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Abstract
Current drug development efforts on gastric cancer are directed against several molecular

targets driving the growth of this neoplasm. Intra-tumoral biomarker heterogeneity however,

commonly observed in gastric cancer, could lead to biased selection of patients. MET,

ATM, FGFR2, and HER2 were profiled on gastric cancer biopsy samples. An innovative

pathological assessment was performed through scoring of individual biopsies against

whole biopsies from a single patient to enable heterogeneity evaluation. Following this,

false negative risks for each biomarker were estimated in silico. 166 gastric cancer cases

with multiple biopsies from single patients were collected from Shanghai Renji Hospital. Fol-

lowing pre-set criteria, 56 ~ 78% cases showed low, 15 ~ 35% showed medium and 0 ~

11% showed high heterogeneity within the biomarkers profiled. If 3 biopsies were collected

from a single patient, the false negative risk for detection of the biomarkers was close to 5%

(exception for FGFR2: 12.2%). When 6 biopsies were collected, the false negative risk

approached 0%. Our study demonstrates the benefit of multiple biopsy sampling when con-

sidering personalized healthcare biomarker strategy, and provides an example to address

the challenge of intra-tumoral biomarker heterogeneity using alternative pathological

assessment and statistical methods.

Introduction
Gastric cancer (GC) is one of the most common cancers worldwide, with around half of all
cases occurring in Eastern Asia (mainly China), and is the third leading cause of cancer-related
death worldwide [1]. Although the incidence is decreasing, most GC cases are diagnosed at an
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advanced stage and prognosis of the disease remains poor [2]. The median survival for meta-
static GC is less than one year, while the overall 5-year survival rate is less than 7% [3].

Intra-tumoral heterogeneity is commonly observed in GC. In the 1980’s, de Aretxabala et al
evaluated 222 samples from 37 GC cases and found a mixture of diploid and aneuploid samples
or different aneuploid stemlines in the same case (so called DNA content heterogeneity) in
33% of primary tumors [4]. A similar study by Yonemura et al showed a 69% DNA content
heterogeneity in 65 resected GC samples [5]. Recently, Yang et al evaluated GC samples from
148 patients and found a heterogeneity rate of 79.3% in human epithelial growth factor recep-
tor 2 (HER2) protein overexpression and 44% inHER2 gene amplification [6]. Accordingly,
the high intra-tumoral heterogeneity observed in GC is likely to contribute to treatment resis-
tance and poorer patient prognosis [7, 8], and ultimately represents a considerable unaddressed
problem faced by clinicians, pathologists, and researchers.

Several molecular targets currently feature in either approved drug treatments or promising
therapeutics undergoing clinical development in GC. HER2 plays important roles in the
tumorigenesis of breast cancer, ovarian cancer and gastric cancer [9] and Trastuzumab, a
monoclonal antibody against HER2, has been approved for the treatment of GC [10]. The mes-
enchymal-epithelial transition factor (MET) gene encodes a protein which is the only known
receptor for hepatocyte growth factor (HGF) ligand [11].MET gene amplification and protein
overexpression have been shown to lead to constant activation of the MET signaling pathway
which contributes to tumor growth, angiogenesis and metastasis [12]. Several MET inhibitors
are currently undergoing GC clinical trials, including Savolitinib (Phase 1 (NCT02252913)
[13]) and AMG337 (Phase 2 (NCT02016534)). Similarly, fibroblast growth factor receptor 2
(FGFR2) is also implicated in cell proliferation, differentiation and motility, and amplification
of the FGFR2 gene plays an important role in the tumorigenesis of GC, thereby underscoring
its attraction as drug development target [14–16]. Ataxia telangiectasia mutated (ATM) is a
protein kinase belonging to the phosphatidylinositol 3’ kinase (PI3K) family, and under normal
conditions is activated in response to DNA double-strand breaks [17]. ATM deficiency is
related to a high incidence of tissue malignancies [18–20] and ATM-deficient tumors cells are
sensitive to poly (ADP-ribose) polymerase-1 (PARP) inhibition, a potential target which has
been proposed for the treatment of GC in several previous studies [21–24]. Lynparza, the first
US and European-approved PARP inhibitor targeting BRCA1/2 mutant ovarian cancer, is cur-
rently undergoing a Phase III clinical trial in GC (NCT01924533) and is employing a patient
selection biomarker approach using ATM expression by IHC (publication in press).

In the current era of molecularly targeted drug development, biomarkers are expected to
precisely predict clinical response [25]. High tumor heterogeneity however, may lead to a bio-
marker detection bias if the samples are obtained from a small tumor region rather than the
whole tumor tissue (e.g. surgically resected samples are usually 2 cm x 2cm only). In contrast,
biopsy samples are usually obtained from different regions of the whole tumor and are likely to
be more representative of the patients’ overall biomarker expression status, arguing for their
potential to reduce the impact of intra-tumoral heterogeneity on patient selection bias.

In our study, in order to better evaluate intra-tumoral heterogeneity, we employed surgical
biopsy as our tumor sampling strategy. In addition, we performed an innovative pathological
assessment through scoring of individual biopsies against whole biopsies from single patients.
Herein, we also employed statistical methods to estimate the false negative detection risks
when analyzing finite numbers of biopsies in order to understand the relationship between the
number of biopsies and the risk of selecting a false positive patient for a particular treatment or
inclusion in a clinical trial.
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Materials and Methods

Patient information
Archived GC biopsy samples were collected from 166 patients who received gastroscopy exam-
ination with multiple biopsies from different tumor areas of each patient between 2007 and
2014 at Renji hospital, Shanghai, China. Prior written informed consent was obtained from all
patients and the study protocol was approved by the Renji Hospital Institutional Review
Board. All samples were reviewed by two trained pathologists for GC diagnosis and forty sam-
ples were excluded in the study due to poor tissue quality.

Immunohistochemistry (IHC)
Formalin fixed and paraffin embedded (FFPE) samples were sectioned at 4μm thickness. For
MET staining, a rabbit monoclonal anti-total MET antibody (cMET SP44, Ventana Medical
Systems, AZ, USA) was used and the assay was performed on an automatic stainer (Discovery
XT, Ventana Medical Systems, AZ, USA). ATM staining was performed using a rabbit mono-
clonal anti-ATM antibody (ab32420, Abcam, MA, USA) on an autostainer (Thermo Scientific,
MA, USA). HER2 staining was performed using the HercepTest kit (DAKO, Denmark) as per
the manufacturer’s instructions on an automatic stainer (Discovery XT, Ventana Medical Sys-
tems, AZ, USA).

Fluorescence in situ hybridization (FISH)
The dual-color FISH assay was performed as previously described [26].HER2/CEP17 probes
were purchased from Vysis (IL, USA; Cat. #30–171060).MET and FGFR2 probes were pre-
pared by labelling BAC (CTD-2270N20 and RP11-62L18, respectively) DNA with Red-dUTP
(Enzo Biochem, NY, USA; Cat. #02N23-050), CEP10-Spectrum Green and CEP7-Spectrum
Green probes were purchased from Vysis (Cat. # 32–112010 and # 32–132007, respectively)
and used as internal controls for FGFR2 andMET probes.

Pathology assessment on biopsies
Based on H&E staining, each biopsy with adequate tumor cells (more than 50 tumor cells) was
firstly marked by a pathologist. Then biomarker status including IHC and FISH staining of
MET, ATM, FGFR2 and HER2 were evaluated on each biopsy. Individual scores for each bio-
marker were given to each biopsy (Fig 1).

According to MetMab trial in GC (NCT01662869), for MET IHC staining, a biopsy show-
ing IHC 3+ is defined as positive; for MET FISH, biopsy showingMET gene average copy
number� 5 is defined as positive. Since the ongoing trial for another MET inhibitor,
AZD6094 (NCT02449551), usesMET gene average copy number� 4 as cut off for single agent
treatment arm on GC patients, we further divided the MET FISH negative group into two sub-
groups (MET gene average copy number� 4 and< 5, andMET gene average copy
number< 4). For ATM IHC staining, biopsy showing IHC 0 is defined as negative according
to Olaparib trial (NCT01063517). For FGFR2 FISH, biopsy showing FGFR2 gene amplification
(average copy number� 6) is defined as positive according to trials of AZD4547
(NCT01457846) and dovitinib (NCT01719549). For HER2, biopsy showing HER2 IHC 3+ or
HER2 IHC 2+ plus HER2 gene amplification is defined as positive according to ToGA trial
(NCT01041404).

For MET IHC, MET FISH, FGFR2 FISH and HER2, cases with any of the biopsies showing
positive are defined as positive cases. For ATM IHC staining, cases with all biopsies showing
negative are defined as negative cases.
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Heterogeneity degree assessment
After pathologist’s review, the degree of biomarker heterogeneity was determined according to
the following criteria:

High heterogeneity:< 25% of biopsies with MET IHC 3+,MET gene amplification, ATM
IHC 0, FGFR2 gene amplification, or HER2 positivity.

Medium heterogeneity: 25% ~ 50% of biopsies with MET IHC 3+,MET gene amplification,
ATM IHC 0, FGFR2 gene amplification, or HER2 positivity.

Low heterogeneity:�50% biopsies with MET IHC 3+,MET gene amplification, ATM IHC
0, FGFR2 gene amplification, or HER2 positivity.

For MET IHC, MET FISH, FGFR2 FISH, and HER2 positivity, the mean percentages of pos-
itive biopsies in an individual case among the positive cases were calculated. For ATM IHC,
the mean percentage of ATM IHC negative biopsies in an individual case amongst cases with
at least one ATM negative biopsy was calculated. The 95% confidence intervals of the above
mean values were assessed by bootstrapping.

False negative detection risk assessment
For each biomarker and a predefined number of biopsies n (0< n<maximum number of
biopsies from a sample), all possible scenarios of choosing n biopsies from each sample and

Fig 1. Pathological assessment of biomarker status on each individual biopsy. This is an example case which shows the individual score given to each
biopsy for each biomarker. In addition, the figure also shows the heterogeneity of biomarker status between different biopsies in the same case.

doi:10.1371/journal.pone.0143207.g001
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making a determination of the biomarker’s status for the sample based on the n chosen biopsies
were generated computationally.

Based on the scenarios enumerated above, the risks of false negative detection were assessed.
For MET IHC, MET FISH, FGFR2 FISH, and HER2 positivity, the risk of false negative detec-
tion with n biopsies from each sample was defined as the expected number of the ratio between
the number of positive samples that have negative detection results with n biopsies and the
total number of positive samples. For ATM IHC, the false negative detection risk with n biop-
sies from each sample was defined as the expected value of the ratio between the number of
non-negative samples with all negative biopsies with n biopsies from each sample, and the total
number of ATM non-negative samples.

All computations were exact except ATM IHC with one biopsy from each sample because
of the extremely large number of possible scenarios. For ATM IHC with one biopsy from each
sample, the risk of false negative detection was estimated by taking a random subset of 30 non-
negative samples without replacement at a time, computing the risk of false negative detection
in the subset, repeating the process 22,000 times and taking an average of the risks of false neg-
ative detection from the 22,000 random subsets. In addition, the 95% Confidence Interval of
this estimated risk was reported.

Results

Overview of GC biopsy numbers in clinical samples
In this cohort, the number of biopsy samples from a single patient ranged from 1 to 9, with the
median of both total and positive biopsies (with tumor cells) at 4. The positive biopsy numbers
were slightly less than the total biopsy numbers. Cases with 3~4 and 5~6 positive biopsies
accounted for 47% and 25% respectively of all the samples collected (Fig 2).

Heterogeneity degree and false negative assessment
In the 18 MET IHC positive cases (Fig 3A), 61% of the cases showed low heterogeneity, while
33% showed medium and 5.5% showed high heterogeneity. The mean percentage of MET posi-
tive biopsies in an individual case amongst those 18 positive cases was 65.78% (95% CI:

Fig 2. Overview of biopsy number in clinical samples. (A) Distribution of total and positive biopsy number. In this Chinese GC cohort, total biopsy
numbers range from 1 to 9, with a median of 4. Positive biopsy (biopsy with tumor) is slightly lower than total biopsy number. (B) Distribution of positive
biopsy number.Majority of biopsy numbers fall into 3~4 (47%) and 5~6 (25%).

doi:10.1371/journal.pone.0143207.g002
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52.14%–79.60%). The MET false negative detection rate was estimated at around 3.39% with 4
biopsies and approached 0% when sampling 6 biopsies (Fig 4A).

In the 13 MET FISH positive cases (Fig 3B), 77% of the cases showed low heterogeneity,
while 15% showed medium and 8% showed high heterogeneity. The mean percentage of MET
FISH positive biopsies in an individual case amongst those 13 positive cases was 74.05% (95%

Fig 3. An illustration of heterogeneity distribution of each biomarker. Heterogeneity distribution of MET protein expression (A),MET average gene copy
number (B), ATM protein expression (C), FGFR2 amplification (D), and HER2 positivity (E). AMP: amplification. AVG: average copy number.

doi:10.1371/journal.pone.0143207.g003
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CI: 57.53%–89.10%). The MET FISH false negative detection rate was estimated at around
3.30% with 4 biopsies and approached 0% when sampling 7 biopsies (Fig 4B). In addition, sig-
nificant correlation was found between MET IHC score and MET FISH results (p< 0.01, κ =
0.62, Fisher’s exact test)

Fig 4. Risk assessment against different biopsy numbers in each biomarker. The risks of false negative detection along with different biopsy numbers in
MET IHC (A), MET FISH (B), ATM IHC (C), FGFR2 FISH (D), and HER2 (E). Note: *Estimated by resampling, 95% CI: 7.5%–20.94%.

doi:10.1371/journal.pone.0143207.g004
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In the 58 cases with at least one ATM negative biopsy (Fig 3C), 62% of the cases showed low
heterogeneity, while 35% showed medium and 3.6% showed high heterogeneity. The mean
percentage of ATM IHC negative biopsies in an individual case amongst those 58 cases was
63.07% (95%CI: 54.93%–71.39%). The ATM IHC false negative detection rate was estimated at
around 0.19% with 4 biopsies, and approached 0% with 5 biopsies (Fig 4C).

In the 9 FGFR2 FISH positive cases, 56% of the cases showed low heterogeneity, while 33%
showed medium and 11% showed high heterogeneity (Fig 3D). The mean percentage of
FGFR2 FISH positive biopsies in an individual case amongst those 9 positive cases was 56.30%
(95%CI: 36.85%–76.85%). The FGFR2 FISH false negative detection rate was estimated at
around 3.70% with 4 biopsies and approached 0% with 6 biopsies (Fig 4D).

In the 32 HER2 positive cases, 78% of the cases showed low heterogeneity, while 22%
showed medium heterogeneity and none of the cases showed high heterogeneity (Fig 3E). The
mean percentage of HER2 positive biopsies in an individual case amongst those 32 positive
cases was 75.16% (95%CI: 65.88%–85.11%). The HER2 false negative detection rate was esti-
mated at around 0.21% with 4 biopsies and approached 0% with 5 biopsies (Fig 4E).

Discussion
Intra-tumoral biomarker heterogeneity has long been an issue in the selection of patients for
clinical trials and therefore, understanding tumor heterogeneity is crucial to the successful
deployment of a personalized healthcare biomarker (PHB) strategy. However, few studies have
so far addressed this problem and there is no standardized strategy in measuring the degree of
tumor heterogeneity. In this study, we took a novel approach by scoring each individual biopsy
and calculating the level of heterogeneity within each case. Our results showed that high levels
of heterogeneity were only found in 0 ~ 11% of the positive (or negative for ATM) cases, while
most positive cases (56% ~ 78%) showed low heterogeneity, indicating a relatively low level of
heterogeneity for our selected biomarkers in this cohort of GC cases.

In addition, we also performed false negative assessments for each biomarker to estimate
the false negative rates associated with collecting various numbers of biopsies. Results showed
that when 3 or more biopsies were collected, the false negative risks were close to 5% for all
tested biomarkers (7.14%, 5.16%, 0.86%, and 1.41% respectively for MET IHC, MET FISH,
ATM IHC, and HER2). This number (3–4 biopsies) is roughly equivalent to the average num-
ber of biopsies collected in clinical practice for this cohort and as such, indicates the relatively
low false negative risk associated with these biomarkers in our cohort. One exception that
FGFR2 FISH showed a higher false negative rate (12.2% false negative rate for 3 biopsies),
could be due to the limited FGFR2-positive sample size (9 positive samples). When a total of 6
biopsies were collected from a single patient, the false negative risk for MET, ATM, FGFR2 and
HER2 approached 0% in this cohort. These results provide an example of how increasing
biopsy numbers could be used to address the challenge of biomarker heterogeneity in deploy-
ing clinical patient selection approaches.

Considering the importance of accurate patient selection in clinical trials, we firmly believe
that adequately addressing biomarker heterogeneity is critical to success. For example, MetMab
showed a significant improvement in both progression-free survival (2.9 vs. 1.5 months) and
overall survival (12.6 vs. 3.8 months) [27] in a phase 2 trial (NCT01590719) however, this
improvement did not successfully transfer to the phase 3 setting (NCT01662869). Notably, MET
protein overexpression (by IHC) was selected as a patient selection criteria [28]. Although still an
issue of debate, it is possible that the promise of MetMab in phase 2 but its failure in phase 3 was
at least in part a consequence of tumor heterogeneity, and an inability of the patient selection
strategy (IHC) to robustly address the challenge of intra-tumoral heterogeneity in GC.
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Finally, we have also compared the positivity rate (or negativity rate for ATM) of the bio-
markers detected in this cohort of biopsy samples with the surgical samples from our previous
studies (Table 1). With the exception of ATM, both biopsy and surgical samples were collected
from the same local hospital. Results showed that although positivity rates are higher (for
ATM, negativity rates are lower) in biopsy samples, the overall results in biopsy samples were
similar to surgical samples. This increase in positivity rate (or decrease in negativity rate for
ATM) is likely explained by the detection of positive cases using multiple biopsies which were
missed using previous sampling strategies (ie. surgical resections).

Taken together, this study has addressed the challenge of tumor heterogeneity from an
innovative angle by using biopsies as the tumor sampling approach and giving individual bio-
marker scores to each biopsy. Our results show a relatively low level of heterogeneity across the
biomarkers analyzed in this cohort. Nevertheless, the degree of heterogeneity within other
patient cohorts may be different and should be analyzed on a case-by-case basis. Furthermore,
our results showed a decrease in the rate of false negative detection corresponding with an
increase in the biopsy number for all biomarkers tested herein, demonstrating the benefit of
multiple biopsy sampling and serving as an example of addressing intra-tumoral heterogeneity
using statistical methods.
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