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Abstract: Sea anemones produce venoms characterized by a complex mixture of low molecular
weight compounds, proteins and peptides acting on voltage-gated ion channels. Mammal sperm
cells, like neurons, are characterized by their ion channels. Calcium channels seem to be implicated
in pivotal roles such as motility and capacitation. In this study, we evaluated the effect of a low
molecular weight fraction from the venom of the sea anemone Lebrunia neglecta on boar sperm cells
and in HVA calcium channels from rat chromaffin cells. Spermatozoa viability seemed unaffected by
the fraction whereas motility and sperm capacitation were notoriously impaired. The sea anemone
fraction inhibited the HVA calcium current with partial recovery and no changes in chromaffin
cells’ current kinetics and current–voltage relationship. These findings might be relevant to the
pharmacological characterization of cnidarian venoms and toxins on voltage-gated calcium channels.

Keywords: Lebrunia neglecta; sea anemone; boar sperm; capacitation; HVA calcium channels; chromaffin cells

Key Contribution: A low molecular weight fraction of Lebrunia neglecta venom decreases boar sperm
cells capacitation. This fraction inhibits calcium current with no changes in current kinetics and
without changes in voltage-dependency of several types of HVA calcium channels of chromaffin cells.

1. Introduction

Sea anemones produce venoms characterized by a complex mixture of low molecular
weight compounds, peptides, and proteins [1,2]. Some of their neurotoxic peptides that
act on voltage-gated sodium and potassium channels have been extensively studied as
molecular tools and potential therapeutic agents [3]. For instance, ShK, a potent KV channel
toxin isolated from Stychodactyla helianthus, has been proposed as a potential therapeutic
for multiple sclerosis treatment since it potently blocks lymphocytes’ KV1.3 channel [4].
In an effort to find new potential drugs from marine sources, some sea anemone venoms
have also been screened for anticancer and antimicrobial activity, showing significant
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results [5,6]. Hence, considering the variety of bioactive compounds that sea anemones
produce, we might expect that research on their venoms and toxins could be useful in novel
pharmacological and therapeutic targets, particularly on ion channels.

Sea anemone toxins that affect voltage-gated ion channels have been studied in several
types of excitable cells such as neurons, HEK cells and cardiomyocytes. Mammal sperm
cells are characterized by their ion channels and membrane receptors, implicated in vital
processes such as capacitation and acrosomal reactions [7]. Capacitation is the process that
allows sperm cells to acquire fertilizing capacity and happens through a series of molecular
events that are reflected in the sperm cells as physiological changes. For example, the
membrane fluidity increases as a result of cholesterol efflux, and there is an increase of
calcium permeability and hyperpolarization, with a consequent increase of pH and protein
tyrosine phosphorylation; all these changes result in the modification of the sperm motility
pattern [8,9]. Ion channels seem to be at the center of all these molecular mechanisms,
and their role in hyperactivation, capacitation and chemotaxis has been demonstrated
by pharmacological, molecular and electrophysiological studies; among these channels,
we can find NaV, KV, CaV channels and TRP family receptors [10]. Calcium channels are
particularly essential for sperm cell function [11].

Calcium channels are classified into two main classes: high voltage activated (HVA)
and low voltage activated (LVA). HVA channels are subdivided according to the behavior of
their currents into L, N, P/Q and R types, and open after strong depolarizations. In contrast,
LVA channels open after weak depolarizations and have been termed as T-type [12]. L, T
and P/Q type calcium channels have been identified in the sperm cells of many mammal
species [13]. Sperm cells also contain a unique ion channel known as CatSper (cation
channel of sperm) which plays crucial role in fertility and motility [11].

The research one the effect elicited by toxins from animal venoms on sperm cells has
scarcely been addressed. For instance, two toxins from the scorpion Parabuthus granulatus
decrease T-type Ca2+ channel activity in mouse spermatogenic cells and also inhibit the
acrosome reaction in mature sperm [14]. Romero and collaborators [15] described an
increase in the concentration of intracellular Ca2+ in spermatozoa upon black widow
spider Latrodectus mactans venom application. Later, the same group found that this effect
is due to the negative impact of TEA-sensitive K+ current in sperm cells [16]. Escoffier
and collaborators screened the venom of several snakes and found that a low molecular
weight fraction of the venom from the elapid Oxyuranus scutellatus scutellatus contains two
phospholipases A2 that trigger sperm acrosome reaction by inducing lipid rearrangements
of the sperm cell plasma membrane [17]. To our knowledge, cnidarian toxins have not been
explored in this regard.

Lebrunia neglecta, (formerly L. danae) is a sea anemone of the family Aliciidae that
inhabits shallow waters around coral reefs along the entire Caribbean Sea [18]. Its venom is
very irritant and it has been reported as one of the most venomous sea anemones in the
Caribbean region [19]. Some experiments on different models have shown its cyto- and
neuro-toxicity [20]. Previous studies have shown the existence of CaV channel toxins in
other anthozoan venoms [21]. In the present study, we assess the effect of a low molecular
weight fraction of L. neglecta venom in boar sperm cells and L-type CaV channels of
chromaffin cells to explore sea anemones as a new source of potential pharmacological
agents targeting calcium channels.

2. Results and Discussion
2.1. Venom Extraction and Fractionation

Sea anemone toxins acting on ion channels are low molecular weight peptides; hence,
size exclusion chromatography was performed to eliminate high molecular weight proteins
from the venom. This procedure resulted in three fractions (Figure 1A). Fraction 3 (F3)
showed marked activity on sperm cells. The MALDI-TOF mass spectrometry analysis of
this fraction confirmed the existence of peptides between 1–7 kDa (Figure 1B).
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Figure 1. (A) Gel filtration chromatogram from the separation of Lebrunia neglecta venom on a
Sephadex G50 column. (B) MALDI-TOF mass spectrum of F3.

2.2. Sperm Viability

Sperm cells are highly specialized eukaryotic cells that react to any changes in their
physiology in short time lapses, so they are of particular interest when studying disruption
by toxins [22]. Boar sperm cells have been extensively used in biomedical research because
of their physiological similarity to human sperm cells, and have been used in many studies
that include renal hypertension, atherosclerosis and reproductive pathologies [23]. These
cells are also a very accessible model, since their motile nature and physiological processes
are tightly linked to ion channel functioning.

According to our results, F3 decreases sperm viability at 13.8% and 18.4% in the
presence of 20 µg protein/mL and 50 µg protein/mL of F3, respectively (Figure 2).

Figure 2. Sperm viability in presence of F3 at different concentrations after 4 h of incubation. Sperm
viability was analyzed using the eosin-nigrosin staining. Initial viability at time zero was 82%. Values
are expressed as mean ± SEM (n = 3).

Since the viability of the spermatozoa showed a minor effect after F3 exposure, the
next aim was to evaluate motility.

2.3. Sperm Motility

After 4 h of incubation with 10 µg protein/mL of F3, sperm motility was affected. A
few clumps of agglutinated sperm cells that still showed flagellar movement appeared. As
the concentration of F3 increased (20 µg protein/mL and 50 µg protein/mL), the number
of free sperm cells with progressive motility decreased, the clumps became denser and the
flagellar movement inside the clumps diminished (Table 1). Motility is directly linked to
the ability of sperm cells to fertilize and it can be impaired by several exogenous substances
such as lipopolysaccharides, hemolysins and lectins [24]. Toxins from starfish have also
been demonstrated to cause immobilization and adhesion in sea urchin sperm cells [25].
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Table 1. Sperm cells’ motility and agglutination after 4 h of incubation with F3.

Parameter
F3 (µg Protein/mL)

0.0 10 20 50

Motility +++++ ++++ ++ +
Agglutination ++ ++ ++++ +++++

Motility and agglutination were measured by a semiquantitative characterization. Linear motility: +++++ ≈ 95%,
++++ ≈ 70%, ++ low and vibratory movements, + zero. The size and number of clumps were used to measure
agglutination. Cells in clumps: +++++ ≈ 95%, ++++ ≈ 80%, ++ ≈ 30%, + ≈ 10%.

Our results show that boar sperm agglutination increases whereas sperm motility de-
creases in a dose-dependent way (Table 1, Figure 3). Few studies describe the agglutination
effect of exogenous substances on sperm cells. The origin of this agglutination could be
explained by the presence of antigens in the sperm cell membrane produced by contact
with the peptides contained in the venom fraction, since the surface of spermatozoa is
rich in glycoproteins that function as receptors for agglutination factors (e.g. the sperm
agglutination factor from E. coli) [26]. Lectins have also been reported in sea anemone
venoms [27]; however, lectins possess higher molecular weights than those detected in
our MALDI-TOF analysis. The nature of the molecule and process causing the sperm
agglutination remains to be elucidated until a complete chemical characterization of the
fraction has been conducted.

Figure 3. Boar sperm cells agglutination by F3. (A) Control. (B–D) Sperm cells after exposure to F3 at
10, 20 and 50 µg protein/mL concentrations, respectively.

2.4. Capacitation

Sperm capacitation was evaluated by the CTC staining method. As shown in Table 2,
capacitation decreased in a dose-dependent manner in the presence of F3. This result could
be due to a decrease in external Ca2+ influx [8] or internal Ca2+ movement [28], since it is
known that Ca2+ ions are essential in sperm hyperactivation, and also in sperm detachment
from agglutination.

Several ion channels are essential components of mammalian sperm cells capacitation,
such as KV and CaV channels and TRPC receptors. In particular, calcium is crucial for
processes related to fertilization, such as motility and capacitation [29,30]. Sperm cells
express the CatSper channel, one of the main channels required for motility, along with
HVA calcium channels. The latter has been related to the modulation of CatSper activity,
acrosome reaction and motility [13]. Since one of the purposes of this paper is to know
whether F3 produces an effect on motility and capacitation of sperm cells by affecting HVA
calcium channels, we tested the fraction on a model with a high expression of this channel
population, such as the chromaffin cells of rats [31].
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Table 2. Sperm capacitation in the presence of F3.

F3
(µg Protein/mL)

Spermatozoa Status (%)

Non-Capacitated Capacitated

0.0 32.92 ± 3.54 63.41 ± 6.36
10 62.5 ± 1.41 35.60 ± 9.19
20 79.11 ± 1.41 18.22 ± 3.54
50 96.47 ± 5.66 2.94 ± 2.12

Non-capacitated sperm cells and capacitated cells after 4 h of incubation and CTC staining. Values are expressed
as mean ± SEM (n = 3).

2.5. Effect of F3 on Calcium Current Amplitude

Calcium currents were elicited with a square pulse from −80 to 0 mV every 5 s.
Figure 4A shows representative current traces under Control, F3 and Cd2+ conditions. F3
significantly inhibited calcium current density, measured isochronally at 50–60 ms, starting
test pulse to 0 mV (Figure 4D) (z = 28, n = 7, p ≤ 0.05). This effect was partially reversed
after washout as it was observed in the time course of current amplitude (Figure 4B). Traces
in the control and F3 condition were normalized and superimposed, showing no changes
in current kinetics (Figure 4C), suggesting a voltage-insensitive mechanism involved in the
inhibition of the current amplitude. Moreover, an effect of F3 in a concentration-dependent
manner was observed (Figure 4E). Data points were fitted with Equation (1) to obtain
an IC50 = 18.08 ± 6.2 µg/mL of protein and a Hill coefficient = 0.56 ± 0.1. In summary,
F3 produces an inhibition of the calcium current with partial recovery and no changes
in the current kinetics. The effect of anemone venoms on ion channel activity has been
documented in sodium [32,33] and potassium channels [34]. However, little is known
about the effect of anemone venoms on calcium channels. A previous work reported a
similar effect of another anemone venom on HVA calcium channels [21].

Figure 4. Effect of F3 on calcium current amplitude. (A,B) Representative traces and time course of
calcium current in Control, F3 and Cd2+ conditions obtained by the voltage protocol shown at the top
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of the trace in A. (C) Representative normalized calcium current traces in Control and F3 conditions.
(D) Current density is presented as the mean ± SEM for each condition. Data were analyzed by
Wilcoxon test (z = 28; n = 7; * p ≤ 0.05). (E) Dose-response curve for the inhibition of calcium current
with different concentrations of F3. Each point represents the mean ± SEM; n is indicated for every
point. The line represents the best fitting of the Hill equation to the data (Equation (1)).

2.6. F3 Inhibits Calcium Currents without Changes in Voltage Dependence

Another aim of this work was to explore whether or not F3 produces changes in
the voltage dependence of calcium channels. To evaluate the effect of F3 on voltage-
dependent behavior, an I–V curve was obtained with voltage steps from −80 to +60 mV.
No modifications in voltage dependence were found (V 1

2
= −21.08 mV and −23.3 mV for

Control and F3, respectively; Vrev = 49 mV and 47 mV for Control and F3, respectively).
On the other hand, a statistical inhibition at −40 and 0 mV was found (F(14,126) = 3.41,
n = 9, p ≤ 0.05). These data were confirmed with a ramp protocol, as it was evoked
from −80 to +60 mV (0.7 mV/ms), as shown in Figure 5B. The maximal peak current
was reduced in the presence of F3. In addition, only one component was observed in the
ramp trace, which agrees with previous reports showing that HVA is the major component
in chromaffin cells [31]. Following the I–V relationship, the tail current amplitude was
reduced in presence of the fraction. Additionally, a conductance curve was obtained from
the tail currents and the data points were fitted to Equation (2). No changes were observed
in this property (Figure 5C). F3 did not affect the voltage dependence; therefore, it inhibits
calcium current influx by reducing the number of ion channels without kinetic changes.
These results support the fact that F3 may produce changes on the surface charge of the cell
membrane or on the voltage sensor. Recently, it has been suggested that the mechanism on
calcium channels from Palythoa caribaeorum venom, another cnidarian, produces a similar
effect on calcium channel current without modifications in the voltage dependence [21].

Figure 5. F3 inhibits calcium current without changes in the voltage dependence. (A) I–V relationship
for Control and F3 conditions. Each point represents the mean ± SEM. The solid line represents
the best fit to a single Boltzmann equation (Equation (3)). Data were analyzed by two-way ANOVA
(F(14,126) = 3.41, n = 9, * p ≤ 0.05). (B) Representative current elicited by a voltage-ramp protocol under
Control, F3 and Cd2+ conditions. (C) Conductance curve in Control (white circles) and F3 condition
(red circles). Each point represents the mean ± SEM. The solid line represents the best fit to a single
Boltzmann equation (Equation (2)).

L-type calcium channels are highly expressed in sperm, particularly CaV1.2 and
CaV1.3 [11,35]. Consistently, their inhibition by dihydropyridines interrupts acrosome
reaction and other sperm functions [36]. These channels are the same type expressed in
chromaffin cells [37]; therefore, the latter model is appropriate to study the effect of F3 on
L-type calcium channels.
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2.7. F3 Does Not Inhibit L-Type Calcium Channels Only

To find out if F3 specifically inhibits L-type calcium channels, we employed the
maximum nifedipine concentration (Nif), a selective L-type calcium channel blocker [38,39].
As shown in Figure 6A, 5 µM Nif inhibits the calcium current amplitude by 40.5 ± 4.7%
(n = 11) with a partial recovery (Figure 6B). This result suggests that almost 50% of the
population of calcium channels are L-type, coinciding with previous works [31]. Moreover,
the inhibition by Nif was greater than the inhibition by F3 because of the concentration used
(10 µg/mL), which does not produce the maximal effect (Figure 4E). However, when Nif
and F3 were applied together, the amplitude of the current was reduced further compared
to Nif only (54.7 ± 2.2%, n = 3) (Figure 6C,D), suggesting that the L-type is not the unique
target. These results are statistically significant (X2 = 10.8; p ≤ 0.05), with differences
between Nif, Nif + F3 and F3 (Figure 6E). The results suggest that F3 also inhibits another
type of HVA calcium channel.

Figure 6. F3 does not inhibit L-type calcium channels only. (A,B) Representative traces and time
course of calcium current in Control, F3, Nif and Cd2+ conditions. (C,D) Representative traces and
time course of calcium current in Control, Nif, Nif + F3 and Cd2+ conditions. (E) Calcium current
inhibition represents the mean ± SEM in presence of Nif (n = 11), Nif + F3 (n = 3) and F3 (n = 6)
conditions. Data were analyzed by Kruskal–Wallis test (X2 = 10.8; * p ≤ 0.05).

3. Materials and Methods
3.1. Venom Extraction and Fractionation

Lebrunia neglecta organisms were collected at Puerto Morelos Reef Lagoon, by SCUBA
diving at approximately 4 m depth. The sea anemones were kept in plastic bags with
sea water, and carried to the laboratory. The extraction was conducted in a Ten Broeck
homogenizer (Pyrex®) using distilled water. Nematocyst discharge was monitored with a
microscope in order to ensure the obtention of their active compounds. The crude extract
was fractionated by size exclusion chromatography in a 118 × 1.5 cm Sephadex® G-50
(Pharmacia Biotech) column using 0.3 M acetic acid as eluant at a 3 mL/min flux. Fractions
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of 15 mL were collected in conical tubes (Corning®) and the absorbance was monitored
at 280 nm using an Äkta prime plus chromatographer. The tubes corresponding to the
same fraction were pooled and concentrated by reduced pressure in a Büchi R-215 rotary
evaporator. Finally, the three fractions F1, F2 and F3 were lyophilized in a Labconco™
freeze dry system and stored at −70 ◦C until use.

3.2. Protein Quantification

Protein concentration was measured by the Bradford method with Quick Start™
(BIORAD) kit using bovine serum albumin (BSA) in a 96-well plate. Absorbance was
monitored at 595 nm with a Stat Fax 4200® plate reader.

3.3. Mass Spectrometry Analysis

The molecular mass range of the peptides was determined by MALDI-TOF mass
spectrometry. 5 µL of a saturated solution of 4-hydroxy-α-cyanocinnamic acid was added
to 5 µg of sample. 1 µL of this solution was deposited onto the MALDI plate and allowed
to dry at room temperature. The spectrum was recorded in the positive linear mode on a
Bruker Microflex mass spectrometer equipped with a nitrogen laser at 337 nm.

3.4. Collection and Semen Sample Preparation

Semen samples were obtained from a sperm-rich ejaculated fraction of healthy, fertile
boars. The samples were examined for their motility and viability and classified as normo-
zoospermic, according to criteria described by Garner (2000) [40] and Jimenez (2003) [7].
Sperm viability was evaluated by eosin-nigrosin staining: a drop of 5 µL of sperm sample,
previously washed, was added in a glass slide, mixed with 5 µL of eosin-nigrosin, smeared,
and analyzed under phase-contrast microscopy. Two hundred cells were observed to
evaluate the semen samples. Samples with viability and motility >80%, abnormalities <15%
and a concentration >80 × 106 spermatozoa/mL were used.

Agglutination was evaluated by phase-contrast microscopy. 10 µL of the sample was
placed on a slide and observed at 100× magnification, counting 10 different fields. A
semiquantitative classification of agglutinated sperm was performed, where + corresponds
to 10% sperm forming clumps, ++ corresponds to around 30% of clumps, +++ corresponds
to 60% of the cell population is agglutinated, ++++ corresponds to 80% of the cells in
clumps of different size, and +++++ corresponds to ≈ 95% of the cells in clumps.

3.5. Capacitation

Semen samples were washed twice to remove the seminal plasma. Then, 1 mL of
phosphate-buffered saline (PBS) was added to an equal volume of semen, followed by
centrifugation at 600× g for 5 min. Aliquots with 5 × 106 cells were placed on a Nunc
4-Well Dishes (Nunc, Roskilde, Denmark), with HEPES-TALP medium, supplemented
with 6 mg/mL BSA fraction V and 1 mM sodium pyruvate, and incubated for 4 h in a
humidified atmosphere of 95% air/5% CO2 at 38 ◦C. Capacitation was assessed by the
chlortetracycline (CTC) staining method. Briefly, 5 µL of spermatozoa was mixed with
5 µL of CTC solution, containing 750 µM CTC, 130 mM NaCl, 5 mM L-cysteine and 20 mM
Tris HCl, at pH 7.8. Spermatozoa were fixed with 5 µL of 0.2% glutaraldehyde in 0.5 M
Tris buffer, at pH 7.4. Samples were mounted on microscope slides with glass coverslips.
Slides were observed under a fluorescence microscope (Olympus BX51, Japan) at 495 nm
UV epifluorescence and 400× magnification. Capacitation was determined as follows:
non-capacitated spermatozoa presented fluorescence throughout the head and capacitated
spermatozoa showed intense fluorescence in the equatorial and acrosomal zone [41].

3.6. Toxin Exposure

The lyophilized F3 was resuspended in the capacitation medium to obtain a stock
solution of 1 mg/mL. Semen samples were incubated in a Nunc 4-Well Dishes (InVitro®)
for 4 h in the presence of the F3 at concentrations of 10, 20 and 50 µg protein/mL. Viabil-
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ity and motility were assessed under a stereomicroscope (NIKON) when the incubation
period ended.

3.7. Chromaffin Cells Culture

Chromaffin cells were obtained from 10-day-old male Wistar rats as previously de-
scribed (Morgado-Valle et al. 1998). Rats were anesthetized by intraperitoneal injection
of pentobarbital sodium, and adrenal glands were removed and transferred to a Hank´s
Balanced Salt Solution (HBS). The adrenal medulla was isolated and incubated at 37 ◦C
for 30 min in HBS plus 2 mg/mL collagenase type I (Sigma, St. Louis, MO, USA) and
15 mg/mL deoxyribonuclease I (Sigma, St. Louis, MO, USA). After enzymatic digestion,
the tissue was mechanically dispersed and the cell suspension was centrifuged at 180× g for
7 min and washed twice in Dulbecco´s modified Eagle´s medium (Life Technologies, Carls-
bad, CA, USA), supplemented with 10% fetal bovine serum (Life Technologies, Carlsbad,
CA, USA), 4.5 µg/mL insulin (Sigma; St. Louis, MO, USA), 1% penicillin-streptomycin (Life
Technologies, Carlsbad, CA, USA), and 2.5 µg/mL fungizone (Life Technologies, Carlsbad,
CA, USA). Cells were plated on polystyrene culture dishes coated with poly-L-lysine and
stored in a humidified atmosphere of 95% air/5% CO2 at 37 ◦C. Cells were studied 72–96 h
after plating.

3.8. Electrophysiological Recording

Calcium currents were recorded, employing the patch-clamp technique in whole-
cell configuration with an EPC-9 amplifier (HEKA Elektronik GmbH; Lambrecht/Pfalz,
Germany) at room temperature. Currents were sampled at 10 kHz and filtered at 2.9 kHz.
Electrodes were made of borosilicate glass capillary tubes (Kimble Chase, Vineland, NJ,
USA) with a resistance of 3–4 MΩ. The series resistance (3–10 MΩ) was compensated
>50%. Cells were continuously bathed with control or test solutions at a rate of 2 mL/min.
Barium was used as a charge carrier in solutions designed to minimize undesired currents
and increase the current through calcium channels. The bath solution contained (in mM):
120 NaCl, 10 BaCl2, 2 MgCl2, 10 glucose, 10 HEPES and 0.0002 TTX; pH was adjusted at
7.4 with NaOH. The pipette solution contained (in mM): 130 CsCl, 4 MgCl2, 10 EGTA,
10 HEPES and 3 Na2ATP; pH was adjusted at 7.2 with CsOH. Calcium channel current
was defined as the component of the sensitive current to 100 µM CdCl2. Pharmacological
identification of L-type calcium channels was performed using Nif (Sigma Aldrich) at 5 µM
in the bath solution. F3 was stored at −20 ◦C in a stock solution in distilled water and
diluted to 0.1, 1, 10, 100, and 1000 µg/mL in the bath solution before using it. F3 dilutions
were applied by a perfusion system (ValveBank8, Automate Scientific, Berkeley, CA, USA),
except for the 1000 µg/mL dilution, for which an Eppendorf 5646 transjector (Eppendorf,
Madison, WI, USA) was used.

3.9. Statistical Analysis

Results are represented as mean ± standard error of the mean (SEM). Statistically
significant differences between control and F3-treated cells were analyzed by the Wilcoxon
test, due to the non-normal distribution. For three or more comparisons, one-way analysis
of variance (ANOVA) by repeated measures was employed to measure differences in
control, F3 and Nif application. The Friedman test was used for the data with non-normal
distribution, followed by Sidak’s post hoc in repeated measures, or the Kruskal–Wallis
test followed by Dunn’s post hoc in not pairing measures. For I–V comparisons, two-way
ANOVA was performed followed by Sidak’s post hoc. Statistical significance was taken
at p ≤ 0.05. Graphics and analysis were constructed using IGOR Pro (Version 6.1.2.1,
WaveMetrics, Lake Oswego, OR, USA) and GraphPad Prism 6.0 (GraphPad Software, San
Diego, CA, USA). The following equations were fitted:
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The concentration-response curve was fitted with the Hill equation (Equation (1)):

R = base + (max − base )/

{
1 +

[
IC50

C

H
]}

(1)

where R is the current inhibition, C is the test concentration, IC50 corresponds to the F3
concentration giving half of the maximal inhibitory response, and H is the Hill coefficient.

The conductance curve was fitted with a single Boltzmann equation (Equation (2)):

I/Imax = (1 + exp((V1/2 − Vm)/(k))
−1 (2)

where I/Imax is the normalized current amplitude at test potential Vm, V 1
2

is the voltage of
half-maximal activation and inactivation, and k is the slope factor.

The current–voltage (I–V) relationship was fitted with a modified Boltzmann equation
(Equation (3)):

I = (Vm − Vrev) ∗ gmax/
(

1 + exp
(

V1/2 − Vm

k

))
(3)

where I is the current amplitude measured at the test potential Vm, Vrev is the reversal
potential, gmax is the maximum slope conductance, V 1

2
is the half-activation potential, and k

is the slope factor.

4. Ethical Statement and Animal Care

Male Wistar rats were obtained from the animal breeding facility of the School of
Medicine at Universidad Nacional Autónoma de México (UNAM). The rats were trans-
ported in plexiglass cages and were sacrificed immediately. All animals were handled
according to the guidelines and requirements of the National Institutes of Health Guide
for the Care and Use of Laboratory Animals (8th edition) and the Mexican Official Norm
for Use, Care and Reproduction of Laboratory Animals (NOM-062-ZOO-1999). Experi-
mental protocols were reviewed and approved (identification code: FM/DI/059/2018—
approved on 28 June 2018) by the Committee of Research and Ethics of the School of
Medicine, UNAM.

5. Conclusions

Venoms and extracts from anthozoans such as soft corals, zoanthids and sea anemones
have been explored as a source of bioactive molecules with potential pharmacological
activity. Most of this research has been focused on finding anticancer, antibiotic compounds
and ion channel modulators. Focus on the latter has mainly been on the NaV and KV
channels of neuronal and cardiac cells. This study explores the effects of cnidarian venoms
and toxins on the sperm cell model and reinforces the evidence of the existence of CaV
channel toxins in cnidarian venoms. These results extend the possible application of sea
anemone toxins as pharmacological tools.
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