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Abstract: In the present paper, an iterative technique devoted to reproducing efficient footprints with
arbitrary boundaries for planar arrays is addressed. The methodology here depicted is based on
exploiting the nature of the continuous aperture distribution by expressing it as a Fourier series of
moderately high orders. In this manner, the resulting illumination boundary is defined by a target
three-dimensional flat-topped pattern composed of stretching and shrinking modified circular Taylor
patterns and the maximum order of the series to obtain a good reconstruction is determined by means
of the iterative process. Examples and comparisons with the previous literature were conducted by
analyzing square and rectangular contoured beams as test cases. Additionally, interesting potentials
regarding space applications from a geostationary satellite are outlined by means of the EuTELSAT
(European Telecommunications Satellite Organization) European coverage case study. In such a
way, its numerical approach was analyzed by including subarray architectures and discussing
improvements about dynamic range ratio of the excitations without critical power losses within the
illumination region.

Keywords: antenna arrays; pattern synthesis; footprint patterns

1. Introduction

In order to generate an efficient footprint pattern from a planar array antenna mounted
on a geostationary satellite, the number of radiating elements of the antenna should be
minimized, while the shape of the radiation pattern fits some desired bounds. Thus, the
importance of a well-defined covering region relies on the ability to avoid non-desired
interferences with other signals, as well as to improve the flexibility and minimize costs
of the feeding network mounted on the space vehicle. A valid approach for reducing
the number of radiating elements can be developed by means of the use of subarrays.
Focusing on this last strategy, an increase in both mobility and simplicity of the radiating
system can be achieved, while fewer radiating elements are needed at the expense of
provoking the appearance of undesired moderately high lobes in the power radiation
pattern (grating lobes).

Several years ago, an efficient procedure which represents a generalization to arbitrary
footprints of the Elliott–Stern method [1] was devised by Ares et al. [2]. That technique
exploits the synthesis of a stretched pure-real continuous aperture based on the modified
circular Taylor methodology produced by setting as radius a value which is inversely pro-
portional to the flat-top beamwidth boundary. In such a way, it discretizes the continuous
aperture distribution by means of the strictly needed number of elements to reproduce the
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pattern (by dismissing the array elements outside of the boundary). This procedure has
been implemented as input of an optimization based on the Fletcher–Power method [3],
necessary to improve the results in terms of side lobe level (SLL). More concretely, reduc-
tions from −11.27 dB to −20 dB have been reported for an initial Taylor pattern with a
nominal SLL of −25 dB. At the same time, it is worth highlighting the problems of the
methodology with reproducing a footprint which perfectly fits the square contour of the
main beam, because of the use of the zero order of the Bessel function of the first kind, some-
thing which is based on the ϕ-symmetry of the contributions to the pattern description.
Attempts to improve the efficiency of antenna arrays obtained with this procedure have
been reported in [4], where a strategy of deleting elements with low-amplitude excitations
has also been developed. In that manner, this technique achieves significant reduction in
the number of excited elements, the cost, and the dynamic range ratio (|I|max/|I|min) of
the antenna array excitations for square and elliptical footprint patterns.

Reinforced improvements on the planar array performance for reproducing arbitrary
footprint shapes have been analyzed by two works [5,6] exploiting the concept of spread-
ing out real collapsed distributions [7]. More precisely, a process involving a simulated
annealing algorithm [8] has been proposed in [5] for overcoming the problem of sticking
in local minima (in contrast to the Fletcher–Power method), while a solution by means of
singular value decomposition of an over-determined system of equations (involving more
angular cuts for improving) has been proposed in [6].

Further descriptions on arbitrary footprint reconstructions from planar arrays have
been analyzed in [9], where a method based on perturbing the bi-dimensional Woodward–
Lawson technique [10] has been proposed.

The attempt made in [11] is also remarkable, proposing a control of shaped-beam
patterns obtained from a uniform aperture amplitude and only adjusting the relative
phases. At the same time, a technique which introduces complex excitations distributions
into the problem of arbitrary footprint pattern reconstruction is reported in [12]. With a
similar aim, a procedure exploiting the ϕ-symmetry by dividing the circular aperture in
angular sectors and synthesizing different excitation distributions for each one using a set
of Taylor roots is discussed in [13]. Phase-only control methods are also addressed in [14],
where it allows the reconstruction of the radiation pattern with planar reflect arrays of a
huge number of elements.

Another approach based on a two-stage technique for generating a precise footprint
is proposed in [15]. In this work, a continuous aperture distribution that approximates
the generation of a desired footprint pattern by a Fourier series is then sampled and their
elements excitations are involved within a simulated annealing optimization for improving
its performance. In the same line of the previous work, an efficient method for the synthesis
of footprint patterns that combines Hankel transformation with Fourier analysis following
angle-dependent homothesis (i.e., radial stretching and/or shrinking) of an axisymmetric
Elliott–Stern pattern for a circular aperture is reported in [16].

In order to improve the precision of the reproduction of a desired footprint pattern
obtained by a planar array, a two-stage array synthesis process in which an optimization of
the array boundary is followed by an optimization of the elements excitations is depicted
in [17]. For the improvement in scenarios with hundreds or thousands of elements, an effi-
cient combination of the Woodward–Lawson and Orchard–Elliott–Stern roots optimization
procedures [18] is suggested in [19].

Another alternative referred to in the literature [20] is based on a quasi-analytical
synthesis of moderate and large arrays, which proposes the shaping of a desired footprint as
a composition of severalϕ-symmetric circular Taylor patterns exhibiting flat-topped beams.
In this same spirit, a method which synthesizes the desired footprint as a composition of
a set of circular Taylor patterns appropriately weighted with the samples of the pattern
obtained after angle-dependent homothesis of a continuous circular aperture distribution
developed by the Elliott–Stern method is proposed in [21].
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Additionally, previous studies in the body of the knowledge, which also face the
generation of footprint patterns, can be highlighted. More precisely, works as [22] describe
two approaches for generating flat-top footprint patterns: the first one deals with array
patterns required to have equal phase in all directions of the shaped region, while the second
one is suitable for patterns without phase requirements and formulated by means of a
nonlinear problem. In other works, collapsed distributions can also be applied to arbitrarily
chosen grids, as shown in [23], where a hexagonal-shaped antenna is implemented (without
imposing the limitation of quadrantal symmetric beam patterns). A convex optimization
based on a beam pattern synthesis method with antenna selection has been proposed in [24].
This method can achieve a main lobe and side lobes of arbitrary beamwidth and response
ripple level. On the other hand, a technique based on an iterative algorithm devoted
to optimizing the excitation of each radiating element by applying convex optimization
is described in [25]. Despite the algorithm being simple and fast, it does not guarantee
reaching the optimal result.

The aim of this paper is to develop a new technique, consisting of the reconstruction
of a desired footprint pattern by addressing an iterative refinement of the continuous
aperture distribution devoted to generating this theoretical target pattern by means of
its expression as a Fourier series. The present method overcomes the performance of
the method described in [2], since it exploits the general Fourier series expression of the
aperture distribution and shares the same strategy to select the array elements for sampling
the continuous aperture distribution.

As it is reported in the present work, this method enables the modification of the
originalϕ-symmetric-shaped pattern onto a desired contour. In the present paper, advances
of the conventional deterministic array pattern synthesis strategies are highlighted in terms
of optimality of the array antenna shape according to the required specifications and
contour of the desired footprint. In order to illustrate the performance of the technique
for space application purposes, the contour of continental Europe is addressed. In such a
way, the design here analyzed concerns the EuTELSAT (European Telecommunications
Satellite Organization) W2A WideBeam European coverage requirements [19–21,26], where
a well-fitted optimized footprint of a shaped-beam pattern is obtained by reproducing
the Fourier coefficients of a target illumination footprint, composed by different scaled
ϕ-cuts of an initial flat-topped pattern. Considering the efficiency of the antenna, the
dynamic range ratio is reduced by eliminating non-crucial radiating elements [2,4] (those
with low amplitude excitations) and by implementing strategies including subarrays [21].
In this last case, it is worth mentioning that, due to the spacing between the different
subarrays, undesired grating lobes appear in the resulting radiation pattern, but they are
inconsequential since they are generated at angular levels out of the illumination range of
the Earth from a geostationary (GEO) satellite point of view.

2. Materials and Methods

Let us consider a practical application of a planar array, where a certain boundary
condition in terms of illumination (for instance, the coverage of certain region on Earth)
must be achieved. In this manner, the pattern is constrained to fit a particular shape. For
this scope, implementation of a three-dimensional main beam with ϕ-dependence on the
radiation far-field pattern shape becomes mandatory. In such a way, a solution in terms of
a generalization of the technique developed by Taylor can be proposed, something in line
with previous works in the literature [15,16,20,27].

Therefore, let us analyze an extension of circular Taylor distributions developed by
Elliott and Stern [1]. According to this, the expression for producing a flat-topped beam
from a pure real continuous distribution (although in [28] a multiplicity of solutions have
been recently described, among all the solutions presented, just one of them represents the
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pure real approach of the aperture function and coincides with the one described in [1]) is
given by

F(u) = 2
J1(πu)

πu

M
∏

n=1

[
1− u2

(un+jvn)
2

]
×
[

1− u2

(un−jvn)
2

]
n−1
∏

n=M+1

[
1− u2

(un)
2

]
n+M−1

∏
n=1

(
1− u2

γ2
1n

) . (1)

where γ1n is the n-th root of the first order Bessel function of the first kind J1(πu), n the
transition parameter (which defines the number of controlled side lobes of the pattern
produced by the Taylor method), u = (2a/λ) sin θ and a the radius of the circular boundary
of the aperture. The complex numbers un ± jvn are the modified roots of the uniform
function J1(πu)/πu necessary for providing a flat-topped beam pattern with controlled
SLL and ripple level. In this framework, the ϕ-symmetry of the function was proposed as
the initial assumption made by Taylor.

Previous works introduced a modified version of this Taylor technique by stretching
this pure real-continuous aperture. More precisely, Ares et al. [2] proposed to synthesize a
distribution with a boundary that is inversely proportional to the flat-top beamwidth on
each ϕ-cut.

In the present case of study, the first stage of the methodology concerns generating
a continuous aperture distribution K(ρ, β) addressing its theoretical relation with the far
field radiation pattern. In the framework of this reconstruction, we can express the far field
pattern as a Fourier series in ϕwith coefficients

F(u, ϕ) =
+∞

∑
n=−∞

ejnϕFn(u). (2)

Thus, in accordance with the aim of the present paper, a function F(u, ϕ) can be
composed by means of a combination of circular Taylor patterns (1) presenting different
effective radii. More precisely, as is well-known, one can reproduce a footprint by adapting
the radius of a certain pattern depending on the ϕ angle.

Therefore, the above-mentioned coefficients can be calculated, by means of a regular
Fourier inversion of (2), as

Fn(u) =
1

2π

∫ π

−π
F(u, ϕ) e−jnϕdϕ. (3)

These coefficients can be expressed by means of the aperture distribution for each
angle by the transformation [7]

Fn(u) =
∫ π

0
pgn(p)Jn(up)dp. (4)

where

g0(p) =
2

π2

∞

∑
m=0

F(γ1m)J0(γ1m p)
J2
0 (γ1mπ)

(5)

and

gn(p) = −
(

2
π2

) ∞

∑
m=1

Fn(γnm)Jn(γnm p)
Jn−1(γnmπ)Jn+1(γnmπ)

n 6= 0. (6)

where p = πρ/a and generally γmn correspond with the m-th zero of the n-th order Bessel
function of the first kind Jn(πγmn) = 0.
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Therefore, once gn(p) is obtained, the planar aperture distribution can be determined
through the Fourier series [7] as

K(ρ, β) =
+∞

∑
n=−∞

Kn(ρ)ejnβ, (7)

where each coefficient term of the series can be expressed as

Kn(ρ) =
π

2a2 (j)−ngn(p). (8)

Although these series generally do not truncate since their coefficients are obtained by
means of (3), adopting a pattern composed from different scaled two-dimensional modified
circular Taylor patterns (by means of their radii) for each one of its cuts, one can expect that
they converge rapidly for practical apertures [7]. Based on this idea, an iterative process
in which the performance of the method is evaluated by means of the reconstruction of
the final far-field radiation pattern and a flowchart of the process is reported in Figure 1.
Initially, the method determines the Fourier coefficients of the target function F(u, ϕ) by
means of (3) up to a predetermined maximum number of orders NF

max (in all cases, a good
performance was achieved by setting this value to 50) by truncating the series. Then,
through the iterative process depicted in Figure 1, the maximum NK

max order for obtaining
a good reconstruction through the aperture series (7) is determined by analyzing the results
obtained after discretizing the aperture through the planar array with a rectangular lattice.
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Figure 1. Conceptual flowchart of the procedure for synthesizing a certain footprint pattern.

In this manner, the method described here represents an advance on the previous
work devised in [1], since it represents a generalization to upper orders of the Fourier
series in which the K(ρ, β) is determined (7). In order to illustrate the performance of the
iterative process, the different results attending different maximum orders of the aperture
distribution series to be discretized will be shown in the results section.
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The second stage of the numerical method corresponds to a discretization of the
obtained aperture distribution. Thinking about improving the development of this sub-
process and based on the work of Hodges et al. [29], a rectangular layout of elements
which fits the required aperture shape is sampled by performing an integrated strategy
for obtaining the excitation coefficients. The sampling process here developed can be
illustrated by means of Figure 6.14 in [7] or Figure 2 in [29]. Therefore, the excitation
currents of the array factor can be obtained, and the expression of the array factor can be
determined by means of

F(θ, ϕ) =
Nelem

∑
l=1

Ilejk[xl u(θ,ϕ)+yl v(θ,ϕ)]. (9)

where Nelem is the total number of elements of the array; Il are the relative excitation
amplitudes obtained by the Hodges method [29]; k is the wavenumber; (xl , yl) are the
Cartesian coordinates of each array element; u(θ, ϕ) = sin θ cos ϕ; and v(θ, ϕ) = sin θ sin ϕ
where θ and ϕ are the elevation and azimuthal angle, respectively.

In the particular case of the square contour, and for developing a fair comparison
with the performance of the previous work of Ares et al. [2], octant symmetry in (9) was
imposed. Therefore, the expression of the array factor of the square lattice can be modeled
by expressing the array factor through the simplified expression for quadrantal symmetry
as F(θ, ϕ) = 4∑Md

m=1 ∑Nd
n=1 Imn cos[kxmu(θ, ϕ) + kynv(θ, ϕ)] where Md and Nd are the limits

of the number of elements in the x-axis and y-axis, respectively. In such a way, the octant
symmetry can be guaranteed by imposing Inm = Imn for the elements inside the mandatory
boundary for generating a square contoured beam pattern. Otherwise, the elements out of
the aperture boundary limits are switched off.

As shown in [2], the planar aperture necessary for generating a footprint pattern
whose contour fits a square boundary results in a quatrefoil-shaped aperture distribution,
since it is the shape which fits the flat-top beamwidth. Thus, as the first approach to
the square contoured performance, a comparison with the work of Ares et al. [2] was
conducted. Then, a generalization to arbitrary shapes of the three-dimensional pattern is
conducted and even cases which present a clear asymmetry on the antenna array factor
expression are addressed. Therefore, a rectangular boundary is included by generalizing
the method to a custom shape as input. Finally, a numerical application concerning the
illumination of continental Europe from a geostationary satellite was analyzed.

Additionally, in all cases, the element factor of a dipole above a ground plane [7,30] is
introduced in order to analyze the impact of a real element within the planar array. In such
a way, Figure 2 shows a sketch of the proposed implementation. The dipoles are center-fed
and have a length of 0.495 λ (for preventing contacts overlapping at 0.5 λ spacing). These
dipoles are placed at a distance of λ/4 in front of a large conducting plane, and radiation
occurs into the half space z > 0.
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3. Results

In line with the developments reported in the previous section, different results re-
garding the performance of the methodology will be analyzed in the following subsections.
As first step, a comparison with a previous technique of the literature [2] is addressed by
evaluating the performance of the present study and comparing it with the performance of
a stretched aperture distribution g0 for modified Taylor patterns depending on the ϕ-cut
for producing a general g(ρ, β) with a boundary ρmax(β).

Then, a generalization to arbitrary boundary shapes is developed by adjusting the
radius to each pattern cut and without imposing any type of symmetry of the pattern.

As an initial pattern to compose all the footprints, a pure-real flat-topped beam pattern
by means of (1) and with SLL = −25 dB, n = 6 and M = 2 (as in the Elliott–Stern
example [1]) was selected. The pattern is illustrated in Figure 3.
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Figure 3. Shaped pattern with a ripple level of ±0.5 dB and SLL = −25 dB, generated by a
pure-real distribution.

This type of shaped pattern was set according to comparison issues following previous
works in the literature. It is worth highlighting that other examples of shaped-beam patterns
could be also addressed in this development: examples with more or less ripple cycles in
the main beam region. However, regarding this idea, in case of a higher number of cycles,
an extreme variability of the continuous aperture distribution was proven and, therefore,
more problems regarding dynamic range ratio (|I|max/|I|min) on the resulting discretized
antenna can be pointed out. Otherwise, cases presenting just one ripple cycle were tried
and they will force the appearance of smoother slopes in the transition phase of the shaped
pattern by provoking an enlargement of the width of the main beam region. Additionally,
continuous aperture distributions based on complex variables, as in the example discussed
by Elliott and Stern in [31], or the entire multiplicity of solutions reported in [28], can be
involved in the present methodology, but the initial footprint related to these studies would
be complex. In such a way, the coefficients of the Fourier series obtained by means of the
method will present a phase value compatible with a circular boundary. Therefore, higher
ripple levels due to these limitations of the methodology in managing the pattern phases
can be expected.

3.1. Square Footprint: Quatrefoil Shape of the Antenna

Let us consider the same test case analyzed in [2], with a square footprint of 40◦ × 40◦

approximately (i.e., with a continuous aperture radius of a = 6λ). Therefore, as the first step
of the methodology, the same quatrefoil shape proposed in this work was implemented. In
the following sections, the different results which characterize the solution are analyzed.

3.1.1. Reconstruction of the Far-Field Pattern by Means of the Fourier Series

In order to check the performance of the methodology and to set the maximum
order required to guarantee good pattern reconstruction, the radiation pattern F(u, ϕ),
reconstructed by means of the Fourier series with NF

max = 50, is reported in Figure 4. A
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pattern with a ripple level of ±0.52 dB and SLL = −24.52 dB is obtained. At the same time,
it is worth highlighting how the pattern function reproduces the square contoured shape,
not only in the region of emission, but also in the side lobe region where the pattern nulls
are arranged in a square shape as well.
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set at −25 dB;

3.1.2. Convergency Study of the Results. Performance of the Method

To illustrate the performance of the iterative method described here, results regarding
the different iterations on the maximum order reached by the approximated Fourier series
of the aperture distribution are reported in Figure 5. It can be noted how the methodology
starts from an almost circular shape of the footprint (at n = 0) and then, by adding more
orders to the series (more precisely, in case of a square contour, only the order proportional
to four has no null contribution to the iterative process), the technique improves the shape
of the resulting pattern to finally reproduce the required footprint (as can be seen in the
flowchart illustrated in Figure 1). Regarding the three final steps of the iterative process,
SLLs of−21.47 dB,−22.31 dB and−22.96 dB can be referred to, as well as the improvement
in terms of ripple level, which falls from ±0.78 dB to ±0.75 dB and finally to ±0.71 dB.

3.1.3. General Results of the Iterative Method

In this section, a description of the results of the iterative method is provided. In
particular, the resulting pattern (reported in Figure 6) was reached by expressing the
aperture by means of a Fourier series with maximum order NK

max = 20 and refers to a
ripple level of ±0.71 dB, SLL = −21.96 dB and a directivity of D = 13.96 dBi. In this final
result, it can be confirmed how the array antenna pattern nulls are arranged in a square
contour (confirming the behavior of the reconstructed pattern reported in Section 3.1.1)
not only in the main beam region but also in the region of the sidelobes. This fact gives
an idea about how this technique outperforms the methodology envisaged in [2], which
presents a shape for the region of side lobes with circular symmetry. The planar array
antenna presents 49 elements in the first octant, i.e., a total number of 368, which present a
dynamic range ratio (DRR = |I|max/|I|min) of 2633 (see Figure 7).
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In order to understand the improvements of the present methodology by means of the
fitted shape of the resulting array, it is worth highlighting that, for a conventional square
grid and a square boundary, 576 elements would be necessary to produce the pattern.
On the other hand, considering a circular boundary, 448 elements would be necessary.
Therefore, for the particular case of the quatrefoil shape of the antenna, a relative decrease
of −36.10% and −17.86% could be reported, respectively.

In addition to the advances in performance reported by the present methodology, an
alternative path of improvement to the work developed by Ares et al. [2] can be performed
by increasing the order of the aperture distribution discretized by means of (6) in [2]. More
precisely, the technique implemented by Ares et al. reports a pattern with SLL = −11.27 dB
and a ripple level of ±0.715 dB. Then, by increasing the orders of the aperture distribution
and adding four iterations, a resulting pattern with SLL = −21.95 dB and a ripple level
of ±0.71 dB is generated. Therefore, an improvement of the results by means of the
introduction of the present iterative strategy in the description of the aperture distribution
in [2] can be highlighted.

Furthermore, to understand the impact of the inclusion of a real radiating element
in the array structure, the case sketched in Figure 2 was introduced. In such manner,
the directivity level of the case was raised up to 14.02 dBi and the SLL and ripple level
were slightly improved to −22.03 dB and ±0.70 dB. Therefore, little improvements of the
performance of the array pattern can be outlined.

In order to understand the effective dimensions of this antenna regarding the different
antenna pattern cuts, the collapsed distributions at three different angular cuts (0◦, 26.57◦,
and 45◦, in the same spirit of [5,6]) are reported in Figure 8. In such a way, the reader
can be aware of the effective size of a planar array, which (at some angles) is greater
than the real size of the antenna. This development will give an idea about the essential
number of elements necessary to reconstruct a certain footprint from a planar array antenna.
For instance, the case at 45◦ represents the greatest expression of the above-mentioned
misalignment between the real and the effective size of the antenna. More precisely, the
geometrical limitations of the planar array established by the quatrefoil boundary at this
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ϕ-cut is approximately 4.24λ, while, analyzing the collapsed distribution at this same cut,
an equivalent linear array with a semilength of 5.25λ is reported.
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of the cuts.

On the other hand, thinking about a practical application of this shape, it could be
used to reconstruct a pattern devoted to fit a square footprint of a very restrictive size
such as 1◦ × 1◦ for instance (something which could be interesting for certain limited
regions present on Earth, as the central region of the Iberian Peninsula, because it roughly
approximates such a region). In such case, it is worth highlighting that the required
antenna array for this scope becomes unfeasible in practice. The idea for understanding
this proposal as non-realizable is based on the reason that it would need 71,108 radiating
elements per octant (i.e., around 568,000 elements for the entire array antenna).

3.2. Generalization to Different Footprint Shapes: Rectangular Boundary

In order to address different footprint shapes, a process devoted to modifying the
radius of each aperture distribution for generating the pattern on each angular cut for
obtaining the required beamwidth was developed. In such a way, a rectangular footprint
with dimensions of 20◦ × 40◦ was addressed to illustrate the performance of the method.

3.2.1. Reconstruction of the Far-Field Pattern by Means of the Fourier Series

As initial check for the performance of the methodology, the radiation pattern F(u, ϕ)
reconstructed by means off the Fourier series with NF

max = 50 is reported in Figure 9, as
well as for the square contoured beam. Here, a pattern with a ripple level of ±0.53 dB and
SLL = − 24.02 dB is obtained. Again, it is worth highlighting that also in this example
the pattern nulls respect the rectangular shape imposed by the design, something which
supports the precision of the method for reconstructing the footprint.
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3.2.2. Convergency Study of the Results. Performance of the Method

For illustrating the performance of the method in the case of a rectangular footprint
of 20◦ × 40◦, different improvement steps obtained in the iterative process are shown in
Figure 10. It is worth highlighting that in case of the rectangular boundary, the orders
which represent a contribution different from zero are the ones proportional to two. It can
be noted that, by adding more orders to the aperture distribution series, the technique
improves the shape of the resulting pattern and, finally, it is capable of reproducing the
required footprint (confirming, as well, the reasoning devised by means of the flowchart
of Figure 1). Regarding the two final steps of the iterative process, SLLs of −22.65 dB and
−22.79 dB are outlined, as well as the improvement in terms of ripple level falling from
±0.85 dB to ±0.83 dB.

3.2.3. General Results of the Iterative Method

In this section a description of the results of the iterative method is provided. In
particular, the resulting pattern (reported in Figure 11) refers to a ripple level of ±0.83 dB,
SLL = −22.79 dB, a dynamic range ratio of 289 and D = 32.03 dBi. The resulting array
antenna has a maximum radius of 12.5λ and a maximum order of 36 set for the aperture
series. Additionally, in this case, as in Section 3.1.3, it is interesting to point out that the
nulls presented in the antenna array pattern are arranged in a rectangular contour. Thus,
these nulls are arranged following the same distribution of the nulls in the main beam
region, as well as in the reconstructed pattern by means of the Fourier series (Figure 9),
confirming the behaviour of the pattern reconstructed in Section 3.2.1. These results prove
the precision of the present methodology regarding a target pattern reconstruction.
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Regarding comparisons with planar arrays obtained by conventional techniques, in
front of the 1044 elements obtained by the method, 1200 elements can be reported in
case of imposition of a rectangular boundary which fits the problem, and 1976 would
represent the number of elements to address in the case of a circular boundary. There-
fore, decreases regarding the percentage of elements of −11.67% and −47.17% can be,
respectively, highlighted.

Additionally, by including an element factor of a center-fed dipole with a length of
0.495 λ and placed at a distance of λ/4 above a ground plane (see Figure 2), a slightly
better level of performance can be highlighted. More precisely, a directivity level of
32.13 dBi (+0.10 dBi), an SLL of −22.03 dB (−0.07 dB), and a ripple of ±0.70 dB (−0.01 dB)
are reported.

In this framework, the layout of the antenna and the obtained shape of the distribu-
tion are reported in Figure 12, where its amplitude values are shown. In this case, the
obtained distribution is pure-real, since a pure-real far field pattern was used as an input of
the method.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 22 
 

 

 
 

  
(a) (b) 

Figure 11. Reconstructed pattern for the case of a rectangular boundary of 20 40  by means of a discretized array 

antenna: (a) interpolated image with a threshold level set at 50 ;dB−  (b) surface plot with a threshold level set at 25 .dB−  

Additionally, by including an element factor of a center-fed dipole with a length of 
0.495 λ and placed at a distance of λ/4 above a ground plane (see Figure 2), a slightly better 
level of performance can be highlighted. More precisely, a directivity level of 32.13 dBi 

(+0.10 dBi), an SLL of −22.03 dB (−0.07 dB), and a ripple of ±0.70 dB (−0.01 dB) are re-
ported. 

In this framework, the layout of the antenna and the obtained shape of the distribu-
tion are reported in Figure 12, where its amplitude values are shown. In this case, the 
obtained distribution is pure-real, since a pure-real far field pattern was used as an input 

of the method. 

 

 
 

 
(a) (b) 

Figure 12. Discretized array antenna which generates the pattern of Figure 11: (a) antenna array configuration (the red 
dots represent the elements switched ON) within a rectangular lattice and for a maximum radius of 12.5 λ. (b) Normalized 
excitation currents of the array antenna. 

Figure 12. Discretized array antenna which generates the pattern of Figure 11: (a) antenna array configuration (the red
dots represent the elements switched ON) within a rectangular lattice and for a maximum radius of 12.5 λ. (b) Normalized
excitation currents of the array antenna.

If an improvement in terms of dynamic range ratio is performed, by selecting the
aperture excitation currents with a level lower than 0.02, a dynamic range ratio of 49.95
is obtained. In this manner, the number of elements is decreased from 1044 to 916 and a
directivity at broadside of 32.03 dBi is obtained.

3.3. Numerical Application: Footprint for Covering Europe

In this test case, the application of the methodology to a footprint of continental Eu-
rope is proposed. As is reflected in [19–21,26], these requirements were obtained based on a
specification for a geostationary satellite (more concretely the EuTELSAT footprint) located
at 46◦N, 10◦ E. The requirements are based on SLL = −25 dB and a ripple level of±0.5 dB.
To this aim, a discretization in a rectangular lattice of half-wavelength in both dimensions
was proposed in the same line of previous examples. Differences in comparison with
previous examples can be highlighted due to the lack of quadrantal symmetry for this nu-
merical case of application. As can be seen from the results included in Sections 3.1 and 3.2,
pure-real excitations are obtained since symmetric footprints were addressed. Otherwise,
for the present case of reproducing a contour compatible with the footprint necessary
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for illuminating continental Europe, the results obtained are characterized by means of a
general complex aperture distribution. In such a way, both amplitudes and phases in the
elements’ currents can be expected.

3.3.1. Reconstruction of the Far-Field Pattern by Means of the Fourier Series

As an initial check of the performance of the methodology, the radiation pattern
F(u, ϕ), reconstructed by a Fourier series with NF

max = 50, is reported in Figure 13, in the
same manner as in previous sections. In this case, a pattern with a ripple level of ±0.525 dB
and SLL = −24.54 dB is obtained. In order to appreciate the shape of the main beam, a
zoomed image of the u and v axes is provided, analyzing a region between −0.2 and 0.2. It
is worth highlighting that, in this framework, the Earth illumination for a geostationary
satellite (such as the EuTELSAT) occurs in a cone defined by the angles ±8.3◦. Thus, the
zone of the pattern not shown here misses the Earth and is inconsequential.
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Figure 13. Reconstructed pattern of the required footprint for the case of the continental Europe footprint by means of
the obtained Fourier coefficients in (2): (a) interpolated image with a threshold level set at −50 dB; (b) surface plot with a
threshold level set at −25 dB.

3.3.2. Convergency Study of the Results. Performance of the Method

To also illustrate the performance of the method for the continental Europe footprint,
different improvement steps obtained in the iterative process (described in Figure 1) are
shown in Figure 14. It is worth highlighting that, in case of this irregular shape of the
footprint, each one of the orders of the coefficients of aperture distributions presents a
contribution different from zero. Then, the addition of more orders to this series improves
the shape of the resulting pattern to finally reproduce the required footprint (as is explained
in the flowchart reported in Figure 1). Regarding the two final examples of the iterative
process, SLLs of −22.36 dB and −22.68 dB are reported, as well as the ripple level falling
from ±0.75 dB to ±0.735 dB.
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Figure 14. Figure series illustrating the iterative process devoted to generating a rectangular footprint by increasing the
maximum order of the aperture distribution series described in (7): (a) NK

max = 0, (b) NK
max = 1, (c) NK

max = 2, (d) NK
max = 5,

(e) NK
max = 10, and (f) NK

max = 28. All the interpolated plots here described have a threshold level set at −50 dB for the
normalized far-field power.

3.3.3. General Results of the Iterative Method

Thus, following the iterative method illustrated in the previous subsection, the result-
ing pattern (reported in Figure 15) refers to a ripple level of ±0.735 dB, SLL = −22.68 dB,
a dynamic range ratio of 9978 and D = 31.29 dBi. The resulting array antenna has a
maximum radius of 82λ and it presents 44,452 array elements, and the aperture distri-
bution series needs 28 orders for convergency

(
NK

max = 28
)
. Additionally, in this case, as

in Section 3.1.3, it is interesting to point out that the nulls presented in the antenna array
pattern are arranged in a contour which fits the shape described by the imposition of
the continental Europe zone of coverage. Thus, these nulls are arranged following the
same distribution of the nulls in the main beam region as well as in the reconstructed
pattern by means of the Fourier series (Figure 13), confirming the behavior of the pattern
reconstructed in Section 3.2.1. These results prove the precision of the present methodology
regarding a target pattern reconstruction, since it is composed by shrunk and stretched
patterns for each angular cut. Additionally, if a rectangular array is analyzed, the number
of elements would rise up to 57,528. Thus, in such a way, the number of elements is here
reduced by −22.73%. By implementing a circular array which contains all the radii needed
to reproduce the footprint, 82,452 elements are outlined. In this manner, the number of
elements reported by the present method represents −46.09%.
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Figure 15. Reconstructed pattern for the case of the continental Europe footprint covered by the EuTELSAT (European
Telecommunications Satellite Organization) satellite by means of a discretized array antenna: (a) interpolated image with a
threshold level set at −50 dB;(b) surface plot with a threshold level set at −25 dB.

3.3.4. Subarraying: Performance of the Resulting Antenna

Then, in order to improve the results in terms of element number and dynamic range
ratio, a strategy devoted to deal with subarray architectures is performed. To this aim, the
subarray inclusion in the model was conducted through the expression of the array factor
as in [30].

AFsub(θ, ϕ) = fsub(θ, ϕ)·F(θ, ϕ), (10)

where the subarray factor is expressed as

fsub(θ, ϕ) =
sin
(

M
2 ·ψx(θ, ϕ)

)
· sin

(
N
2 ·ψy(θ, ϕ)

)
sin
(

1
2 ·ψx(θ, ϕ)

)
· sin

(
1
2 ·ψy(θ, ϕ)

) , (11)

where ψx = 2πdsub
x sin θ cos ϕ and ψy = 2πdsub

y sin θ sin ϕ. At the same time, dsub
x and dsub

y
are the spacings (along the x-axis and the y-axis, respectively) between the internal elements
of the subarray.

On this basis, different subarray architectures were addressed with arrangements of
2 × 2, 4 × 4 and 5 × 5 elements, respectively. In all of these cases the directivity level at
broadside was kept at about 31.3 dBi (31.23 dBi, 31.17 dBi and 31.33 dBi, respectively),
while the ripple level and SLL in the region of interest (illumination of the Earth) are in line
with the values of the non-subarrayed case (−21.05 dB, −21.29 dB and −20.95 dB). On the
other hand, an impact in terms of undesired lobes (i.e., grating lobes promoted by the use
of subarrays) can be highlighted, where for the case of 2× 2 subarrays, SLLout of−19.39 dB
is used, while the reported values for the 4 × 4 and 5 × 5 examples are −15.57 dB and
−13.54 dB, respectively. These undesired lobes are provoked by the arrangement of the
different subarrays present on the antenna. Since this spacing between these subarray
structures is more than half of the wavelength, it causes the appearance of undesired high
lobes in the zone of side lobes because of the periodicity of the above-mentioned structures.
Thus, the resulting pattern of the example with subarrays of 5 × 5 elements is reported
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in Figure 16. Here, the performance of the pattern is reported in the region of interest
regarding geostationary applications.
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of 695 subarrays is obtained and it reconstructs an acceptable footprint for illuminating 
continental Europe, since a directivity value of 31.33 dBi is obtained at broadside. In the 
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In order to observe the impact of a real element within the array framework, by 
means of the inclusion of the element factor for the scenario sketched in Figure 2, values 

of directivity of 31.32 dBi (+0.09 dBi), 31.29 dBi (+0.12 dBi) and 31.42 dBi (+0.09 dBi) are 
reported in the cases of subarrays 2 × 2, 4 × 4, and 5 × 5, respectively. In this same way, 
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ripple levels of ±0.83 dB (−0.01 dB), ±0.84 dB (−0.02 dB), and ±0.93 dB (−0.01 dB) are 

Figure 16. Reconstructed pattern of the required footprint for the case of illuminating continental Europe by means of
the discretized array antenna in presence of 5 × 5 subarrays: (a) interpolated image with a threshold level set at −50 dB;
(b) surface plot with a threshold level set at −25 dB. The pattern is zoomed in on the region defined by u = [−0.2, 0.2] and
v = [−0.2, 0.2].

Additionally, the array layout after eliminating the low-excited elements and adjusting
the dynamic range ratio to 46.81 is shown in Figure 17. In this manner, a planar array
of 695 subarrays is obtained and it reconstructs an acceptable footprint for illuminating
continental Europe, since a directivity value of 31.33 dBi is obtained at broadside. In
the other two cases (2 × 2 and 4 × 4), the obtained level of directivity at broadside was
31.23 dBi and 31.17 dBi, respectively. In these cases, a number of subarrays of 4365 and
1080 were achieved by means of setting dynamic range ratios of no more than 50.
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an acceptable level, has to be implemented with certain attention due to the appearance 

Figure 17. Layout of the antenna array with an inclusion of 5 × 5-element subarrays and by deleting
the low-excited elements (|I|max/|I|min = 46.81). Final number of array elements: 695.

In order to observe the impact of a real element within the array framework, by
means of the inclusion of the element factor for the scenario sketched in Figure 2, values
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of directivity of 31.32 dBi (+0.09 dBi), 31.29 dBi (+0.12 dBi) and 31.42 dBi (+0.09 dBi) are
reported in the cases of subarrays 2 × 2, 4 × 4, and 5 × 5, respectively. In this same way,
SLL values of −21.14 dB (−0.09 dB), −21.34 dB (−0.05 dB), and −21.05 dB (−0.10 dB) and
ripple levels of ±0.83 dB (−0.01 dB), ±0.84 dB (−0.02 dB), and ±0.93 dB (−0.01 dB) are
obtained. It is worth mentioning that the biggest impact on the resulting radiation pattern
provoked by the introduction of the real dipoles over a ground plane is on its grating lobes.
In such a way, values of SLLout −22.05 dB (−2.66 dB),−16.87 dB (−1.30 dB), and−14.26 dB
(−0.72 dB) are seen. Therefore, it can be confirmed that the introduction of the element
factor alleviates the collateral effects of the presence of the grating lobe produced by the
subarray strategy.

In order to show the performance of the improved array antenna, the current distribu-
tion for this case is shown in Figure 18. Here, it can be noted how the aperture distribution,
and therefore the resulting discrete currents, are complex (as it was introduced at the
initial part of the present subsection). The motivation of this performance is based on the
asymmetry of the case under test.
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The use of subarrays, although it represents an alternative to keep the directivity at an
acceptable level, has to be implemented with certain attention due to the appearance of
grating lobes (the larger the spacing among subarrays is, the greater number of grating
lobes appear in the radiation pattern). However, in the particular case of analysis of a
geostationary satellite, moderately high energy losses appear at angular levels without
real impact (more precisely, it happens at angular levels of more than ±8.3◦, i.e., angles of
incidence falling out of the Earth). Thus, although these arrangements of elements offer
the already-mentioned advantages, it is necessary to consider that they have an impact on
the radiation efficiency of the array.

4. Discussion

In the present paper, an iterative methodology for reproducing an arbitrary footprint
by means of a planar array of radiating elements was devised. A few iterations were
necessary in order to permit the convergence of the present method. In this framework,
subarray arrangements and improvements in terms of dynamic range ratio by eliminating
low excited elements were addressed. It is worth highlighting that, in the present work,
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rectangular grid arrays were proposed, based on their practical application from a feeding
point of view. Therefore, as is well-known, limitations on the methodology can be outlined
due to this discretization strategy in a rectangular lattice. Furthermore, by highlighting the
necessity of preventing the presence of a distribution with a huge variability, it is worth
mentioning that, for reproducing a footprint without suffering these types of problems, not
more than two ripple cycles in the pattern could be established as a good compromise. It
is also well known that a distribution which produces such kind of patterns presents this
variability. Thus, based on the results depicted here, the present methodology overcomes
techniques of the state-of-the-art for reproducing arbitrary footprints presented in the
previous literature, since it refines the method envisaged in [2] for developed efficient
planar arrays in terms of number of elements. This improvement is based on the lack of
assumption regarding symmetry on the antenna array pattern and/or simplicity of the
continuous aperture distribution (intended as a Fourier of the entire three-dimensional
target pattern).

More particularly, for the cases of study present in this paper, it is worth highlighting
the necessities of the method to deal with footprint patterns with shapes that present
an extreme difference between perpendicular axes. More precisely, the example of the
rectangular boundary represents a more challenging scenario for the procedure than the
square contour, because the method (for instance, the iterative steps illustrated in Figure 10)
has to first mitigate the zones of the initial circular footprint (order zero approximation) in
order to fit the required shape of the rectangle. In this manner, a greater number of iterative
steps (i.e., Fourier coefficient of higher order) is required in comparison with cases as the
footprint of the square contoured beam.

Regarding computational costs of the methodology, the most expensive test case
aimed at being involved within the procedure is represented by the footprint of continental
Europe, as an application of the EuTELSAT geostationary satellite. In this particular
example, the time costs of producing the different coefficients of the series and discretizing
the planar array for a maximum order of NK

max = 50 is about 8 min and 35 s. Once the
table of coefficients (both Fn and Kn) has been determined and the model is calibrated,
a maximum time of computation (i.e., assuming NF

max = NK
max = 50) less than 51 s for

each iteration can be reported. In such a way, we are introducing a technique which is
computer-efficient, inexpensive, and rapidly convergent. The simulations described in
this work were developed by implementing the method described in the materials and
method section in a MATLAB code and run in an Intel Corei7 machine (CPU model 4510U)
at 2.60 GHz with 6 GB of RAM memory. As a future trend, analogous studies to the
research reported in [14] can be proposed by introducing the present methodology within
a phase-only synthesis. Since the technique envisaged in [14] would be integrated by an
optimization with restrictions, its analysis falls out of the scope of the present paper.
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