivo 

data, the signal symmetry was not incorporated to reduce  
the effects of distortion induced by eddy currents and/or 
Maxwell terms on DAGER reconstruction. This led to a defi-
nition of �i,j = cos−1

⟨
gi,gj

⟩
.

Hyper‐parameters were calculated (Equation 12) using 
the conjugate gradient method. To avoid negative val-
ues for signal variance and noise variance, the model 
was modified to estimate e� and e� rather than � and � : 
C(qi,qj)= e�C�

(
�i,j;a

)
+e2��i,j.

Iteration stopped when either the iteration number reached 
20 or the normalized solution update (||un−un−1||∕||un−1||) 
was below 0.002.

3.6 | Analysis

3.6.1 | Simulation data
Normalized root‐mean‐squared‐error (NRMSE) values were 
calculated between the reconstructed images and the noise‐
free ground‐truth with a brain mask to emphasize the recon-
struction errors within the brain region.

3.6.2 | Tensor and tractography modeling
The in vivo data were first processed using Topup and 
Eddy23 to correct image distortions, and then fitted with a 
tensor model using DTIFIT46 and, separately, a Bayesian 
ball‐and‐stick model with 2 fiber populations within a 
single voxel (BEDPOSTX).34,35 Probabilistic tractogra-
phy of major white matter tracts was conducted using the 
AutoPtx tool in FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
AutoPtx).47 AutoPtx defines 14 major white matter path-
ways in a predefined atlas that avoids any operator bias. 
Tractography was not applied to the SB data from subject 4 
due to the limited FOV.

3.6.3 | Investigation of induced 
angular blurring
Because DAGER uses a GP‐based smoothness prior on  
q‐space, it can potentially induce angular blurring if it over-
estimates the smoothness. To evaluate the accuracy of fiber 
orientation, we compared the fiber orientations between the 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx).47
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx).47
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SMS images reconstructed using DAGER and SENSE and 
a high‐SNR, non‐SMS reference in subject 4. The reference 
data were constructed by averaging 2 repetitions SB data 
(SB‐2ave). The mean of the posterior distribution of the fiber 
orientations estimated was used for comparison. A mask was 
used to exclude fibers having a wide orientation distribution 
around the principle diffusion direction, which was gener-
ated from the “dispersion” map (BEDPOSTX output) using 
a threshold of 0.03. The angular differences for the 2 fiber 
populations were calculated between the SMS images and 
SB‐2ave, as well as between an independent set of SB data 
(SB‐1ave) and SB‐2ave.

3.6.4 | Investigation of number of directions
To use q‐space smoothness, there must be nearby q‐space 
samples that lie within the extent of this smoothness. We  
investigated the effect of the number of diffusion directions 
on the different reconstructions. The 192‐direction data set 
was sub‐sampled to 160, 128, and 64 directions. Finally, 
we investigated the effect of error in the smoothness hyper‐
parameter estimation using the set of 64‐directions. Two  
additional SMS‐DAGER reconstructions were applied with 
the hyper‐parameter a fixed to 1 (to include ~12 points in 
each q‐space neighborhood) and π (to use all q samples) 
throughout the reconstruction, where the estimated value for 
a is 0.7 (having ~7 points in each q‐space neighborhood). 
NRMSE values for different reconstructions were calculated 
using SB‐2ave as a reference. Before calculation, images 
were registered to half‐way space using FMRIB’s Linear 
Image Registration Tool (FLIRT) with rigid body 6 DOF and 
correlation‐ratio cost function.48

Simulation and acquisition parameters, reconstruction  
algorithms and data analyses described above are summa-
rized in Table 1.

4 |  RESULTS

4.1 | Simulations of in‐plane acceleration
Figure 2A shows the reconstruction with R = 4, 6, and 10 
using the variable k‐q sampling. With only 8 coil elements, 
conventional SENSE cannot reconstruct the images correctly 
for any undersampling factor. The reconstruction is substan-
tially improved using DAGER, which reduces the NRMSE 
by a factor of ∼9 for the R = 10 acceleration compared with 
SENSE, with residuals appearing noise‐like rather than struc-
tured. Both the variable k‐q sampling scheme and phase‐error 
correction are important in the reconstruction (see Supporting 
Information Figure S2).

Figure 2B shows the convergence of the DAGER recon-
struction with R = 6 data. The NRMSEs for all diffusion 
volumes decrease monotonically with iteration and reach 

a minimum after approximately 13 iterations. Although 
NRMSE is a useful metric to evaluate stopping criteria, 
ground truth is not available in practice. The normalized 
solution update has similar decay behavior to NRMSE and 
can be used to monitor the reconstruction progress. The  
reconstruction is stopped after 15 iterations.

DAGER reconstruction at different noise levels demon-
strates image fidelity (as reflected in NRMSE) is not very 
sensitive to the estimated �k for SNR ≥20 (Supporting 
Information Figure S3). Moreover, �k is accurately estimated 
and reconstructed NRMSEs are close to optimal at SNR ≥10,  
which is crucial given that this parameter is not iteratively 
updated.

4.2 | Simulations of SMS with in‐plane 
undersampling
As shown in Figure 3, SMS‐DAGER achieves a consider-
ably improved reconstruction compared with SMS‐SENSE 
(tailored SENSE reconstruction for SMS data),40 reducing 
NRMSE by factors of 5‐6. Navigator‐based and naviga-
tor‐free phase corrections achieve comparable reconstruc-
tion fidelity, with slightly higher error in the navigator‐free 
reconstruction (see inset values in Figure 3). The strong 
artifacts in the navigator‐free SMS‐DAGER reconstruc-
tion are mostly located in the background where phase 
estimates are purely noise. The quality of navigator‐free 
reconstruction within the brain suggests the initial SENSE 
reconstruction provides a good estimation of the phase  
errors (for brain region).

4.3 | In vivo in‐plane acceleration
Supporting Information Figure S4 shows in‐plane accelera-
tion results from subject 1. Conventional SENSE at R = 6 
suffers from noise amplification and residual aliasing even 
with 32 coil elements. DAGER reconstruction is consider-
ably improved. As in simulation, phase‐error correction with 
and without an explicitly acquired phase navigator demon-
strate very similar performance. Therefore, the navigator‐
free method was adopted for the rest of this work to reduce 
specific absorption rate. However, for very high undersam-
pling factors, navigator‐based approach and advanced recon-
struction methods might be needed for phase‐error correction 
(Supporting Information Discussion S2).

One indirect way to characterize dMRI data quality is 
through the estimation of secondary fiber populations within 
a voxel, where automatic relevance determination is used 
for deciding if a secondary fiber is supported by the data.35 
Detection of multiple fibers requires both high contrast‐ 
to‐noise ratio and high angular resolution.

As shown in Figure 4, SENSE reconstruction at R = 6 
fails to capture many secondary fiber populations, likely 
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due to the low contrast‐to‐noise ratio . In this same data, 
secondary fibers are recovered throughout the brain in the 
DAGER reconstruction. This indicates DAGER reconstruc-
tion has high contrast‐to‐noise ratio and no excessive angular 
blurring.49,50 Receiver operating characteristic (ROC) anal-
ysis also demonstrates a greater capacity in capturing sec-
ond fiber populations using DAGER compared with SENSE 
(Supporting Information Figure S5). The reference SENSE 
reconstruction of R = 3 data provides a good CNR with neg-
ligible residual artifacts.

4.4 | In vivo SMS with in‐plane acceleration
As shown in Figure 5, conventional SENSE reconstruction 
suffers from amplified noise due to the high acceleration 

applied in both through‐plane and in‐plane. From the same 
data, DAGER reconstructs high‐quality images with sup-
pressed noise and aliasing artifacts. As shown in Supporting 
Information Figure S6, the SMS‐DAGER reconstruc-
tion demonstrate consistent contrast with the SB reference 
(SB‐3ave), which is 3 repetitions averaged. In addition, the 
noise level of the SMS image is similar to the SB reference 
despite a 3‐fold scan time reduction, suggesting the GP prior 
can effectively reduce noise by exploiting the common fea-
tures between diffusion volumes.

Diffusion tensor fits to SMS data in subject 4 are shown 
in Figure 6. Tensor metrics derived from SMS‐DAGER  
reconstruction are consistent with the high‐SNR SB‐3ave ref-
erence, while the conventional SENSE reconstruction of the 
same data gives a noisy estimation of fractional anisotropy  

F I G U R E  2  Simulation of in‐plane 
undersampling. A, Three undersampling 
factors R = 4, 6, and 10 are evaluated. 
Reconstructed images are shown on the left 
for each method. Difference from ground 
truth is shown on the right for each method, 
scaled by a factor of 3 for SENSE and 10 
for DAGER. NRMSE values for SENSE are 
0.36, 0.48, and 0.63 and for DAGER  
are 0.04, 0.05, and 0.06 (for  
R = 4, 6, 10, respectively). Note the 
simulations with R = 10 exceed the 
theoretical limit of conventional parallel 
imaging, but that nevertheless DAGER 
reconstruction manages to recover the 
underlying image with good fidelity. B, 
Convergence of the DAGER reconstruction 
for R = 6. Blue: NRMSE for all diffusion 
directions over 20 iterations (each 
point represents 1 diffusion direction). 
Red: Normalized solution update 
||un −u

n−1||∕||un−1|| in 20 iterations. Note the 
iteration‐0 corresponds to the initial SENSE 
reconstruction
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F I G U R E  3  Simulation of SMS data 
with total acceleration of 12 (MB = 4 
and in‐plane R = 3). Three reconstruction 
approaches are evaluated: SMS‐SENSE, 
SMS‐DAGER with navigator acquisition 
(Nav‐based), and SMS‐DAGER without 
navigator acquisition (Nav‐free). The 4 
columns on the left are reconstructed images 
for the 4 simultaneously excited slices, with 
NRMSE values given on the bottom left 
(calculated for the brain region only). The 
rightmost column contains the difference 
images for the third slice, which are scaled 
by a factor of 5 for SMS‐SENSE and 10 for 
SMS‐DAGER

F I G U R E  4  Multiple fiber populations 
within a single voxel are estimated from  
R = 6 data reconstructed with SENSE 
(top) and DAGER (middle), and R = 3 data 
reconstructed with SENSE (bottom). The 
R = 3 data are used as a reference here. 
The second fiber populations for R = 3 
data, DAGER (R = 6) data, and SENSE 
(R = 6) data are 89355, 78867, and 23645, 
respectively. The same threshold (0.05) is 
used for all data sets
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and lower mean diffusivity values, likely due to the low 
image SNR and residual aliasing artifacts.

4.5 | Evaluation of angular resolution
In Figure 7, the covariance of the dMRI signal between 2 
images is plotted as a function of the angle between them 
in q‐space (points with 0° angular distance are the signal 
variance of a single volume). Angular smoothing would 
lead to increased covariance at large angular difference. 
Compared with the high‐SNR SB‐3ave reference, SMS‐
DAGER images have only slightly higher covariance, in-
dicating preservation of angular resolution in the DAGER 
reconstruction. SMS‐SENSE reconstruction of the same 
data is corrupted by noise, giving low covariance between 
diffusion directions.

Comparison of fiber orientations, i.e., the deviation from 
that estimated from the SB‐2ave data, is shown in Figure 
8. For a large number of diffusion directions (128+), the  
angular differences derived from the SMS‐DAGER  
images are comparable to those derived from the SB‐1ave 
images, with slightly worse performance for the first fiber 
and equivalent performance for the second fiber (P > 0.01, 
see Supporting Information Table S1 for details). This sug-
gests preservation of SNR and angular resolution in DAGER 
reconstruction. The fiber orientations derived from the 

SMS‐SENSE data deviate significantly from the reference, 
even with many diffusion directions, which is likely due to 
the noise amplification and residual artifacts in the images.

The number of diffusion directions is a key determinant of 
the quality of fiber orientation estimation. It limits the num-
ber of diffusion volumes that are available to our local GP 
estimation and constrains the angular resolution that can be 
resolved using dMRI. With only 64 directions, SMS‐DAGER 
performs similarly as SMS‐SENSE, presumably reflecting 
that q‐space samples are too far apart to provide useful in-
formation for local GP estimation. We can explore the effect 
of the smoothness hyper‐parameter a for this 64‐direction 
data set. If we fix a to an inflated value, the images have 
higher SNR, suggesting improved reconstruction condition-
ing (see Supporting Information Figure S7). However, this 
enforced‐smoothness constraint may introduce angular blur-
ring  beyond the intrinsic signal smoothness. As shown in 
Figure 8A, with a slight smoothness constraint (a = 1), the 
estimation of angular resolution is improved. However, when 
a strong smoothness constraint (a = π) is applied, the angu-
lar difference inflates, suggesting a loss of angular resolution 
in the reconstruction. Indeed, it is noticeable that the image 
contrast for a single image with a = π (indicative of shared 
information over the entire q sphere) is very similar to a mean 
diffusivity weighting (Supporting Information Figure S7).

NRMSE of DAGER reconstruction increases as the num-
ber of directions decreases (Figure 8B), which is consistent 
with the fiber orientation evaluation. Enforced smoothness 
(fixed a) improves SNR and reduces NRMSE, but it com-
promises angular resolution (Figure 8A). The NRMSE of 
SB‐1ave data provides a useful reference point for this kind 
of comparison against a reference data set with noise and  
potential misregistration. SMS‐SENSE reconstruction gives 
the worst result with highest NRMSE.

4.6 | Diffusion tractography
We conducted automatic mapping of 14 major white matter 
tracts using AutoPtx47 on the full‐FOV data sets in subjects 
1‐3. To match the scan time (~11 min), SMS‐ and SB‐data 
were acquired with 192 and 50 directions, respectively. As 
shown in Figure 9, all the fiber bundles are robustly identi-
fied from the SMS‐DAGER data. The SB results capture 
many fiber bundles, but its performance is compromised 
by the limited number of diffusion directions achievable in 
this scan time. Tracts are generally less abundant in the SB 
and SMS‐SENSE data than the SMS‐DAGER data. In some 
cases, tracts are totally missing at the rendering threshold. For  
example, the acoustic radiation tracts (Figure 9, middle column, 
in purple) are clearly captured by the SMS‐DAGER data, but 
essentially absent in both the SB and the SMS‐SENSE results. 
Note these renderings used the same threshold across the dif-
ferent data sets but required these to be determined manually. 

F I G U R E  5  Reconstruction of the same in vivo SMS data using 
SMS‐DAGER and SMS‐SENSE, with total acceleration factor  
12 (MB = 4 and R = 3)
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However, where tracts are largely absent, no threshold would 
produce decent tract reconstructions, and the overall conclu-
sions about the relative performance of the data sets does 

not change with threshold level. These results demonstrated  
improvement of DAGER in a domain that is important in 
practice (beyond producing high‐quality image).

F I G U R E  6  Diffusion tensor analysis of subject 4 data. Comparison of SMS data (MB = 4 and R = 3) reconstructed using both SENSE and 
DAGER, and a high‐SNR SB reference (SB‐3ave). Three parametric maps are shown here: fractional anisotropy (FA), direction‐encoded colormap 
(red: right‐left; green: anterior‐posterior; blue: superior‐inferior) and mean diffusivity (MD)

F I G U R E  7  Signal covariance of dMRI images for high‐SNR SB reference (SB‐3ave) and SMS data (MB = 4, R = 3) reconstructed using 
SMS‐DAGER and SMS‐SENSE. Each point represents 1 diffusion direction. The averaged covariances are plotted as solid lines. For each data set, 
the covariance is normalized by the median of signal variances (angular distance = 0°). Note that in the plot we deliberately shift signal‐variance 
points by a small amount along the angular‐distance axis for better visualization of the differences
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5 |  DISCUSSION

This work aims to address one of the major limitations for 
SMS acceleration: the ill‐conditioned reconstruction at high 
acceleration factor, which usually results in a strong noise 
penalty. Improved sampling schemes such as CAIPIRINHA51 
can mitigate this issue, but it remains challenging for dMRI 
due to its intrinsically low SNR, particularly in combina-
tion with in‐plane acceleration to reduce distortion and blur-
ring. This limitation was specifically noted in the design of 
the HCP acquisition at 3T, where in‐plane acceleration was 
abandoned due to significant SMS image degradation.33 
DAGER is a new approach for improving SMS through a 
k‐q reconstruction that leverages the redundancy of spatial 
information in q‐space.

In DAGER, we extend conventional undersampling 
into k‐q space by using different sampling patterns within 
a local q‐space neighborhood. These sampling patterns are 
produced by shifting a 3D‐EPI trajectory along both ky and 
kz directions (Figure 1B). This benefits SMS by providing 
complementary k‐space information along both ky and kz  
directions. With a maximum scan time, DAGER will allow one 
to achieve higher acceleration (including higher SMS factor) 
and thus get more q‐space samples (which in turn increase the 
information available to GP). In comparison to previous work 
that accelerates purely in q‐space (e.g., compressed sensing), 
k‐q acceleration can reduce distortion/blurring with in‐plane 
acceleration and increase SNR‐efficiency (where optimal  
TR = 1‐3 s, depending on field strength).52 Using the DAGER 
approach, we have demonstrated highly accelerated imaging 

F I G U R E  8  A, Evaluation of fiber orientations in subject 4, using 2 averages from the SB data (SB‐2ave) as a reference. The angular 
difference to SB‐2ave is estimated for SB‐1ave (the third SB data set in this subject), SMS‐DAGER and SMS‐SENSE. Angular estimates are 
separately considered for the first (left) and second (right) fiber population. Four diffusion direction sets are evaluated, which contain 64, 128, 160, 
and 192 directions, respectively. For the 64‐direction data set, 2 additional DAGER reconstructions with enforced smoothness (a = 1 and a = π) are 
also applied (The three 64‐direction estimates are identical for SMS‐SENSE, and for SB1‐ave). For clear visualization of the differences between 
methods, error bars are not included here. B, Box‐Whisker plot of NRMSE for different reconstructions. The red line on each box indicates the 
median NRMSE for all diffusion directions, and the bottom/upper edges indicates the 25th/75th percentiles
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with superior performance compared with conventional par-
allel imaging, achieving high SMS acceleration (MB = 4) 
with in‐plane undersampling (R = 3). Alternatively, DAGER 
can be used to increase acceleration in 1 dimension: this was 
demonstrated here with high in‐plane accelerations, but may 
also enable higher MB factors.

Diffusion in biological tissue ranges from free to restricted 
diffusion, causing the observed diffusion signal in q‐space 
to be relatively smooth. This property has been exploited in 
GPs for data analysis.23,25 Unlike methods used in other k‐q  
reconstructions19,21 that aim to find a parametric model 
for the diffusion function, the GP method aims to find a 

F I G U R E  9  White matter fiber tracts generated using AutoPtx. 14 major white matter pathways (constituting 27 separate tracts in right and 
left hemispheres) are rendered in superior (left, thalamic radiation), anterior (middle, projection and callosal fibers) and lateral (right, association 
fibers) views. To match the scan time, SMS data and SB data contain 192 and 50 directions, respectively. SMS data reconstructed with DAGER 
support the delineation of all tracts, whereas the SB data and the SMS data reconstructed with SENSE fail to capture some tracts. Most notable are 
the acoustic radiations (missing from both SB and SMS‐SENSE reconstructions)
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parametric model for the covariance function, with the hyper‐ 
parameters related to the signal smoothness in q‐space learned 
from the data itself.22,24 DAGER uses an iterative updating 
scheme to calculate hyperparameter estimates and image  
reconstruction. This differs from classical model fitting 
where the model is identical in each iteration. Nevertheless, 
we find the reconstruction typically converges after 10‐15  
iterations (Supporting Information Discussion S3).

The optimal hyper‐parameters could depend on tissue 
type, suggesting it might be preferable to estimate them sepa-
rately for, e.g., gray and white matter. Such a situation would 
add practical complication to DAGER due to the need for  
tissue‐type segmentation. Fortunately, previous investiga-
tions of this found no evidence for overfitting of this kind.24 In 
addition, the GP approach provides an elegant way to model 
multishell dMRI data, allowing the estimation of data across 
shells and directions.24 Future work will expand DAGER to 
multiple q‐space shells, enabling more sophisticated analyses 
for microstructural information, such as NODDI.53 Finally, 
the consistent use of GPs in both data reconstruction and pre-
processing raises the possibility of integrating the 2 proce-
dures, a synergy which could further improve dMRI results.

As DAGER pulls information from adjacent q‐space lo-
cations, it could introduce angular smoothing if the hyper‐ 
parameters overestimate the actual signal smoothness. Figure 
8A shows a case where a strong, fixed smoothness constraint 
led to the loss of angular resolution. We investigated the  
effects of DAGER reconstruction on angular resolution. First, 
we compared the covariance of reconstructed images with 
respect to q‐space angular distance, finding that the signal 
covariance derived from the DAGER result is consistent with 
that from high‐SNR reference data (Figure 7), suggesting the 
estimated hyper‐parameters are able to capture the underly-
ing covariance of in vivo dMRI signal.

Second, we investigated the effects of DAGER recon-
struction on voxel‐wise fiber orientations compared with a 
reference. For more than 128 directions, angular differences 
between DAGER and the high‐SNR reference are not con-
siderably larger than those derived from the conventional SB 
data (Figure 8A); with a small number of directions (e.g., 64), 
DAGER reconstruction is very close to SENSE (Supporting 
Information Discussion S4). NRMSE evaluation of DAGER 
reconstruction (Figure 8B) also reveals that the reconstruc-
tion performance depends on the number of directions, 
with reduced benefit of DAGER when few directions are 
used. These evaluations and investigations suggest DAGER  
reconstruction can provide a good preservation of angular 
resolution.

The calibration of noise variance can affect the recon-
struction performance, especially for low SNR data (see 
Supporting Information Figure S3), which are common in 
dMRI. In simulation, DAGER’s noise variance estimates 
were demonstrated to be close to the ground truth, but more 

importantly the image errors (NRMSE) using the estimated 
noise variance were very similar to that of a reconstruction 
with the correct noise variance. In addition, the automatic 
determination of reconstruction parameters is pragmatic, as 
no manual adjustment is needed, unlike many previous k‐q 
methods. Noise in magnitude images follows a Rician distri-
bution, which can be approximated by a Gaussian distribu-
tion if the data have sufficient SNR. For low‐SNR dMRI data 
(e.g., high resolution, high b values), this approximation will 
be inaccurate and can bias estimates.54 This problem could 
be addressed by estimating i.i.d. Gaussian noise in k space 
data and using a non‐Gaussian likelihood for the image‐space 
hyper‐parameters.22

For a fixed number of diffusion directions, we expect a 
limitation on the acceleration factor that can be achieved. 
However, the achievable acceleration factor will depend 
on many additional factors, including receive coil, field 
strength, b value, radiofrequency pulses, k‐q sampling, and 
spatial resolution. It is also expected that different analysis 
methods and models will vary in their sensitivity to noise 
amplification and angular smoothness. As such, it is not 
straightforward to determine an appropriate acceleration 
factor without resorting to some empirically determined 
heuristics that likely need to be based on the final outputs 
of the target data analysis.

Although the current work only demonstrates accelerated 
2D and 2D‐SMS dMRI, other acquisition methods like 3D 
multislab should also be compatible with DAGER, provided 
a variable k‐q sampling scheme is incorporated. Recently, 
several studies have demonstrated simultaneous multis-
lab acquisition for dMRI, enabling optimal SNR efficiency 
with shorter scan time.55,56 It is expected the combination of 
DAGER and simultaneous multislab acquisition can achieve 
even higher scan efficiency with improved image quality.

Finally, parallel imaging reconstruction is a mature 
field, with a broad range of techniques from SENSE to 
generalized auto‐calibrating partially parallel acquisition 
(GRAPPA)4,5,40,41,57 and many regularization approaches,6-10 
which can potentially be embedded within the DAGER frame-
work for further improvement, particularly at the limits of the 
current DAGER implementation (e.g., at high acceleration 
or with a reduced number of diffusion directions). However, 
the primary goal of this study is to demonstrate that sharable  
information in q‐space can be leveraged to improve upon  
existing parallel imaging reconstructions. Exploration of how 
well different regularization techniques can take advantage of 
this shared information will be the topic of future work.

6 |  CONCLUSIONS

In this work, we developed a method to accelerate dMRI  
acquisition, which incorporates sharable information between 
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q‐space samples to improve the reconstruction of k‐space 
data. This k‐q reconstruction approach uses GPs to estimate 
and exploit local smoothness without introducing undesira-
ble angular blurring. Results from simulation and in vivo data 
demonstrate the efficacy of the proposed method, particu-
larly for high SMS acceleration with in‐plane undersampling.
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FIGURE S1 Left: An L‐curve shows the data fidelity term 
(‖Au−d‖2

2
) and the regularization term (‖u‖2

2
) for different 

regularization parameters used in the reconstruction of in 
vivo dMRI data. From left to right, the images correspond 
to regularization parameters that are too small (noisy  
images), L‐curve optimal and too large (aliased images). 
The regularization term at the “corner” (�

3
) provides an  

acceptable compromise between the two error metrics, 
which is used for SENSE and SMS‐SENSE reconstruction. 
To achieve minimal aliasing artifacts, a lower regulariza-
tion parameter (�

2
) is used for phase error estimation and 

DAGER initialization. Right: SMS‐SENSE reconstructed 
images with different regularization parameters as shown 
in the L‐curve
FIGURE S2 Effects of k‐q sampling and phase error cor-
rection on DAGER reconstruction of simulated data. Two 
data sets are simulated with R = 6: one containing no phase 
errors and acquired using a fixed k‐q sampling (k‐space 
sampling pattern is identical for all q‐space points); the 
other containing phase errors and acquired using the vari-
able k‐q sampling (different k‐space sampling patterns are 
used within local neighborhood in q‐space). Top row: the 
data set with fixed k‐q sampling but without phase errors is 
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reconstructed using SENSE and DAGER. Bottom row: the 
data set with variable k‐q sampling and simulated phase 
errors is reconstructed using DAGER with and without 
phase error corrections. The ground truth image is shown 
on the left. The difference images are shown next to the 
reconstructed images, which are scaled by a factor of 3,  
except for the bottom right, which is scaled by a factor of 
10. If a fixed k‐q sampling is used, DAGER cannot cor-
rectly recover the image even if it contains no phase errors 
(top‐right). For data with phase errors, DAGER without 
phase error correction contains significant image artifacts 
(bottom left). With the variable k‐q sampling and phase 
error correction, DAGER provides a good reconstruction 
with minor residual artifacts (bottom right)
FIGURE S3 Simulations were performed at different levels 
of added noise (SNR = 6‐60) with undersampling factor  
R = 6 and 128 directions. The noise variance estimated by 
DAGER are indicated by the solid circles. The lines indicate 
reconstruction NRMSE when k‐space noise variance levels 
are fixed in the range �2

test
=(2‐10 ‐ 210)×�2

true
. The NRMSE 

values are averaged over all diffusion directions and the  
binary logarithm is shown here for ease of visualization. As 
shown in the figure, all plots have an area of low NRMSE for 
test noise variances close to the ground‐truth variance �2

true
 

(log2 (�2
test

∕�2
true

) = 0), suggesting that the reconstruction  
fidelity is not overly sensitive to the estimate of this hyper‐ 
parameter, particularly if the true noise variance is low (i.e., 
SNR = 30 and 60). For low SNR data, deviation from the true 
variance by more than a factor of ~3 can lead to a sharp  
increase of reconstruction errors (i.e., SNR = 6 and 10). Most 
importantly, the DAGER enables noise variance estimates 
(solid circles) that provide similar or better NRMSE as com-
pared with the true noise variance, enabling a robust 
reconstruction
FIGURE S4 Reconstruction of in‐plane undersampled data 
acquired from subject 1. The R = 6 data is reconstructed 

with SENSE and DAGER (with and without navigator 
acquisition)
FIGURE S5 Comparison of ROC curves for second fiber 
identification using DAGER(R = 6) data and SENSE(R = 6) 
data. SENSE (R = 3) result is used as a reference. Threshold 
values between 0 and 0.5 (0.01 step size) are tested. The 
ROC curve of DAGER is closer to the upper left corner 
compared with the ROC curve of SENSE, demonstrating a 
greater capacity in capturing second fiber population using 
DAGER
FIGURE S6 Comparison of SMS‐DAGER reconstruction 
(top) and high‐SNR single‐band reference (bottom), gener-
ated by averaging three single‐band data sets (SB‐3ave), in 
subject 4. Four diffusion directions of a transverse slice are 
shown here. The single‐band protocol acquired 21 slices in  
∼33min, whereas the SMS‐DAGER images acquired 84 
slices (whole brain) in ∼11min
FIGURE S7 Reconstruction with 64 diffusion directions 
using SMS‐SENSE and three SMS‐DAGER configurations, 
where smoothness hyper‐parameter a is estimated from the 
data (0.7) and manually set to 1 and π, respectively
TABLE S1 Analysis of fiber orientation estimations based 
on the SB‐1ave data and the SMS‐DAGER data. The SB‐2ave 
data is used as a reference here. The absolute angular differ-
ence tells how much SB‐1ave or SMS‐DAGER data deviate 
from the reference in the estimation of fiber orientations. The 
deviations for these two data sets are compared and tested
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