
131

ABSTRACT

BACKGROUND/OBJECTIVES: Orostachys japonicus A. Berger (O. japonicus) is a perennial herb 
belonging to the Crassulaceae family that has been traditionally used to treat inflammation, 
fever, and poisoning. Although studies on the anticancer activity of O. japonicus have been 
conducted, its effect on virus-induced cancers has yet to be elucidated.
MATERIALS/METHODS: In the present study, we investigated the effects and mechanisms of 
action of the ethyl acetate fraction of O. japonicus extract (E-OJ) on the viability and apoptosis 
of HeLa cervical cancer cells.
RESULTS: The effect of E-OJ on HeLa cells was compared to that of kaempferol, quercetin, 
and gallic acid, which are components of O. japonicus. Treatment with E-OJ induced a 
concentration-dependent decrease in cell viability, as confirmed by MTS assay. Pretreatment 
with a broad-spectrum caspase inhibitor resulted in the recovery of cell viability. Western 
blot analysis was conducted to determine whether the induction of apoptosis was caspase-
dependent. E-OJ induced apoptosis by increasing Bax/Bcl-2 ratio. Furthermore, it modulated 
the levels of cleaved caspase-3, -8, and -9, indicative of an impact on both the intrinsic and 
extrinsic pathways of apoptosis. Pretreatment with caspase inhibitors reduced caspase activity.
CONCLUSION: These results suggest that the anticancer activity of O. japonicus is mediated by 
caspases, resulting in a decrease in the viability of HeLa cells.
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INTRODUCTION

Orostachys japonicus, a perennial herb belonging to the Crassulaceae family, has traditionally 
been used as a natural remedy for diverse ailments, including arthritis, hepatitis, fever, 
eczema, poisoning, and bleeding. Numerous studies have highlighted its therapeutic 
properties, revealing associations with antipyretic, hemostatic, and detoxifying actions, 
as well as anticancer and anti-inflammatory effects [1-13]. Previous investigations have 
identified O. japonicus as containing compounds such as friedelin, epifriedelanol, glutinone, 
glutinol, triterpenoids, β-sitosterol, campesterol, fatty acid ester, kaempferol, quercetin, 
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flavonoids, and aromatic acids [14-16]. In addition, its safety was confirmed by its lack of 
effect on the survival and proliferation of normal macrophages, with no clinical signs of 
toxicity observed after administration in mice [14,17]. Notably, the sequential extraction 
of dried O. japonicus powder using organic solvents, including n-hexane, dichloromethane, 
ethyl acetate, n-butanol, and water, revealed that the ethyl acetate-soluble fraction exhibited 
anticancer effects in various cancer cell lines [1,8,16]. Previous research has demonstrated 
its significant anticancer activity against colon cancer (HT-29), breast cancer (MDA-MB-231), 
and gastric cancer (AGS). However, further investigations are warranted to explore its 
potential effects on virus-induced cancers, such as those caused by hepatitis B virus, Epstein-
Barr virus, and human papillomavirus.

Cervical cancer, characterized by the uncontrolled proliferation of abnormal cells in the 
cervix, is the fourth most common cancer among women. Treatment modalities for cervical 
cancer include radiation therapy, chemotherapy, surgical intervention, and targeted therapy 
[18,19]. Despite a dramatic reduction in cancer incidence in recent years owing to the 
introduction of cervical cancer vaccines targeting human papillomavirus (HPV), the disease 
remains a significant threat to women in low- and middle-income countries, where limited 
resources often result in the progression of the disease to advanced and untreated stages 
[20,21]. Notably, conventional chemotherapeutic agents, while effective in destroying 
cancer cells, concurrently suppress essential components of the immune system, such as 
lymphocytes and bone marrow cells, leading to a compromised immune system. Therefore, 
the imperative to explore safe and effective anticancer agents derived from traditional herbal 
sources is underscored.

This study investigated the cytotoxic effects of O. japonicus-derived substances on cervical 
cancer cells. We compared the apoptotic effects of the ethyl acetate fraction of O. 
japonicus extract (E-OJ) and its known constituents kaempferol, quercetin, and gallic acid. 
Additionally, we examined changes in the expression of molecules associated with apoptosis. 
In this study, we sought to elucidate the therapeutic efficacy of O. japonicus extract against 
virus-induced cancers and the characteristics of the associated apoptosis. The results are 
expected to provide insights useful for the future development of anticancer agents that 
utilize these compounds.

MATERIALS AND METHODS

Plant extracts
O. japonicus was sourced from Geobugiwasong Ltd. (Miryang, Korea), naturally air-dried, and 
finely ground into powder. The ethyl acetate (EtOAc) fraction from O. japonicus was fractioned 
using a solvent, as described by our team [1,6,8-10]. A total of 200 g of O. japonicus powder 
was mixed with 1 liter of 95% ethyl alcohol (EtOH), followed by three rounds of reflux boiling 
using a reflux condenser (SciLab®, Seoul, Korea). Crude O. japonicus extract was concentrated 
using a rotary evaporator (IKA-Werke GmbH, Co. KG, Staufen, Germany). Subsequently, 
the concentrated extract was fractionated using the following organic solvents in sequential 
order: n-hexane (hexane), dichloromethane (DCM), ethyl acetate (EtOAc), n-butanol (BuOH), 
and water (H2O). Among the obtained fractions, the ethyl acetate fraction of O. japonicus (E-
OJ) was dried using rotary evaporation at 40°C until the solvent was completely evaporated, 
and then stored at –20°C. The E-OJ used in the experiments was dissolved in dimethyl 
sulfoxide (DMSO) as a solvent before treatment.

132https://doi.org/10.4162/nrp.2025.19.1.131

O. japonicus induce caspase-dependent apoptosis

https://e-nrp.org

Funding
This research was supported by National 
Research Foundation of Korea (NRF) 
grants funded by the Ministry of Science 
and ICT (2022R1C1C1010078 [Kim SH] and 
2017R1D1A1B03034570 [Lee DS]).

Conflict of Interest
The authors declare no potential conflicts of 
interests.

Author Contributions
Conceptualization: Kim SH; Formal analysis: 
Kim SH; Investigation: Kim SH, Lee DS; 
Methodology: Kim SH; Supervision: Lee DS; 
Writing - original draft: Kim SH; Writing - 
review & editing: Kim SH, Lee DS.



Cell line and reagents
HeLa cells were obtained from the Korean Cell Line Bank (KCLB, Seoul, Korea). Penicillin, 
streptomycin, DMEM, and FBS were purchased from Hyclone Laboratories, Inc. (Logan, UT, 
USA). Monoclonal antibodies targeting proteins, such as pro-caspase-3 (Cat. No. 9662),  
-8 (Cat. No. 9746), -9 (Cat. No. 9502), cleaved caspase-3 (Cat. No. 9661), -8 (Cat. No. 9496),  
-9 (Cat. No. 9505), Bcl-2 (Cat. No. 15071), Bax (Cat. No. 2772), and glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) (Cat. No. 2118) were acquired from Cell Signaling 
Technology (Beverly, MA, USA). Peroxidase-conjugated secondary antibodies were obtained 
from Santa Cruz Biotechnology (Dallas, TX, USA). Z-VAD-FMK (Cat. No. 5503707), Z-DEVD-
FMK (Cat. No. 550378), Z-IETD-FMK (Cat. No. 550380), and Z-LEHD-FMK (Cat. No. 
550381) were purchased from BD PharmingenTM (Franklin Lakes, NJ, USA), and kaempferol, 
quercetin, and gallic acid were obtained from Sigma-Aldrich (St. Louis, MO, USA).

Cell culture
HeLa cells were cultured in DMEM supplemented with 10% FBS and 1% penicillin-streptomycin 
and maintained at 37°C under 5% CO2 conditions. The cell culture medium was replaced 
every two days, and subculturing was performed upon reaching 80% confluence.

Cell viability assay
Cell viability was assessed using a CellTiter 96 Aqueous One Solution Cell Proliferation 
Assay Kit (Promega, Madison, WI, USA) according to the manufacturer’s instructions. 
Briefly, HeLa cells were cultured in a 96-well plate in serum-free medium at 37°C for 6 h 
before treatment with various concentrations of E-OJ (0, 2.5, 5, 7.5, and 10 μg/mL) for 12 or 
24 h. Subsequently, MTS reagent was added, and the cell culture plate was incubated at 37°C 
for 2 h. The absorbance was measured at 490 nm using a fluorescence multi-detection reader 
(BioTek, Winooski, VT, USA). All experiments were performed in triplicate.

For the experiments used to confirm caspase dependence, the cells were pre-incubated with 20 
µM Z-VAD-FMK for 30 min before treatment with E-OJ and respective compounds. Following 
treatment, the cell survival rates were measured using the MTS assay, as described above.

Western blotting analysis
HeLa cells were treated with E-OJ, kaempferol, quercetin, or gallic acid for 12 h. In experiments 
validating caspase dependence, cells were pre-treated with 20 µM each of Z-VAD-FMK, 
Z-DEVD-FMK, Z-IETD-FMK, and Z-LEHD-FMK for 30 min before treatment with E-OJ or 
respective compounds.

Subsequently, the cells were washed with phosphate-buffered saline (PBS), pelleted, and 
dissolved in cold lysis buffer for 1 h. The extracted proteins were quantified using the BCA 
protein assay kit (Pierce, IL, USA). A total of 40 µg of protein samples were separated by 
10-15% SDS-PAGE electrophoresis (Bio-Rad, CA, USA) and transferred to a PVDF membrane 
using a semidry transfer system (Bio-Rad). The membranes were blocked with 5% nonfat 
milk in PBS-T solution (PBS with 0.1% Tween-20) and incubated overnight with primary 
antibodies. After three washes with PBS-T solution, the membranes were cultured with 
HRP-conjugated secondary antibodies for 2 h at 4°C. Subsequently, the membranes were 
washed three times with PBS-T. Finally, the expression of target proteins was visualized by 
exposing the membranes to an X-ray film using an enhanced chemiluminescence detection 
kit obtained from Santa Cruz (CA, USA). Intensity analysis of the bands was performed using 
the ImageJ software.
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Statistical analysis
All statistical analyses were performed using Prism v5.01 GraphPad (San Diego, CA, USA). 
Differences between the control and experimental groups were assessed using Student’s 
t-test, and statistical significance was considered at P < 0.05. The results are presented as 
mean ± SD. Statistical significance was considered as P < 0.05, P < 0.01, and P < 0.001.

RESULTS

The EtOAc fraction of O. japonicus inhibited the survival of tumor cells
In previous studies, we employed various organic solvents to extract O. japonicus, compared 
the anticancer activities of each extract, and discovered that the ethyl acetate-soluble fraction 
(E-OJ) exhibited the most potent anticancer effects among all fractions [1,8,16]. Additionally, 
gas chromatography-mass spectrometry (GC-MS) confirmed the presence of kaempferol, 
quercetin, and gallic acid in E-OJ [16]. Next, we sought to analyze the anticancer effects of 
E-OJ by comparing it with the specific components of O. japonicus.

To evaluate the effects on HeLa cell survival rates, cells were treated with various 
concentrations of E-OJ (2.5, 5, 7.5, and 10 μg/mL) for 12 or 24 h, and the cell survival rates 
were assessed using MTS analysis. As shown in Fig. 1, cells treated with E-OJ for 12 or 24 
h showed a significant decrease in cell survival rates compared to untreated control cells. 
Overall, the survival rates of the cells after E-OJ treatment decreased in a time- and dose-
dependent manner.

O. japonicus and its constituents induce apoptosis
Apoptosis mediated by the caspase pathway is an essential mechanism that inhibits cell 
growth, promotes tissue homeostasis, and eliminates damaged cells [22-25]. To investigate 
HeLa cell apoptosis induced by E-OJ and its constituents (kaempferol, quercetin, and gallic 
acid), we examined caspase dependence and assessed cell survival rates in the presence of 
caspase inhibitors. HeLa cells were pre-treated with the general caspase inhibitor, Z-VAD-
FMK, in the culture medium and subsequently exposed to E-OJ (10 μg/mL) for 12 h (Fig. 2). 
|Consistent with previous experiments, E-OJ significantly reduced the HeLa cell survival 

134https://doi.org/10.4162/nrp.2025.19.1.131

O. japonicus induce caspase-dependent apoptosis

https://e-nrp.org

100

50

0

Ce
ll 

vi
ab

ili
ty

 (%
 to

 c
on

tr
ol

)

Concentration of E-OJ (µg/mL)
2.5

* *

***
*** ***

***

Control 5.0 7.5 10.0

12 h
24 h

Fig. 1. Effect of O. japonicus on HeLa cell viability. HeLa cells were treated with the various concentrations of the 
EtOAc fraction of O. japonicus (E-OJ) for 12 and 24 h. Cell viability was measured using MTS assay. The results are 
presented as mean ± SD. 
E-OJ, the ethyl acetate fraction of O. japonicus extract. 
*P < 0.05; ***P < 0.001.



rates, which was partially reversed by caspase inhibition with Z-VAD-FMK. Examination of 
the cell survival rates induced by the constituents of E-OJ revealed that kaempferol had the 
most pronounced effect on HeLa cell death. The kaempferol-induced decrease in the survival 
rate was substantially restored by caspase inhibition. Quercetin exhibited a milder effect, but 
still showed a significant decrease in survival rates compared to the control group, while the 
effects of gallic acid were not evident in the MTS assay.

O. japonicus regulates the Bax/Bcl-2 ratio
The permeabilization of the mitochondrial outer membrane, accompanied by the release of 
cytochrome c and the formation of apoptosomes, is a well-known major pathway leading 
to cell death [26,27]. To investigate the effect of E-OJ and its extracts on the mitochondrial 
apoptosis pathway, we measured the changes in cell death-related Bcl-2 family proteins in 
HeLa cells treated with E-OJ, kaempferol, quercetin, and gallic acid. Bcl-2 family proteins 
can be classified as either anti-apoptotic or pro-apoptotic, the ratio of which determines the 
sensitivity or resistance of cells to apoptosis stimulation. In particular, the Bax/Bcl-2 ratio is a 
crucial indicator of cell death sensitivity [27-29].

Upon examining changes in the Bcl-2 and Bax protein levels in HeLa cells after E-OJ 
treatment, a dose-dependent increase in Bax expression was observed (Fig. 3A). Kaempferol 
showed the highest Bax/Bcl-2 ratio, quercetin exhibited approximately half the Bax/Bcl-2 ratio 
compared to kaempferol, and gallic acid did not show a significant difference compared to 
the control (Fig. 3B). These results confirm that kaempferol, quercetin, and gallic acid induce 
apoptosis via the mitochondrial pathway at varying intensities. Additionally, the higher the 
concentration of E-OJ, the higher the sensitivity to cell death.

O. japonicus induces caspase-mediated apoptosis
The regulation of apoptosis by caspases involves both extrinsic pathways triggered by death 
receptor signaling and intrinsic pathways induced by cellular stress [30]. Both pathways 
are controlled by various types of caspases, with each caspase known to undergo activation 
through cleavage and operate in an activated form [31]. For instance, the executioner 
caspase caspase-3 plays a crucial role in the final stages of apoptosis, breaking down 
essential proteins and inducing cell death through cleavage. Caspase-8 is involved in the 
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Fig. 2. Effect of general caspase inhibitor on viability in HeLa cells after treatment with E-OJ. HeLa cells were 
treated with 10 μg/mL E-OJ, 80 μM kaempferol (K), quercetin (Q), and gallic acid (G) for 12 h, followed by 
treatment with or without Z-VAD-FMK (a general caspase inhibitor). Cell viability was determined using the MTS 
assay. Values are expressed as mean ± SD. 
E-OJ, the ethyl acetate fraction of O. japonicus extract. 
***P < 0.001.



extrinsic death receptor pathway (extrinsic pathway), whereas caspase-9 is associated with 
the mitochondrial pathway (intrinsic mitochondrial pathway). To elucidate the apoptotic 
signaling pathways, we assessed the protein levels of pro-caspase-3, cleaved caspase-3, 
pro-caspase-8, cleaved caspase-8, pro-caspase-9, and cleaved caspase-9, and examined both 
pathways of apoptosis.

For the ultimate apoptosis trigger, caspase-3, we observed a dose-dependent increase in 
the cleavage ratio induced by E-OJ (Fig. 4A). However, when treated with constituents 
of O. japonicus, a lower caspase-3 cleavage ratio was induced. The activation of caspase-8 
by kaempferol, quercetin, and gallic acid was less than that induced by E-OJ (Fig. 4B). 
Interestingly, for caspase-9 associated with the intrinsic pathway, cleavage occurred at levels 
similar to those of E-OJ for all three compounds (kaempferol, quercetin, and gallic acid) 
(Fig. 4C). These results did not align with the MTS assay results (Fig. 2) or with caspase-3 
activation (Fig. 4A).

To determine whether the extrinsic or intrinsic apoptotic pathways affect E-OJ-induced 
apoptosis, general caspase inhibitors (e.g. Z-VAD-FMK) and narrow-spectrum caspase 
inhibitors (e.g. Z-DEVD-FMK (caspase-3 inhibitor), Z-IETD-FMK (caspase-8 inhibitor), and 
Z-LEHD-FMK (caspase-9 inhibitor)) were used. As shown in Fig. 5A-C, upon pre-treatment 
with a caspase inhibitor followed by E-OJ treatment, an increase in the pro-apoptotic forms of 
caspases and a decrease in the expression of the active forms (cleaved caspases) was observed.

These results indicate that caspase-3, -8, and -9 play critical roles in inducing the apoptotic 
effects of E-OJ in HeLa cells. Consequently, E-OJ appears to function through both the 
extrinsic and intrinsic apoptotic pathways.
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Fig. 3. Alterations in the expression of Bcl-2 and Bax proteins upon treatment with E-OJ, kaempferol, quercetin, 
and gallic acid. HeLa cells were treated with E-OJ, kaempferol (K), quercetin (Q), or gallic acid (G) for 12 h, 
respectively. (A) Western blotting analysis was performed to analyze the expression of Bcl-2 and Bax proteins, 
with GAPDH serving as an internal control. (B) The ratio of Bax/Bcl-2 was calculated. The band intensities were 
measured using densitometry in three separate experiments with comparable results. The data are expressed as 
mean ± SD. 
E-OJ, the ethyl acetate fraction of O. japonicus extract. 
*P < 0.05; **P < 0.01; ***P < 0.001.
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*P < 0.05; **P < 0.01; ***P < 0.001.

(A)

0

5

10

15

Pr
ot

ei
n 

ex
pr

es
si

on
(r

el
at

iv
e 

of
 c

on
tr

ol
)

***
***

******

*** ** ** *
*

***

Pro-caspase-3
Cleaved caspase-3

(B)

0

2

8

10

Pr
ot

ei
n 

ex
pr

es
si

on
(r

el
at

iv
e 

of
 c

on
tr

ol
)

4

6

*** *** *** ****** ** ********

Pro-caspase-8
Cleaved caspase-8

(C)

0

1.5

2.0

2.5

Pr
ot

ei
n 

ex
pr

es
si

on
(r

el
at

iv
e 

of
 c

on
tr

ol
)

1.0

0.5
***

***

***

*
***

***
**

******

Pro-
caspase-3

Pro-
caspase-8

Pro-
caspase-9

Cleaved
caspase-3

Cleaved
caspase-8

Cleaved
caspase-9

GAPDH GAPDH GAPDH

Pro-caspase-9
Cleaved caspase-9

+− − − −−Z-VAD-FMK

−− + − −−Z-EDVD-FMK

−− − + −−Z-IETD-FMK

−− − − +−Z-LEHD-FMK

100 10 10 1010E-OJ (µg/mL)

+− − − −−Z-VAD-FMK

−− + − −−Z-EDVD-FMK

−− − + −−Z-IETD-FMK

−− − − +−Z-LEHD-FMK

100 10 10 1010E-OJ (µg/mL)

+− − − −−Z-VAD-FMK

−− + − −−Z-EDVD-FMK

−− − + −−Z-IETD-FMK

−− − − +−Z-LEHD-FMK

100 10 10 1010E-OJ (µg/mL)

Fig. 5. Effect of caspase inhibitors on apoptosis of HeLa cells treated with E-OJ. Hela cells were pretreated with Z-VAD-FMK (pan-caspase inhibitor), Z-DEVD-FMK 
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*P < 0.05; **P < 0.01; ***P < 0.001.



DISCUSSION

In this study, we investigated the effect of the ethyl acetate fraction of Orostachys japonicus (E-OJ) 
on the induction of apoptosis in HeLa cervical cancer cells. Compared to known constituents 
of O. japonicus, such as kaempferol, quercetin, and gallic acid, we elucidated the apoptotic 
mechanisms triggered by E-OJ. The activation of caspase-9 cleavage by O. japonicus constituents 
and E-OJ was indicative of the occurrence of apoptosis through the mitochondrial pathway. 
This was further confirmed by the increased Bax/Bcl-2 ratio following E-OJ and kaempferol 
treatment. Additionally, the induction of apoptosis through the death receptor pathway 
involving caspase-8 was also observed (Fig. 6). This study aimed to elucidate the mechanism 
underlying the induction of apoptosis by E-OJ in cancer cells and its triggering pathways.

HPV has a double-stranded DNA genome encoding eight proteins, namely, E1, E2, E4, E5, E6, 
and E7 (early), as well as L1 and L2 (late) [32,33]. Among these, E5, E6, and E7 affect the signal 
transduction in the death receptor pathway of apoptosis. E5 disrupts the formation of the 
death-inducing signaling complex triggered by FasL and TRAIL. E6 induces the inactivation 
of pro-apoptotic proteins, such as p53, Bak, and FADD. Furthermore, it hinders Fas-triggered 
apoptosis by preventing the activation of caspase-3 and -8 [34]. E7 acts as an oncoprotein 
by inducing the degradation of the anti-apoptotic protein pRb via the ubiquitin pathway 
[35,36]. Additionally, E7 increases the expression of the cellular inhibitor of apoptosis protein 
2 (c-IAP2), which is involved in the degradation of caspase and DISC proteins, leading to 
resistance against apoptosis [32,37]. Therefore, HeLa cells, an HPV-induced human cervical 
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Fig. 6. Mechanisms of caspase-dependent apoptosis induced OJ. 
OJ, Orostachys japonicus.



cancer cell line, exhibit resistance to apoptosis, which is distinct from other cancer cell lines. 
The activity of caspases, which play crucial roles in apoptosis, differs from that in other 
cancer cells. In this study, we confirmed that E-OJ and O. japonicus extracts primarily induced 
apoptosis through the mitochondrial pathway (Fig. 3). These results suggest that owing to the 
resistance of HPV-derived proteins to death receptor-triggered apoptosis, cell death proceeds 
through an alternative mitochondrial pathway. However, the significant decrease in caspase-8 
protein expression and the increase in cleaved caspase-8 observed in Fig. 4B indicate that E-OJ 
overcame the resistance to death receptor-triggered apoptosis. Nevertheless, this study did not 
elucidate the direct or indirect interactions between E-OJ and HPV E5, E6, and E7 proteins, 
warranting further investigation in future studies.

In this study, we investigated the caspase-mediated apoptotic pathway induced by E-OJ 
components. Previous studies have extensively explored the induction of apoptosis by these 
compounds. Kaempferol has been reported to inhibit proliferation and induce G2/M phase 
cell cycle arrest in the triple-negative breast cancer cell line, MDA-MB-231. Additionally,  
it increases the expression of cleaved caspase-9 and -3, leading to apoptosis [38,39]. 
Apoptosis has also been reported in human acute leukemia Jurkat T-cell clones and human 
umbilical vein endothelial cells through the activation of caspase-9, -8, and -3 [40,41]. 
Quercetin induces cell cycle arrest in the S and G2/M phases, and promotes apoptosis by 
modifying Foxo3a signaling in MDA-MB-231 cells [42]. Studies have shown that quercetin 
induces DNA damage, p53 upregulation, loss of mitochondrial membrane potential, and 
sequential cleavage of caspase-9 and -3, ultimately leading to apoptosis. Quercetin mediates 
apoptosis via the mitochondrial pathway [43]. Gallic acid is known to induce apoptosis 
through mitochondria-dependent pathways, involving the cleavage of caspase-9, in various 
cancer cell lines, such as small cell lung cancer, leukemia, and pancreatic cancer [44-47]. 
Zeng et al. [48] reported that gallic acid induces apoptosis in Bladder Cancer T24 Cells via 
mitochondrial dysfunction, which is characterized by increased mitochondrial ROS levels, 
cytochrome c release, and an increased expression of cleaved caspase-3.

Previous analyses of E-OJ using GC-MS have revealed that kaempferol, quercetin, and gallic 
acid constitute approximately 16.13% of E-OJ (kaempferol 6.81%, quercetin 5.08%, and gallic 
acid 4.24%), while the remaining 83.88%, represented by 12 peaks, was unidentified [16].  
In this study, we confirmed that E-OJ, which contains kaempferol, quercetin, and gallic acid, 
induces apoptosis through the mitochondrial pathway rather than the death receptor pathway 
(Fig. 5). This aligns with previous research indicating that kaempferol, quercetin, and gallic 
acid induce apoptosis via the mitochondrial pathway. Therefore, the anticancer efficacy 
observed in HeLa cells treated with E-OJ is likely derived from the constituents of O. japonicus, 
and appears to exhibit higher anticancer efficacy than the individual components.

This study has limitations in that it only investigated the effects on a single cancer cell line, 
and the evaluation was limited to virus-derived cancer cells. Additionally, protein expression 
pattern analysis using western blotting was conducted at a single time point (12 h). 
Furthermore, we focused on analyzing specific molecules within the signaling pathways that 
induce cell death. However, further studies are needed for a comprehensive understanding 
of the entire pathway. Although this study analyzed apoptosis based on the activity of specific 
caspases, identifying changes in a broader range of signaling molecules is necessary to 
accurately distinguish between the intrinsic and extrinsic pathways. Therefore, additional 
research is required to address these limitations and to provide a more comprehensive 
understanding of the observed effects.
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In this study, O. japonicus extract was analyzed in comparison with its individual components. 
As a result, O. japonicus extract was found to be more effective in inhibiting cancer cell 
proliferation and inducing apoptosis. The apoptotic response induced by E-OJ operates via 
the pathways depicted in Fig. 6. These findings highlight the potential of O. japonicus extract 
as an anticancer therapeutic agent, particularly for the treatment of cervical cancer.
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