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Evolutionary food web model 
based on body masses gives 
realistic networks with permanent 
species turnover
K.T. Allhoff1, D. Ritterskamp2, B.C. Rall3, B. Drossel4 & C. Guill5

The networks of predator-prey interactions in ecological systems are remarkably complex, but 
nevertheless surprisingly stable in terms of long term persistence of the system as a whole. In 
order to understand the mechanism driving the complexity and stability of such food webs, we 
developed an eco-evolutionary model in which new species emerge as modifications of existing ones 
and dynamic ecological interactions determine which species are viable. The food-web structure 
thereby emerges from the dynamical interplay between speciation and trophic interactions. The 
proposed model is less abstract than earlier evolutionary food web models in the sense that all three 
evolving traits have a clear biological meaning, namely the average body mass of the individuals, the 
preferred prey body mass, and the width of their potential prey body mass spectrum. We observed 
networks with a wide range of sizes and structures and high similarity to natural food webs. The 
model networks exhibit a continuous species turnover, but massive extinction waves that affect more 
than 50% of the network are not observed.

Classical models addressing the structure and stability of food webs are based on stochastic algorithms 
that produce structural patterns similar to empirically measured food webs1, such as the niche model2 
or the cascade model3. A more recent approach is to use the empirically found allometries of body size 
and foraging behaviour of individual consumers to predict the links between species on a more biological 
basis4.

However, real food webs are not produced by a generative algorithm, but have been shaped by their 
evolutionary history and show an ongoing species turnover. New species in a food web occur by immi-
gration and speciation, and species vanish due to extinction. Currently, the world faces one of the largest 
extinction waves ever, which is thought to be caused by anthropogenic drivers such as climate change 
and land use5. Even without human interference or other catastrophic causes, and apart from evolution-
ary suicide due to runaway selection6, biological extinctions occur due to intrinsic processes, i.e., the 
dynamic trophic and competitive interactions among species7,8. The stability of food webs in terms of 
resistance to extinction waves after a perturbation (such as the removal or addition of a species), thus 
also depends on the network structure of these interactions between the species9,10, and conversely the 
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network structure results from species extinctions and additions. Understanding the interplay of food 
web structure and stability has therefore been identified as one of the most important questions in ecol-
ogy11.

Over the last decade, several models were introduced that include evolutionary rules on a longer 
time scale, in addition to population dynamics on shorter time scales: The former enables new species 
to enter the system, whereas the latter determines which species are viable and which go extinct. The 
newly emerging species can be modelled and interpreted either as invaders from another, not explic-
itly considered region or as “mutants” of existing species. The emerging network structures evolve in a 
self-organising manner, giving rise to complex, species-rich communities even when starting from initial 
networks with very few species1.

A particularly simple and often cited evolutionary food web model was introduced in 2005 by Loeuille 
and Loreau12 and subsequently modified by several other authors13–15. Each species is characterised by 
its body mass, which is the only evolving trait. Feeding and competition interactions are determined 
via differences in body mass. The fact that body mass is an ecologically interpretable trait makes the 
results from this model easily comparable to empirical data. This major advantage has been pointed out 
in the review on large community-evolution models by Brännström et al.16. The evolutionary process in 
this model generates large networks that show an almost static behaviour, with clearly defined niches 
all of which are and remain occupied. Even if a newly emerging species is slightly better adapted to the 
resources and therefore displaces a species of similar body mass, it has the same feeding preferences 
and hence the same function in the food web, leading to a very low species turnover without secondary 
extinctions15. The network structure is robust with respect to various changes in the population dynamics 
rules, indicating that some simple, robust mechanism structuring these food webs is at work12,15.

Complex networks with a less rigid structure emerge in the evolutionary version of the niche model17. 
The model allows for the evolution of three traits instead of just one, namely the niche value, the centre 
and the width of the feeding range. Other authors describe a species in a more abstract way by a vector 
of many traits, as implemented in the matching model18,19 and in the webworld model20,21. Recently, 
also several individual-based models for evolving food webs were introduced22–24. The emergence of 
complex food webs in these models is highly nontrivial. Some past attempts to set up an evolutionary 
model lead to repeated network collapse instead of persisting complex networks25. Other attempts lead 
to trivial network structures, like simple food chains in the evolving niche model17 or a single trophic 
level in the webworld model21. In both models, adaptive foraging was required in order to obtain more 
complex networks.

Allhoff and Drossel15 suggested that an evolutionary food web model has to fulfil two conditions to 
be able to generate diverse and complex networks. First, it should allow for the evolution of more traits 
in addition to body mass in order to generate several possible survival strategies like for example spe-
cialists and omnivores. This idea is consistent with results from a recent empirical study by Rall et al.26, 
who found that predators of similar body mass differ significantly in their feeding preferences. Second, 
the evolution of each trait has to be restricted in order to prevent unrealistic trends, for example towards 
extremely small or large body masses or towards extremely broad or narrow feeding ranges. In this con-
text, the stabilising effect of adaptive foraging in previous models could be explained by the fact that a 
predator can focus on its most profitable prey without losing adaptation to other prey.

In this paper, we propose a new evolutionary food web model that includes the restriction of trait 
evolution in a more direct way. Similarly to the evolutionary niche model17 and supported by empirical 
data regarding the body-mass ratios of predator-prey pairs27,28, we characterise a species by three traits 
with clear biological meaning: its own body mass (which determines its metabolic rates), its preferred 
prey body mass, and the width of its potential prey body mass spectrum. The evolutionary rules in our 
model confine the traits within certain boundaries, without the requirement to include adaptive foraging.

The model most similar to our model is the one by Loeuille and Loreau12. It also has body mass as 
a key trait and a similar concept for setting the feeding preferences. Our model differs from the model 
by Loeuille and Loreau in the number of traits that characterize a species (3 instead of 1), the functional 
response (Beddington-deAngelis instead of linear), the competition rules (based on link overlap instead 
of body mass differences), the possibility of cannibalism and loops (included only in our model) and 
the resource dynamics. Moreover, we consider body mass ratios instead of body mass differences so 
that the body masses in our model spread over several orders of magnitude instead of only one. The 
bio-energetics of the species in our model follow well documented allometric scaling relationships29, 
leading to networks with realistic body-mass scaling relations that can be tested directly against empirical 
data.

We demonstrate the capabilities of our model by evaluating 18 common food web properties and 
compare them to a data set of 51 empirical food webs from a large variety of different ecosystems. We 
further use the well-known evolutionary model by Loeuille and Loreau12 as a benchmark to assess the 
quality of the predictions of our model. In principle, both models are able to produce diverse networks. 
However, we obtain a higher variability in the feeding preferences and survival strategies and therefore 
more realistic values for the corresponding network properties. Moreover, while the network structures 
of Loeuille and Loreau are static, species turnover and extinction avalanches occur naturally in our 
model.
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The Model
The model includes fast ecological processes (population dynamics), which determine whether a species 
is viable in a given environment that is created by the other species, and slow evolutionary processes 
(speciation events), which add new species and enable the network to grow and produce a self-organised 
structure. A species i is characterised by its body mass, mi, the centre of its feeding range, fi, and the 
width of its feeding range, si. These traits determine the feeding interactions in the community (see 
Fig. 1) and thereby the population dynamics. A summary of all model parameters and variables is given 
in table 1.

Population dynamics.  The population dynamics follows the multi-species generalisation of the bio-
energetics approach by Yodzis and Innes30,31. The rates of change of the biomass densities Bi of the 
populations are given by
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is the rate of successful attacks of species i on individuals of species j, with the Gaussian feeding kernel 
Nij as shown in Fig. 1. The parameter hi is the handling time of species i for one unit of prey biomass, 
and cil quantifies interference competition among predators i and l32–34. It depends on their similarity, as 
measured by the overlap ( )∫= ⋅I N N d mlogil ij lj j10  of their feeding kernels, via
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Figure 1.  Model illustration using 4 species . Species 3 (black triangle) is characterised by its body mass 
m3, the centre of its feeding range f3, and the width of its feeding range s3. The Gaussian function (black 
curve) describes its attack rate kernel N3j on potential prey species. Here, species 3 feeds on species 2 and 
1 (grey triangles) with a high resp. low attack rate. Species 1 and 2 are consumers of the external resource, 
represented as species 0 with a body mass m0 =  1 (white triangle). Also shown is the corresponding network 
graph.
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The normalisation of the competition with Iii was proposed by Scheffer et al.35 and accounts for the 
fact that the competition matrix is not symmetric. More specialised species exert a higher competition 
pressure than species with broad feeding ranges. The overlap Iil is similar to the niche overlap discussed 
by May36.

We assume that interference competition is significantly higher within a species than between differ-
ent species, e.g. due to territorial or mating behaviour. To account for this, we introduce an intraspecific 
competition parameter cintra and set cii =  cfood +  cintra.

Speciation events.  Each simulation starts with a single ancestor species with body mass m1 =  100 
and feeding parameters f1 =  1 and s1 =  1, which is thus feeding on the external resource with its max-
imum attack rate. The initial biomass densities are B0 =  K =  100 for the resource and B1 =  m1 ⋅  ε =  2 ⋅  
10−2 for the ancestor species. The parameter ε is the extinction threshold, i.e., the minimum population 
density required for a population to survive. At each unit time step, species below this extinction thresh-
old get removed from the system.

A speciation event occurs with probability ω =  0.0001 per unit time. This is so rare that the system is 
typically close to a fixed point before the next mutation occurs. Then, one of the currently existing spe-
cies (but not the external resource) is chosen randomly as parent species i for a “mutant” species j. Thus, 
every species has the same probability ω/S to “mutate”, where S is the number of currently viable species. 
The logarithm of the mutant’s body mass, log10(mj), is chosen randomly from the interval [log10(0.5mi), 
log10(2mi)], meaning that the body masses of parent and mutant species differ at most by a factor of 2. 
The mutant’s initial biomass density is set to Bj =  mj ⋅  ε and is taken from the parent species.

The mutant’s feeding traits fj and sj are independent of the parent species. The logarithm of the feed-
ing centre, log10 fj, is drawn randomly from the interval [(log10(mj) −  3), (log10(mj) −  0.5)], meaning that 
the preferred prey body mass is 3 to 1000 times smaller than the consumer’s body mass, and following 
the results from Brose et al.27. The width of the feeding range, sj, is drawn randomly from the interval 
[0.5,1.5]. A small value of sj corresponds to a more specialised consumer, while a large value of sj char-
acterises a consumer with a broad feeding range and lower attack rates. A combination of large preferred 
prey mass fj and a wide feeding range enables a consumer to prey on species with a larger body mass 

parameter meaning

resource

  m0 =  1 body mass

  R =  1 maximum mass-specific growth rate

  K =  100 carrying capacity

  B0 biomass density

species i

  mi  body mass

  fi centre of feeding range

  si standard deviation of feeding range

  Bi biomass density

population dynamics 

  ej =  0.85 (0.45) assimilation efficiency for animal (plant) 
resources

  gij functional response of predator i on prey j

  aij attack rate of predator i on prey j

  = ⋅ .a m1i i
0 75 attack rate parameter

  = . ⋅ − .h m0 398i i
0 75 handling time of predator i

  cil competition on species i from species l

  cfood competition parameter for food

  cintra  intraspecific competition parameter

  = . ⋅ − .x m0 314i i
0 25 respiration rate of species i

evolutionary rules

  ω =  10−4 mutation probability

  ε = 2
104

initial population density of a new species and 
extinction threshold

Table 1.   A summary of all model parameters. The values of the population parameters are based on the 
work by Yodzis and Innes30. If no value is given for a parameter, it is variable.
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than its own. This enables the emergence of cannibalism and feeding loops. The fixed intervals keep the 
evolving traits in reasonable ranges and prevent unrealistic trends, following the results by Allhoff and 
Drossel15.

When testing the robustness of the model predictions with respect to the model details, we used 
alternative rules, where the probability for choosing a parent species is proportional to its biomass (sim-
ilar to the model by Loeuille and Loreau12) or to its inverse generation time − /mi

1 4 so that the mutation 
rate is proportional to the reproduction rate. Furthermore, we tested Gaussian distributions of mutant 
body masses around the parent with a standard deviation between 0.09 and 1. We used a cutoff at two 
standard deviations resulting in a maximum body mass factor between parent and daughter species 
between 102⋅0.09 ≈  1.5 and 102⋅1 ≈  100. The former describes local speciation events, whereas the latter 
describes species invasions from not explicitly modelled regions. We also compared the results to simu-
lations where the mutants body mass is drawn randomly from the interval [10−0.5,106]. Finally, with a 
similar approach, we also included heredity into the feeding parameters si and fi by combining Gaussian 
distributions around the parent’s traits with the above given mutation intervals.

Methods
The computer code for our simulations was written in C. We used the Runge-Kutta-Fehlberg algorithm 
provided by the GNU Scientific library37 for the numerical integration of the differential equations. 
Simulations were run for 5 ⋅  108 time units. For comparison, the generation time of the initial ancestor 
species with body size m1 =  100 is of the order of = ≈

.

.

10
x
1 100

0 3141

0 25
 time units.

The competition parameters cfood and cintra have a strong effect on the diversity of the emerging food 
webs. To obtain the network variability observed in nature, we performed computer simulations with 
all four combinations of cfood =  0.6 or 0.8 and cintra =  1.4 or 1.8. The time series of these simulations are 
shown in the online supplementary material. From each simulation run, we collected 80 food webs 
obtained after every 5 ⋅  106 time units from t =  108 to t =  5 ⋅  108, resulting in a total of 320 different 
networks. Due to the initial build-up of the network, the first 108 time units were not taken into account.

The structure of the emerging food webs is compared both to food webs produced with the model by 
Loeuille and Loreau12 and to empirical food webs. For the empirical data, we re-evaluated 51 of the 65 
food webs from different ecosystem types analysed by Riede et al.38 for which we had body-mass data 
for all species in the network (for the complete list see online supplementary material). For the model 
by Loeuille and Loreau, we evaluated the final network structures obtained with 75 combinations of 
different parameter values. Due to the static network structure, we could not obtain different networks 
from one evolutionary simulation. The niche width was set to = = . , . , . , . , .nw 0 5 1 0 1 5 2 0 2 5s

d

2
 and the 

competition strength to α0 =  0.1, 0.2, 0.3, 0.4, 0.5, similar to the original work. To get networks of com-
parable size we decreased the competition range, β =  0.025, 0.05, 0.075.

Both models use Gaussian feeding kernels with in principle infinite width to describe the feeding 
interactions, meaning that each species can prey on every other species. Thus, for analysis, very weak 
links have to be cut off in order to obtain meaningful network structures. In our networks, we removed 
all links that contribute less than 75% of the average link to the total resources of a consumer. This 
criterion is weaker than it might seem, because most of the links of a predator are very weak, and so is 
the average link strength. Our cutoff measure depends on both the attack rate and the prey’s biomass 
density. It thereby mimics unavoidable sampling limits in empirical food-web studies. For the networks 
produced by the algorithm of Loeuille and Loreau we used the cutoff criterion of the original work and 
removed all links with an attack rate that is smaller than 15% of the respective predator’s potential maxi-
mum attack rate, disregarding the prey’s biomass density. Since the value of the cutoff criterion is to some 
extent arbitrary, we report its effects on the predicted network properties in the online supplementary 
material. There we also show results obtained for the model by Loeuille and Loreau with our cutoff rule.

Results
A typical simulation run.  A typical simulation run with the competition parameters cintra =  1.4 and 
cfood =  0.8 is shown in Fig. 2. After an initial period of strong diversification, the system reaches a size of 
approximately 60 species (panel (a)) on 3 to 4 trophic levels above the resource (panel (c)). The species 
form clusters of similar body masses, as shown in panel (b). New predator and prey species emerge pref-
erentially within these clusters: A prey species in a cluster experiences less predation pressure due to the 
saturation of the functional response of the predator, and the predation input of a predator is larger if its 
feeding preferences match such a cluster. Therefore, we observe a trend towards strong specialisation on 
these clusters, resulting in the following network structure. Species in the first cluster have a body mass 
of approximately 101, specialise on the resource and represent most of the second trophic level. Species 
in the second cluster with a body mass of approximately 102 −  103 feed either on the resource (TL ≈  2) 
or on the first cluster (TL ≈  3). Species in the top cluster with a body mass greater than 103 specialise 
either on the first or on the second cluster and therefore have intermediate trophic positions (3 ≤  TL ≤  4). 
Some species have even higher trophic positions due to cannibalism and loops.

The initial build-up of the network continues until the species in the top cluster are close to the 
extinction threshold. Once all clusters have emerged, the system shows a continuous turnover of species. 
We suppose the following turnover mechanism. Mutants with very few predators can occur occasionally 
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if their body mass is between two clusters and if the other species are specialised on the clusters. If 
such a mutant has viable feeding parameters, it can grow a large population and displace many other 
species at once, potentially even causing secondary extinctions. Examples for such extinction events are 
visible at t ≈  2 ⋅  108 and t ≈  4.3 ⋅  108. After an extinction event, the network rearranges, and temporally 
also species with broader feeding ranges appear, before the trend towards specialisation followed by an 
extinction event starts again.

Network evaluation and comparison.  We compared 320 networks from our model with 51 empir-
ical networks and 75 networks from the model by Loeuille and Loreau12, see Fig. 3. Panels (a)–(c) show 
the distributions of body masses of all three data sets. The observed peaks in our simulated data corre-
spond to the body mass clusters mentioned before. The distance between the peak maxima is determined 
by the upper boundary of the mutation interval of the feeding centre. Single empirical food webs show 
a similar peak pattern (not shown). In contrast, the body mass distribution of the model by Loeuille and 
Loreau looks blurred, due to our choice of the niche width =nw s

d

2
. With smaller values of the feeding 

range s, the network structure is strongly layered and clusters of body masses that are multiples of the 
feeding distance d occur, where each species feeds on those in the cluster below and is prey to those in 
the cluster above15. We also observed that because we based the network structure on predator-prey 
body-mass ratios instead of body-mass differences, the resulting community-size spectra from our model 
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Figure 2.  Network size, body masses and flow-based trophic positions60 of all species occurring during 
one exemplary simulation run with competition parameters cintra = 1.4 and cfood = 0.8. Panel (a) also 
shows the average network size and its standard deviation for 18 simulations with identical parameters but 
different random numbers. Body masses and trophic positions were plotted at every 25th mutation event. 
Network visualisations for the time points indicated by vertical lines are shown in the online supplementary 
material.
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follow empirical observations and theoretical predictions more closely than those from the model by 
Loeuille and Loreau, as shown in the online supplementary material.

Panels (d)–(f) show the distributions of trophic levels of all three data sets. Here, we use the 
short-weighted instead of the flow-based trophic level. This allows for better comparison with the empir-
ical data for which the population sizes are often not available. The comparison between the two models 
reveals the main difference between the two different cutoff rules. A link with intermediate attack rate 
to a small prey population represents only a small proportion of the predator’s diet, and is therefore 
neglected when using our cutoff threshold (75% of the average link). However, it is not recognised as a 
weak link with the cutoff rule by Loeuille and Loreau (15% of the maximum attack rate). On the other 
hand, a link with small attack rate to a big prey population (especially to the resource) is deleted in their 

Figure 3.  Frequency distributions of body masses and short-weighted trophic level60, as well as the 
distributions of generality (number of prey species) and vulnerability (number of predators). The latter 
two are normalised by the average number of links per species. nm: 320 networks from 4 simulations of 
our new model with all four combinations of cfood =  0.6 or 0.8 and cintra =  1.4 or 1.8. emp: Average over 51 
empirical food webs. LL: Average over 75 simulations of the model by Loeuille and Loreau12. Note that panel 
(c) shows absolute body masses, since in this model all body masses are in the same order of magnitude. See 
Methods for more information.
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model. Thus, trophic levels are overestimated, whereas our model with our cutoff rule results in a quite 
realistic distribution.

Both models have difficulties reproducing the empirical distributions of generality (number of prey 
species) and vulnerability (number of predators), which are much broader than the distributions pro-
duced by the models (panels (g)–(l)). For the model by Loeuille and Loreau, the distribution results 
from the fact that the species in the model feed only on prey with smaller body masses. The situation is 
similar to the cascade model3, which also constrains predators to feed only on prey with a lower rank. 
Consequently, both generality and vulnerability cannot be larger than twice the average number of links 
per species. In our new model, the distribution of the vulnerability shows two humps. The first hump 
contains the carnivores in the higher trophic levels that feed on herbivores or on other carnivores. They 
have a high generality and a small vulnerability. The second hump contains the herbivores that feed on 
the resource. They are prey to many other species and hence have a high vulnerability.

We ascribe the differences between the models and the empirical distributions to the fact that both 
models have only one resource, which means that all herbivores feed on the same resource, whereas in 
empirical networks herbivores can have more than one resource. Furthermore, both models ignore the 
within-species body-mass distribution by assigning to each species a precise value of the body mass. This 
also narrows down the range of body sizes a species can feed on or is vulnerable to.

By analysing the 320 networks from the 4 simulations separately (see Fig.  4), we found two trends 
concerning the network size (panel (a)): First, the stronger the intraspecific competition cintra, the smaller 
are the population sizes and the more populations can survive on the same amount of energy provided 
by the resource. Second, the stronger the competition for food cfood is, the sooner species can displace 
others resulting in rather small networks with fast evolutionary species turnover.

Both models are able to produce networks of realistic sizes, but tend to overestimate the number 
of links per species (panel (b)) and hence the connectance (panel (c)). The effect is much larger in the 
model by Loeuille and Loreau due to their original cutoff rule. This also explains the high fraction of 
omnivores and the low fraction of top and herbivorous species (panels (d)–(f)), as well as the high val-
ues of the number of chains and the clustering coefficient (panel (o) and (p)) and the small value of the 
characteristic path length (panel (r)). In the online supplementary material, we show that the model by 
Loeuille and Loreau provides more realistic predictions when using our cutoff rule.

Both models fail to reproduce the maximum similarity (panel (q)), due to the same reasons that also 
lead to the narrow distributions of generality and vulnerability. For the remaining panels, the model by 
Loeuille and Loreau performs worse than our model regardless which cutoff rule is used. For example, 
the short-weighted trophic levels (panel (j)–(l)) are not only overestimated due to the cutoff rule, but 
also reflect the regular network structure. As mentioned above, these networks are layer-like structures, 

Figure 4.  Network properties of four realisations with different values of the competition parameters. 
w/w: Weak competition, cintra =  1.4/cfood =  0.6. w/s: Weak intraspecific competition and strong competition 
for food, cintra =  1.4 / cfood =  0.8. s/w: Strong intraspecific competition and weak competition for food, 
cintra =  1.6 / cfood =  0.6. s/s: Strong competition, cintra =  1.6 / cfood =  0.8. emp: Average over 51 empirical 
food webs. LL: Average over 75 simulations of the model by Loeuille and Loreau12. See Methods for 
more information. Details on the calculation of these network characteristics can be found in the online 
supplementary material.
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where each cluster represents one trophic level. Since all clusters accommodate a similar number of 
species instead of heaving more species on lower levels like in our model, the mean trophic level is 
overestimated. Moreover, the model does not include cannibalism (panel (m)) and loops (panel (n)), for 
which our model provides good predictions.

Due to the evolution of three instead of one trait, we obtain more diverse network structures than 
Loeuille and Loreau. We observe a higher standard deviation of the generality, the vulnerability and the 
linkedness (panel (g)–(i)), reflecting different feeding preferences and survival strategies.

Robustness of the results against variations of the evolutionary rules.  In order to ensure that 
our findings are no artefacts of the specific choice of evolutionary rules, we tested the robustness of our 
results against the changes outlined at the end of the model section. We found that making mutation 
probabilities dependent on biomass or body mass influences the time dependency of the network devel-
opment but leaves the averaged network properties, like the total network size, the distribution of body 
masses and the fraction of species or biomasses per trophic level, mostly unchanged. Also the trend 
towards strong specialisation with subsequent extinctions still occurs in these variants.

When changing the degree to which the parent’s body mass is inherited by the mutant, the main 
effect was that species turnover became slower with stronger inheritance. In this case it is less likely that 
mutants with body masses between two clusters occur, which have few predators and cause extinction 
avalanches. The probability for such mutants increases with a decreasing degree of inheritance, which 
is consistent with our oberservation that the body mass clusters appear to be blurred in case of a very 
low degree of inheritance. The same is true for randomly chosen body masses. However, we still obtain 
large, complex networks.

If the parent species i and the mutant j have similar feeding centres, fi ≈  fj, the initial build-up of 
different trophic levels and their recovery after an extinction avalanche is also slowed down. With very 
strong inheritance of the feeding centre, all species will focus on the resource and no mutant emerges 
with a feeding centre matching the first body mass cluster, leading to trivial structures with only one 
trophic level. If parent and mutant have a similar degree of specialisation, si ≈  sj, all species exert and 
experience a similar competition pressure. Thus, instead of one species displacing another, both popula-
tions stay small and hence more populations per trophic level can survive. However, small or intermedi-
ate degrees of inheritance in the feeding traits leave the network characteristics again mostly unchanged. 
The situation is different, when either the feeding range or the feeding centre is chosen from an interval 
around the parent’s trait without any body mass dependent constraint. In consistency with the predic-
tions of Allhoff and Drossel15, these variants lead to unrealistic trends and trivial instead of complex 
network structures.

Discussion
We introduced a new evolutionary food web model where the feeding links are based on body mass, and 
where species differ by body mass, feeding centre, and feeding range. By iterating population dynamics 
and speciation events for a sufficiently long time, we obtained complex networks, which show a high 
degree of commonality with empirical food webs. The new model is able to produce more realistic and 
more diverse network structures than the model by Loeuille and Loreau12.

Both models use a very similar approach of Gaussian feeding kernels to determine the interactions 
between the species, which by construction leads to perfectly interval networks. Following the results of 
Stouffer et al.39, we assume this to be a reasonable approximation. In contrast to the model by Loeuille 
and Loreau, the new model allows for cannibalism and loops, since the feeding range can extend to body 
masses larger than that of the predator. The species in our model can have different feeding preferences 
and survival strategies, due to the larger number of evolving traits in our model. This leads to a higher 
variability in network characteristics such as linkedness, generality and vulnerability, even though natural 
variability is still larger, which we ascribe to the facts that our model has only one basal resource and 
no body-size structure within species. We showed that an appropriate choice of the cutoff rule for weak 
links is essential for obtaining realistic results for connectance and trophic structure.

The increased number of evolving traits compared to the model by Loeuille and Loreau has also a 
large effect on the evolutionary trends. The networks show an ongoing species turnover and are subject 
to constant restructuring. The species in our model form body mass clusters and the evolutionary process 
is characterised by a trend towards increased specialisation on these clusters. Similar specialisation trends 
have also been observed in other studies15,17. We assume the following explanation for the continuous 
species turnover. The evolved specialists gradually replace less efficient species with broader feeding 
ranges that cover also the gaps between the body mass clusters. Those broad ranged species have the role 
of keystone species that stabilise the networks against the occurrence of large extinction avalanches40,41. 
In the absence of control by such predators, new mutants (or invaders) can find niches between two clus-
ters with very little predation pressure, where they can grow to high abundance and cause extinction ava-
lanches propagating from lower to higher trophic levels. After such extinction events, the empty niches 
can be reoccupied also by species with broader feeding ranges, before the speciation process starts again.

This corresponds to the results of Binzer et al.8, who identified specialised species on high trophic 
levels to be prone to secondary extinctions, and to the results of Rossberg42, who suggested a very simi-
lar turnover mechanism for the results of his model. In consistence with the described mechanism, also 
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Mellard and Ballantyne43 reported that co-evolution of species does not necessarily lead to high levels of 
resilience for the ecosystem as a whole. However, such a turnover mechanism is missing in the model 
by Loeuille and Loreau. There, a displaced species is always replaced by a new species of a very similar 
body mass. And since the body mass is the only evolving trait, the new species has automatically the 
same predators and the same prey, excluding the possibility of secondary extinctions or major changes 
in the network structure15. The same is true for the model version by Brannström et al., which led to 
evolutionary equilibria, where no more mutants are able to invade the system14. Ingram et al. reported 
that also their model extension with evolving feeding ranges, but with fixed predator-prey body mass 
ratios, tends to reach dynamically stable configurations with little structural change13.

However, real ecosystems do show extinction events of different sizes, and their distribution evaluated 
over geological times resembles a power law44. For this reason, it has been suggested that ecosystems 
show self-organised criticality (SOC)45, which means that the intrinsic dynamics of the systems is respon-
sible for the power-law size distribution of extinctions. However, the question remains open due to sparse 
and ambiguous data46,47. Some previous evolutionary food web models, for example the evolutionary 
niche model17, exhibit SOC, whereas other models like the webworld model20 or the model by Loeuille 
and Loreau12 do not. The size distribution of extinction avalanches in our model is a power law with an 
exponent around 4 (not shown). Because of its steepness, this power law covers only approximately one 
decade, meaning that extinction events of more than 10 species are extremely rare. This is not the type 
of SOC required to explain the large extinction events in earth history, where up to 90 percent of all 
species went extinct. Regarding the time span a species is present in the system, our model is consistent 
with paleobiological data concerning the fact that higher trophic level species stay in the system for a 
shorter time span than lower level species46, although it should be mentioned that the exact distribution 
of these time spans in our model depends on the relation between a species’ body mass and its mutation 
probability.

The evolutionary rules implemented in our model are simplified and to some extent artificial. To 
make sure that our results do not depend on these simplified rules, we tested several variations concern-
ing the mutation and inheritance rules. Our general finding is that minor changes in the evolutionary 
algorithm have only minor effects on the results. The overall mechanism with a trend towards speciali-
sation followed by an extinction event as explained above is robust to changes in the evolutionary rules. 
Also the time averaged network structures remain mostly unchanged. However, the typical time period 
for a specialisation-extinction cycle can change with extinction events being triggered sooner or later.

The fact that our networks show realistic patterns concerning many common food web properties 
suggests that our model provides a valuable tool to discuss urgent topics in ecological research. For 
example, the allometric equations are extendable by temperature terms (e.g.48–51). This approach would 
allow to model how warming might change evolution and extinction waves, in order to discuss current 
global change questions.

Another idea would be to address habitat loss and habitat fragmentation as a prominent example of an 
external driver of extinction events52,53. Recently, various approaches have been made to study the influ-
ence of the spatial environment on the food web composition and stability. If space has the structure of 
discrete habitats, these food webs can be interpreted as “networks of networks”54,55. However, most of the 
studies on such metacommunities so far focus on spatial aspects under the assumption that the species 
composition is static, although it has been emphasised that combining the spatial and the evolutionary 
perspective is essential for a better understanding of ecosystems56–58. Recently, Allhoff et al. studied a 
spatial version of the model by Loeuille and Loreau59. However, their findings were associated with the 
applied competition rules and the remarkable stability of the original model, highlighting the assumption 
that a more dynamic species turnover as in our new model would lead to a better understanding of the 
interplay between evolving food web structure and spatial structure.

References
1.	 Drossel, B. & McKane, A. J. Handbook of Graphs and Networks: From the Genome to the Internet, Ch. 10, 218–247 (Wiley-VCH 

Verlag GmbH & Co. KGaA, Weinheim, 2005).
2.	 Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–182 (2000).
3.	 Cohen, J. & Newman, C. A stochastic theory of community food webs: I. models and aggregated data. Proceedings of the Royal 

society of London. Series B. Biological sciences 224, 421–448 (1985).
4.	 Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proceedings of the National 

Academy of Sciences 105, 4191–4196 (2008).
5.	 Barnosky, A. D. et al. Has the earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
6.	 Parvinen, K. Evolutionary suicide. Acta Biotheoretica 53, 241–264 (2005).
7.	 Riede, J. O. et al. Size-based food web characteristics govern the response to species extinctions. Basic and Applied Ecology 12, 

581–589 (2011).
8.	 Binzer, A. et al. The susceptibility of species to extinctions in model communities. Basic and Applied Ecology 12, 590–599 (2011).
9.	 May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

10.	 Otto, S. B., Rall, B. C. & Brose, U. Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229 (2007).
11.	 May, R. Unanswered questions in ecology. Philos. Trans. R. Soc. London B Biol. Sci. 354, 1951–1959 (1999).
12.	 Loeuille, N. & Loreau, M. Evolutionary emergence of size-structured food webs. PNAS 102, 5761–5766 (2005).
13.	 Ingram, T., Harmon, L. J. & Shurin, J. B. Niche evolution, trophic structure, and species turnover in model food webs. The 

American Naturalist 174, 56–67 (2009).
14.	 Brännström, Å., Loeuille, N., Loreau, M. & Dieckmann, U. Emergence and maintenance of biodiversity in an evolutionary food-

web model. Theoretical Ecology 4, 467–478 (2011).



www.nature.com/scientificreports/

1 1Scientific Reports | 5:10955 | DOI: 10.1038/srep10955

15.	 Allhoff, K. T. & Drossel, B. When do evolutionarty food web models generate complex structures? Journal of Theoretical Biology 
334, 122–129 (2013).

16.	 Brännström, Å. et al. Modelling the ecology and evolution of communities: a review of past achievements, current efforts, and 
future promises. Evolutionary Ecology Research 14, 601–625 (2012).

17.	 Guill, C. & Drossel, B. Emergence of complexity in evolving niche-model food webs. Journal of Theoretical Biology 251, 108–120 
(2008).

18.	 Rossberg, A., Matsuda, H., Amemiya, T. & Itoh, K. Food webs: Experts consuming families of experts. Journal of Theoretical 
Biology 241, 552–563 (2006).

19.	 Rossberg, A., Ishii, R., Amemiya, T. & Itoh, K. The top-down mechanism for body-mass-abundance scaling. Ecology 89, 567–580 
(2008).

20.	 Drossel, B., Higgs, P. G. & McKane, A. J. The influence of predator-prey population dynamics on the long-term evolution of food 
web structure. Journal of Theoretical Biology 208, 91–107 (2001).

21.	 Drossel, B., McKane, A. J. & Quince, C. The impact of nonlinear functional responses on the long-term evolution of food web 
structure. J. Theor. Biol. 229, 539–548 (2004).

22.	 Bell, G. The evolution of trophic structure. Heredity 99, 494–505 (2007).
23.	 Yamaguchi, W., Kondoh, M. & Kawata, M. Effects of evolutionary changes in prey use on the relationship between food web 

complexity and stability. Popul. Ecol. 53, 59–72 (2011).
24.	 Takahashi, D., Brännström, Å., Mazzucco, R., Yamauchi, A. & Dieckmann, U. Abrupt community transitions and cyclic 

evolutionary dynamics in complex food webs. Journal of Theoretical Biology 337, 181–189 (2013).
25.	 Takahashi, D., Brännström, Å., Mazzucco, R., Yamauchi, A. & Dieckmann, U. Cyclic transitions in simulated food-web evolution. 

J. Plant. Interact. 6, 181–182 (2011).
26.	 Rall, B. C., Kalinkat, G., Ott, D., Vucic-Pestic, O. & Brose, U. Taxonomic versus allometric constraints on non-linear interaction 

strengths. Oikos 120, 483–492 (2011).
27.	 Brose, U. et al. Consumer-resource body-size relationships in natural food webs. Ecology 87, 2411–2417 (2006).
28.	 Riede, J. O. et al. Stepping in elton’s footprints: a general scaling model for body masses and trophic levels across ecosystems. 

Ecology Letters 14, 169–178 (2011).
29.	 Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 

(2004).
30.	 Yodzis, P. & Innes, S. Body size and consumer-resource dynamics. The American Naturalist 139, 1151–1175 (1992).
31.	 Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 

(2006).
32.	 Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. Journal of Animal 

Ecology 44, 331–340 (1975).
33.	 DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for tropic interaction. Ecology 56, 881–892 (1975).
34.	 Skalski, G. T. & Gilliam, J. F. Functional responses with predator interference: viable alternatives to the holling type ii model. 

Ecology 82, 3083–3092 (2001).
35.	 Scheffer, M. & van Nes, E. H. Self-organized similarity, the evolutionary emergence of groups of similar species. Proceedings of 

the National Academy of Sciences 103, 6230–6235 (2006).
36.	 May, R. M. On the theory of niche overlap. Theoretical Population Biology 5, 297–332 (1974).
37.	 Galassi, M. et al. GNU Scientific Library Reference Manual (Network Theory Ltd, 2009).
38.	 Riede, J. O. et al. Scaling of food-web properties with diversity and complexity across ecosystems. Advances In Ecological Research 

42, 139–170 (2010).
39.	 Stouffer, D. B., Camacho, J. & Amaral, L. A. N. A robust measure of food web intervality. Proceedings of the National Academy 

of Sciences 103, 19015–19020 (2006).
40.	 Power, M. E. et al. Challenges in the quest for keystones. Bioscience 46, 609–620 (1996).
41.	 Eklöf, A. & Ebenmann, B. Species loss and secondary extinctions in simple and complex model communities. Journal of Animal 

Ecology 75, 239–246 (2006).
42.	 Rossberg, A. G. Food webs and biodiversity: foundations, models, data, Ch. 22, 287–309 (John Wiley & Sons, 2013).
43.	 Mellard, J. P. & Ballantyne IV, F. Conflict between dynamical and evolutionary stability in simple ecosystems. Theoretical Ecology 

7, 273–288 (2014).
44.	 Raup, D. Biological extinction in earth history. Science 231, 1528–1533 (1986).
45.	 Sneppen, K., Bak, P., Flyvbjerg, H. & Jensen, M. H. Evolution as a self-organized critical phenomenon. Proceedings of the National 

Academy of Sciences 92, 5209–5213 (1995).
46.	 Newman, M. E. & Palmer, R. G. Modeling extinction (Oxford University Press, 2003).
47.	 Drossel, B. Biological evolution and statistical physics. Advances in Physics 50, 209–295 (2001).
48.	 Vasseur, D. A. & McCann, K. S. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. The 

American Naturalist 166, 184–198 (2005).
49.	 Binzer, A., Guill, C., Brose, U. & Rall, B. C. The dynamics of food chains under climate change and nutrient enrichment. 

Philosophical Transactions of the Royal Society B: Biological Sciences 367, 2935–2944 (2012).
50.	 Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate 

change. Nature Climate Change 2, 747–751 (2012).
51.	 Stegen, J. C., Ferriere, R. & Enquist, B. J. Evolving ecological networks and the emergence of biodiversity patterns across 

temperature gradients. Proceedings of the Royal Society of London B: Biological Sciences 279, 1051–1060 (2012).
52.	 Hagen, M. et al. Biodiversity, species interactions and ecological networks in a fragmented world. Advances in Ecological Research 

46, 89–210 (2012).
53.	 Gonzalez, A., Rayfield, B. & Lindo, Z. The disentangled bank: How loss of habitat fragments and disassembles ecological 

networks. American Journal of Botany 98, 503–516 (2011).
54.	 Amarasekare, P. Spatial dynamics of foodwebs. Annual Review of Ecology, Evolution, and Systematics 39, 479–500 (2008).
55.	 Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecology letters 7, 601–613 

(2004).
56.	 Logue, J. B., Mouquet, N., Peter, H. & Hillebrand, H. Empirical approaches to metacommunities: a review and comparison with 

theory. Trends in Ecology & Evolution 26, 482–491 (2011).
57.	 Urban, M. C. et al. The evolutionary ecology of metacommunities. Trends in Ecology & Evolution 23, 311–317 (2008).
58.	 Loeuille, N. & Leibold, M. Ecological consequences of evolution in plant defenses in a metacommunity. Theoretical population 

biology 74, 34–45 (2008).
59.	 Allhoff, K. T., Weiel, E. M., Rogge, T. & Drossel, B. On the interplay of speciation and dispersal: An evolutionary food web model 

in space. Journal of Theoretical Biology 366, 46–56 (2014).
60.	 Williams, R. J. & Martinez, N. D. Limits to trophic levels and omnivory in complex food webs: Theory and data. The American 

Naturalist 163, 458–468 (2004).



www.nature.com/scientificreports/

1 2Scientific Reports | 5:10955 | DOI: 10.1038/srep10955

Acknowledgements
This work was supported by the DFG under contract number Dr300/12-1 and 13-1. C.G. was supported 
by the Leopoldina Fellowship Program under contract number LPDS 2012-07. We thank Markus 
Schiffhauer and Jannis Weigend, who analysed several model variants concerning the mutation and 
heredity rules in the context of their bachelor theses. Moreover, we thank Christoph Digel and Jens 
Riede for providing empirical data and Sebastian Plitzko and Bernd Blasius for very helpful discussions.

Author Contributions
All authors designed the model. K.T.A. performed the simulations. K.T.A. and C.G. analysed the results. 
K.T.A. wrote the manuscript with minor contributions from the other authors. All authors reviewed the 
manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Allhoff, K.T. et al. Evolutionary food web model based on body masses gives 
realistic networks with permanent species turnover. Sci. Rep. 5, 10955; doi: 10.1038/srep10955 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Evolutionary food web model based on body masses gives realistic networks with permanent species turnover

	The Model

	Population dynamics. 
	Speciation events. 

	Methods

	Results

	A typical simulation run. 
	Network evaluation and comparison. 
	Robustness of the results against variations of the evolutionary rules. 

	Discussion

	Acknowledgements

	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Model illustration using 4 species .
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Network size, body masses and flow-based trophic positions60 of all species occurring during one exemplary simulation run with competition parameters cintra = 1.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Frequency distributions of body masses and short-weighted trophic level60, as well as the distributions of generality (number of prey species) and vulnerability (number of predators).
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Network properties of four realisations with different values of the competition parameters.
	﻿Table 1﻿﻿. ﻿  A summary of all model parameters.



 
    
       
          application/pdf
          
             
                Evolutionary food web model based on body masses gives realistic networks with permanent species turnover
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10955
            
         
          
             
                K.T. Allhoff
                D. Ritterskamp
                B.C. Rall
                B. Drossel
                C. Guill
            
         
          doi:10.1038/srep10955
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep10955
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep10955
            
         
      
       
          
          
          
             
                doi:10.1038/srep10955
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10955
            
         
          
          
      
       
       
          True
      
   




