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Development and validation 
of a sample entropy‑based 
method to identify complex 
patient‑ventilator interactions 
during mechanical ventilation
Leonardo Sarlabous1,4,8*, José Aquino‑Esperanza1,2,3,8, Rudys Magrans5, 
Candelaria de Haro1,2, Josefina López‑Aguilar1,2, Carles Subirà6, Montserrat Batlle6, 
Montserrat Rué7, Gemma Gomà1, Ana Ochagavia1,2, Rafael Fernández2,6 & Lluís Blanch1,2,5

Patient-ventilator asynchronies can be detected by close monitoring of ventilator screens by clinicians 
or through automated algorithms. However, detecting complex patient-ventilator interactions 
(CP-VI), consisting of changes in the respiratory rate and/or clusters of asynchronies, is a challenge. 
Sample Entropy (SE) of airway flow (SE-Flow) and airway pressure (SE-Paw) waveforms obtained 
from 27 critically ill patients was used to develop and validate an automated algorithm for detecting 
CP-VI. The algorithm’s performance was compared versus the gold standard (the ventilator’s 
waveform recordings for CP-VI were scored visually by three experts; Fleiss’ kappa = 0.90 (0.87–0.93)). 
A repeated holdout cross-validation procedure using the Matthews correlation coefficient (MCC) 
as a measure of effectiveness was used for optimization of different combinations of SE settings 
(embedding dimension, m, and tolerance value, r), derived SE features (mean and maximum values), 
and the thresholds of change (Th) from patient’s own baseline SE value. The most accurate results 
were obtained using the maximum values of SE-Flow (m = 2, r = 0.2, Th = 25%) and SE-Paw (m = 4, 
r = 0.2, Th = 30%) which report MCCs of 0.85 (0.78–0.86) and 0.78 (0.78–0.85), and accuracies of 0.93 
(0.89–0.93) and 0.89 (0.89–0.93), respectively. This approach promises an improvement in the accurate 
detection of CP-VI, and future study of their clinical implications.

Invasive mechanical ventilation (MV) is a life-support measure administered to patients who cannot breathe on 
their own. Patient-ventilator asynchronies occur when there is a mismatch between the ventilator’s setting and 
patient’s breathing pattern. Recent studies have emphasized the impact of asynchronies upon clinical outcomes1–5, 
focusing on the incidence of specific subtypes of asynchronies or on the asynchrony index, and also on their 
distribution over time given that they occur in clusters within prolonged uneventful periods1–6. Importantly, in 
most of these studies ventilator’s waveforms were analysed visually2,5,7,8; only a few analyses have been based on 
automated algorithms1,4,6,9,10 or, more recently, on machine learning algorithms incorporating not only ventilator 
waveforms but also clinical data11.

Asynchronies are difficult to define when supported only by visual assessment carried out by inexperi-
enced personnel, since different types may develop in a short time period or may even overlap with each other. 
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Furthermore, asynchronies, which are by nature time-limited and transient, lead to patient distress, impede the 
ventilator’s effectiveness in decreasing the work of breathing, increase the time on mechanical ventilation and 
have a negative impact on outcome1,2,4,7,12. Additionally, sometimes patient’s drive only becomes evident due to 
an increase in the respiratory rate itself13–16, which, given its irregular and complex behaviour, may be overesti-
mated by visual observation or dedicated algorithms. Therefore, it would be extremely useful to have access to 
a method for assessing irregularity and complexity which could detect Complex Patient-Ventilator interactions 
(CP-VI), including not just asynchronies of any kind but also changes in the respiratory rate, in an automated, 
non-invasive and personalized fashion.

Normal physiological data are non-linear17. The complex behavior of a non-linear system cannot be char-
acterized by the sum of its inputs, and the study of these systems requires methods that take into account the 
non-linear physiological response to a given stimulus. These methods could provide insights into organ-system 
interconnectivity, regulatory control, and complexity in time series during disease17–19.

Entropy is a non-linear method derived from the theory of complex systems which measures the randomness 
and predictability of stochastic processes. Various types of entropy have been used in clinical monitoring20–22. 
Sample Entropy (SE) is a measure of complexity and regularity, defined as the negative natural logarithm of the 
conditional probability that two sequences similar for m points will remain similar at the next point, where self-
matching is not included23. Thus, a lower SE value indicates more self-similarity in a time series.

SE has proved to be an effective tool for investigating different types of time series data derived from various 
biological conditions in the human body. Examples of these conditions include the activation of inspiratory 
muscles in COPD patients24,25, the analysis of atrial fibrillation on electrocardiograms26, background electroen-
cephalograms in Alzheimer’s patients27, heart rate variability28,29, human postural sway29 and seizure termination 
during electroconvulsive therapy30.

Interestingly, only a few entropy approaches have been applied in the respiratory system to study breath-
to-breath variability and its components as predictors of successful separation from MV during spontaneous 
breathing trials (SBT)19,31–34. Breath-to-breath approaches suggest that increased irregularity of the respiratory 
system may be a marker of pulmonary health19 and may serve as a weaning predictor32–35, opening up the pos-
sibility that a certain degree of irregularity may be normal3,36. However, these studies rely on the detection of 
the appropriate respiratory cycle. Hence, the performance of automated algorithms in breathing cycle detection 
may be jeopardized when transient asynchronies occur during patient-ventilator interaction or even overlap 
with each other. In this respect, other authors have applied the SE to the entire signal, as is the case of Sá et al.37 
who evaluated the respiratory changes by applying SE upon the entire airway flow signal providing an early and 
sensitive functional indicator of interstitial asbestosis.

We hypothesized that analyzing transient complexity of CP-VI may provide clinically relevant information 
during MV. Therefore, we sought to develop and validate a non-invasive method based on SE measurement using 
the entire airway pressure (Paw) and airway flow (Flow) waveforms to detect CP-VI, defined as the occurrence 
of asynchronies and changes in the respiratory rate.

Methods
Defining complex patient ventilator interactions.  We defined CP-VI as a > 50% change in the respir-
atory rate13,35,38,39 and/or > 30% asynchronous breaths of any type (ineffective expiratory efforts, double cycling, 
premature cycling, prolonged cycling, or reverse triggering) over a 3-min period. A recent study found that 38% 
of mechanically ventilated patients had clusters of ≥ 30 ineffective expiratory efforts in a 3-min period (i.e., ≥ 50% 
of all breaths in a patient with a respiratory rate of 20 breaths per minute), and that the median duration of these 
clusters was 20 min4. Another study found that 59.7% of patients had clusters in which > 10% of all breaths in 
a 3-min period were double cycled, with a mean cluster duration of 15.5 min6. Figure 1 shows a representative 
example of different CP-VIs consisting of increased respiratory rate, asynchronies, or a combination of these 
phenomena.

Data acquisition and data analysis.  The Better Care system (Better Care, Barcelona, Spain. US pat-
ent No. 12/538,940) continuously records Paw and Flow signals at a sample frequency of 200 Hz from intuba-
tion to liberation from MV9. Better Care uses drivers specifically designed to interact with output signals from 
mechanical ventilators and bedside monitors rather than directly with patients, synchronizing recorded signals 
and storing them for further analysis. We used MATLAB (The MathWorks, Inc., vR2018b, Natick, MA, USA) 
for signal processing, data analysis, and visual assessment. Signals were decimated at a sampling rate of 40 Hz 
before entropy calculation.

Study population.  The findings presented in this paper represents an ancillary analysis on an ongoing 
clinical study (ENTROPY-ICU, ClincalTrials.gov NCT04128124) designed to assess the feasibility of using SE 
to identify CP-VI during MV. Data from 27 patients were obtained from an ongoing database at two centers in 
Spain. The database was constructed prospectively for the development of a connectivity platform (Better Care) 
to interoperate signals from different ventilators and monitors and subsequently compute algorithms for diag-
nosing patient-ventilator asynchronies (ClinicalTrial.gov, NCT03451461). The Comitè d’Ètica d’Investigació 
amb medicaments at the Corporació Sanitària Parc Taulí and the Clinical Research Ethics Committee of Fun-
dació Unió Catalana d’Hospitals approved the database and the study protocol. The need for informed consent 
was waived because the current study was an ancillary analysis with anonymized data. The guidelines followed 
in this study were according to the applicable Spanish regulations (Biomedical Research Law 14/2007). This 
type of study must be evaluated and approved by at least one Institutional Review Board (IRB). Parc Taulí’s IRB 
approved this study to be carried out in all participating centers. The IRB approved the study allowing it to be 
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carried out without the explicit request of informed consent from each participant given that it is a study with 
retrospective data. Spanish regulations allow studies to be carried out with this condition as long as they are 
approved by an IRB.

The SE analysis was performed on the complete set of Flow and Paw data collected during the two hours 
before self-extubation. Self-extubations, defined as extubations performed by the patient himself, are included 
in unplanned extubations but its mechanisms differ from accidental extubations40. Clinical and demographic 
data were obtained from medical charts (Table 1).

Visual validation of CP‑VI.  Experts’ visual assessment was considered the gold standard. Three critical 
care physicians with extensive experience in analyzing ventilator waveforms visually reviewed 92 15-min-long 
segments of Flow and Paw recordings from the two-hour period immediately before self-extubation. The 15-min 
window was selected based on two previous studies evaluating clusters of asynchronies, in which mean cluster 
duration was 15.5 and 20 min respectively6,10. An expert in MV selected the segments to ensure a balanced 
proportion of different ventilation modes (grouped into pressure support ventilation (PSV) or assist-control 
ventilation (ACV) modes, comprising volume assist-control and pressure assist-control ventilation) and of seg-
ments with and without CP-VIs. Every patient contributed both CP-VI and non-CP-VI segments with at least 
one 15-min segment of each type; however, some patients contributed more segments than others. In order to 
ensure that the most valuable CP-VI events were not missed, all the 15-min segments immediately preceding 
self-extubation were included. To ensure masking of the scorers, Flow and Paw tracings were randomly ordered 
in MATLAB prior to visual analysis. To standardize scoring criteria, scorers were provided with written descrip-
tions of the characteristics of CP-VI before visual analysis. Scorers were asked to determine whether CP-VI were 
present in each segment. No time limitations were imposed.

Sample entropy.  SE is a non-linear technique that measures the randomness of a series of data23. Com-
pared to other approaches, SE’s main advantage is that it provides consistent results even in short and noisy 
medical time series19,23. To calculate SE, three parameters are necessary: the embedding dimension, m (a positive 
integer); the tolerance value or similarity criterion, r (a positive real number); and the total length of the series, 
N. Briefly, SE is defined as the negative logarithm of the conditional probability that two sequences of patterns of 

Figure 1.   Tracing of Flow and Paw from three different patients. (a) Continuous Positive Airway Pressure 
(CPAP) of 6 cmH2O. (b) Pressure assist-control ventilation (PCV) with pressure of 10 cmH2O, (c) PSV with a 
pressure support of 10 cmH2O and PEEP of 8 cmH2O. In (a1) and (a2), Complex Patient-Ventilator Interactions 
(CP-VI) consists of an increase in respiratory rate > 50%; in (b1) and (b2), it consists of > 30% asynchronies 
(ineffective expiratory effort, double cycling, premature cycling, prolonged cycling, and/or reverse triggering) 
in the 3-min period; and in (c1) and (c2) it consists of a combination of change in the respiratory rate and 
asynchronies.
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m consecutive samples that are similar to each other within a tolerance r will remain similar when one consecu-
tive sample is added ( m+ 1 ), excluding self-matches. SE is calculated as follows23:

Given a time series of N samples {x(n) = x(1), x(2), . . . , x(N)} , a subset of N −m+ 1 , overlapping vectors 
Xm(i) of length m are defined:

1.	  Form m vectors defined by Xm(i) = [x(i), x(i + 1), . . . , x(i +m− 1)], i = 1, 2, . . . ,N −m+ 1 . These rep-
resent m consecutive x values.

2.	  Then, define Chebyshev distance between vectors Xm(i) and Xm

(

j
)

 , i.e., the maximum absolute difference 
between their scalar components:

3	  For a given Xm(i) , count the number of j 
(

1 ≤ j ≥ N −m, i �= j
)

 , denoted as Bi(r) , such that the distance 
between Xm(i) and Xm

(

j
)

 is less than or equal to a threshold r.

4.	  Defined Bm(r) as

5.	  This previous procedure is repeated, increasing the dimension to m+ 1 to calculate Ai(r) as the number of 
Xm+1(i) within r of Xm+1

(

j
)

 , where j ranges from 1 to N −m
(

i �= j
)

 . Then,Am
i (r) is defined as:

6.	  Set Am(r) as

Thus, Bm(r) is the probability that two sequences will match for m samples, whereas Am(r) is the probability 
that two sequences will match for m+ 1 samples. Finally, sample entropy is then defined as

which is estimated by the statistic:

(1)d
[

Xm(i),Xm

(

j
)]

= max
k = 0, . . . ,m− 1

[∣

∣x(i + k)− x
(

j + k
)∣

∣

]

.

(2)
Bmi (r) =

Bi(r)

N −m− 1
,

Then, for 1 ≤ i ≥ N −m,

(3)Bm =
1

N −m

N−m
∑

i=1

Bmi (r)

(4)Am
i (r) =

Ai(r)

N −m− 1

(5)Am =
1

N −m

N−m
∑

i=1

Am
i (r)

(6)SE(m, r) = lim
N→∞

{

−ln

[

Am(r)

Bm(r)

]}

Table 1.   Patient characteristics. APACHE II: Acute Physiology and Chronic Health Evaluation. ICU intensive 
care unit, LOS length of stay, MV mechanical ventilation, RASS Richmond Agitation-Sedation Scale.

Clinical and demographic data of patient

Sex

 Male, n (%) 22 (81.5%)

 Female, n (%) 5 (18.5%)

Mean age (range), in years 63.8 (57–72)

APACHE II at admission 16.7 (9–22)

Mean ICU–LOS (range), in days 18.7 (7.5–27)

Mean hospital–LOS (range), in days 34 (15.5–41)

Reason for MV, n (%)

 Respiratory insufficiency 9 (33.3%)

 Sepsis/septic shock 10 (37%)

 Altered consciousness 3 (11.1%)

 Others 7 (25.9%)

Use of sedatives (%) 71.4%

RASS 0.6 ± 1.7
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The m parameter is generally taken as 2, while the r parameter normally ranges between 0.1 and 0.25 times 
the standard deviation (SD) of the segment analyzed of length N. In this study, SE was calculated over the Flow 
(SE-Flow) and Paw (SE-Paw) signals using a 30-s sliding window (N = 1,200 samples) with 50% overlap. SE 
was explored using m from 1 to 20 and with r values equal to 0.1, 0.2, 0.3, and 0.4 times the SD of each sliding 
window. To reduce noise and to increase the consistency of the results, we applied an 8-period-long exponential 
moving average filter to the SE series.

Automatic CP‑VI detection.  We devised an automated algorithm based on SE to detect CP-VI events 
(European patent application number EP19383116). Figure 2 summarizes the algorithm in a flowchart. Detec-
tion of a CP-VI depends on whether the percentage of change (PC) in SE with respect to the patient’s own SE 
baseline value during the 15-min period is greater than a predefined threshold of change (Th). We calculated 
PC for SE-Flow and SE-Paw in each 15-min period in two ways, using the following derived features (the mean 
SE value [SE-Flowmean and SE-Pawmean], and the maximum SE value [SE-Flowmax and SE-Pawmax]), applying dif-
ferent values of Th (15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50%). We hypothesized that SE values would be 
higher in periods with CP-VI than in periods with regular patient-ventilator interactions. Periods were consid-
ered to contain a CP-VI event when PC exceeded the Th. The optimal Th for CP-VI detection was selected during 
the SE setting optimization procedure (explained below).

Keim-Malpas41 recently proposed that alert thresholds derived from continuous analytic monitoring should 
be based on the degree of change from the patient’s own baseline, rather than on general cutoff thresholds. In our 
study there was no single baseline value common to all patients; each patient had their own baseline.

The baseline value of each SE feature was initialized with the value calculated in the first 15-min period. This 
value was updated with each new 15-min segment if the SE feature of the new one was lower than the current 
baseline.

Statistical analysis.  Fleiss’ kappa coefficient was used to assess the reliability of agreement among scor-
ers for visual assessment42. The automated CP-VI detection algorithm was applied over the SE series derived 
from the same Flow and Paw tracings previously used for visual assessment. To evaluate the performance of the 
automated algorithm with respect to the gold standard visual assessment, we calculated sensitivity, specificity, 
positive and negative predictive values (PPV and NPV respectively), accuracy, and the Matthews correlation 
coefficient (MCC)43. Widely used in biomedical research, the MCC is considered a balanced measure of the 
confusion matrix of true and false positives and negatives44–46. Calculation of the MCC is based on all four ele-
ments of the confusion matrix: true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 
values, as follows:

MCC values can range from − 1 to + 1. An MCC value of − 1 suggests perfect disagreement between the 
predictions and the gold standard, and a value of 1 suggests perfect agreement between the predictions and the 
gold standard; a value of 0 indicates that the prediction is no better than random. The MCC index was used as 
the measure of effectiveness during the process to optimize SE settings so as to achieve the most robust CP-VI 
estimation.

(7)SE(m, r,N) = −ln

(

Am(r)

Bm(r)

)

(8)MCC =
TP∗TN − FP∗FN

√
(TP + FP)∗(TP + FN)∗(TN + FP)∗(TN + FN)

Figure 2.   Automatic CP-VI detection. Respiratory signals (Flow and Paw) are decimated at a sampling rate 
of 40 Hz. Sample entropy (SE) is calculated for different values of the embedding dimension (m) and tolerance 
(r). An 8-period-long exponential moving average is used to reduce noise and to increase the consistency of the 
SE results. Two SE features are determined for each 15-min period: the mean value and the maximum value. 
The percentage of change (PC) from the patient’s own baseline value is calculated for each SE setting. When 
PC exceeds a determined threshold (Th), the period is considered to contain a CP-VI event. An optimization 
procedure is required to select the values of m, r, Th, respiratory signal, and SE feature that yield the most robust 
estimations of CP-VI.
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Optimization procedure (selection of m, r, and Th).  In entropy studies, determining the optimal 
settings to robustly extract the randomness of a series of data is an important step47,48. To select the optimal set-
tings for the SE parameters m and r and the optimal Th for estimating CP-VI, we used a repeated holdout cross-
validation method with the MCC as a measure of effectiveness.

Figure 3 depicts the steps involved in the optimization and the validation procedure. Once the experts had 
visually validated the set of 92 observations, it was randomly divided into two subsets: 70% of the data for opti-
mization and the remaining 30% of the data for validation. This optimization procedure was repeated a total of 
15 times using different subsets (randomly selected each time) to capture as much relevant information as pos-
sible and to minimize the potential bias resulting from fitting the settings on a single partition. The MCC metric 
was computed for all combinations of m, r, and Th for each repetition. Finally, the maximum mean MCC value 
determined the optimal combination of SE settings and Th among all possible combinations. The optimization 
procedure was individually applied to the features derived from SE-Flow (SE-Flowmean, SE-Flowmax) and SE-Paw 
(SE-Pawmean, SE-Pawmax) in order to determine the respiratory signal and features that best reflect CP-VI.

In addition, a sensitivity analysis by using a small grid search of r values (step = 0.01) around the optimal 
value in the best features derived from SE-Flow and SE-Paw was performed to compare regions of confidence 
and to investigate whether the selected r value is a robust local maximum.

To assess the robustness of the optimization procedure, we computed the medians and interquartile ranges 
of all measures of performance (MCC, sensitivity, specificity, accuracy, PPV, and NPV) considering the optimal 
combination for both the optimization and validation subsets.

Figure 3.   Flowchart for the optimization procedure and validation. Procedure to select the optimal sample 
entropy (SE) settings (m and r) and the threshold of change (Th) for each SE airway flow (Flow) and airway 
pressure (Paw) features (SE-Flowmean, SE-Flowmax, SE-Pawmean, and SE-Pawmax). The dataset visually validated by 
the experts was randomly divided into two subsets: optimization (Opt.) and validation (Val.). The optimization 
procedure was repeated a total of 15 times using different subsets (randomly selected each time). The global 
maximum mean value of the Matthews correlation coefficient (MCC) determined the optimal values of m*, r*, 
and Th* among all possible combinations and all SE-derived features. Finally, the mean values of the measures of 
accuracy were computed for the optimal combination of parameters in both the optimization and the validation 
subsets.
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Results
Visual CP‑VI analysis by experts.  The experts visually assessed a total of 92 periods: 45 periods of PSV 
(22 with CP-VI and 23 without) and 47 periods of ACV (24 with CP-VI and 23 without). Fleiss’ kappa for inter-
rater agreement was 0.90 (0.87–0.93), indicating almost perfect agreement.

Detecting CP‑VI with SE.  The exponential moving average filter reduced the noise in SE series and gen-
erated a smoothed SE version suitable for detecting CP-VI (see Supplementary Methods and Supplementary 
Fig. S1). Figure 4 shows representative examples of respiratory signal tracings with the corresponding SE-Flow 
(m = 2 and r = 0.2) and SE-Paw (m = 4 and r = 0.2) tracings. SE was highly sensitive to changes in the irregularity 
of the respiratory pattern occurring during ventilation.

Optimization of SE settings, Th detection using a repeated holdout cross‑validation proce‑
dure.  Figure 5 shows the procedure used to optimize SE settings and Th for CP-VI detection. We calculated 
the mean MCC value for each combination of m, r, and Th for all derived features analyzed (SE-Flowmean, SE-
Flowmax, SE-Pawmean, and SE-Pawmax). In general, SE-Paw features exhibit much less sensitivity to m parameter 
selection than SE-Flow features. SE-Flowmax and SE-Pawmax features yielded the highest mean MCC values. The 
highest MCC values for SE-Flowmax were found for values of m = 2, r equal to 0.2 and 0.3, and Th between 20 
and 35%, whereas for SE-Pawmax were found for values of m equal to 3 and 4, r = 0.2, and Th between 25 and 
30%. The optimal SE settings for SE-Flowmax were m = 2, r = 0.2, and Th = 25%, and for SE-Pawmax m = 4, r = 0.2, 
and Th = 30%. As regards the optimal SE settings, SE-Flowmax at Th = 25% (SE-Flowmax25) yielded the highest 
mean MCC value (0.84) and SE-Pawmax at Th = 30% (SE-Flowmax30) yielded the highest mean MCC value (0.86). 
Both SE-Flowmax25 and SE-Pawmax30 yielded their highest MCC values in 13 of the 15 repetitions. The sensitiv-
ity analysis conducted for the SE-Pawmax and SE-Flowmax features around the optimal value of r = 0.2 is shown 
in Supplementary Figure S3. Once we had determined the settings that best detected CP-VI, we evaluated the 
performance of the algorithm in the 15 repetitions of the cross-validation procedure. Figure 6 displays the algo-
rithm’s performance statistics. The median values of all the parameters observed in the optimization subset were 
slightly higher than those observed in the validation subset (Supplementary Table S1); this is a common con-
sequence of the repeated holdout cross-validation process. The performance of SE-Flowmax25 and SE-Pawmax30 
stratified by ventilator modality (grouped into pressure support ventilation and assist-control ventilation modes) 
is shown in Supplementary Table S2.

For comparative purposes, we also carried out the procedure for optimizing SE settings and Th over the 
unfiltered SE series. The Supplementary Methods and the Supplementary Figure S2 show the results obtained 
in this case.

Figure 4.   Representative examples of ventilator signals for airway flow (Flow) (a1–a3) and airway pressure 
(Paw) (c1–c3) recorded over 15-min periods in the two hours prior to self-extubation, together with the 
sample entropy (SE) tracings derived from Flow (b1–b3) and Paw (d1–d3). Both, SE-Flow and SE-Paw were 
calculated with r = 0.2 × SD of each overlapping 30-s-long sliding window, by using different values of m equal to 
2 and 4, respectively. Three 15-min periods are represented, corresponding to (1) no occurrence of CP-VI (left 
panel), (2) occurrence of CP-VI that returned to baseline values (middle panel), and (3) progressive increase in 
CP-VI leading to self-extubation. SE is highly sensitive to changes in irregularity during MV.
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Discussion
Our automatic algorithm for detecting CP-VI from ventilator signals proved highly sensitive and specific in 
individual patients. Using non-linear analysis of SE to measure irregularity and randomness in the entire set of 
physiological Flow and Paw signals, the algorithm compared data from different periods in each patient’s inter-
action with the ventilator to detect CP-VI. In our analyses the maximum changes of SE in both Flow and Paw 
signals yielded the most accurate results at different thresholds and settings. The most accurate results for SE-
Flowmax were obtained with a threshold of change of 25% with m = 2, r = 0.2, and for SE-Pawmax with a threshold 
of change of 30% with m = 4 and r = 0.2.

The recognition of the hidden information contained in physiological time series draws attention to the 
extraordinary complexity of physiological systems49. Several non-linear techniques have been developed to study 
the irregularity and complexity of these physiomarkers18,23,50–53. Previous studies have used methods based on 
approximate entropy and sample entropy using breath-to-breath variability and derived indices19,23,32–34, which 
relies on the detection of the appropriate respiratory cycle.

The main advantage of our approach is that it does not require the detection of each single breathing cycle to 
measure irregularity in Flow and Paw waveforms and thus identify the development of a CP-VI. This approach 
makes a fundamentally different assumption about where complexity occurs in the physical signal, focusing 

Figure 5.   Repeated holdout cross-validation process for optimization of sample entropy (SE) settings and 
threshold (Th) for the detection of complex patient-ventilator interactions. We calculated the mean Matthews 
correlation coefficient (MCC) for each derived feature analyzed and each combination of m (1 to 20), r (0.1, 0.2, 
0.3, and 0.4 times the SD of each sliding window), and Th (15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50%) a 
total of 15 times using different randomly selected subsets. The upper panels show the results of the optimization 
process for SE-airway flow (SE-Flow), and the lower panels show the results for SE-airway pressure (SE-Paw). 
The color bar in each subplot shows the mean MCC scale, where values near 1 indicate more robust and 
consistent results. The MCC was positive in all cases. The black dot in each subplot indicates the combination 
that yielded the maximum mean MCC.
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on transient Flow and Paw complexity rather than breath-to-breath complexity in order to accurately identify 
changes in the respiratory rate and asynchronies which by their nature are transient and time-limited.

To our knowledge, no recommendations are currently available for the estimation of respiratory dynamics by 
applying an entropy approach to the entire dataset of Flow and Paw tracings during MV23,52. Recently, Sá et al.37, 
used SE estimation upon entire Flow signal without optimized parameters. Thus, one important contribution 
of our study is the description of a set of optimization and validation procedures based on a repeated holdout 
cross-validation method used in machine-learning models, which we used to obtain the optimal m, r and Th 
values. Ensuring the robustness of the validation procedure.

Our study also applied a personalized threshold to determine the occurrence of a CP-VI event based on a 
proportional change from the patient’s own baseline value, which is continuously updated. Continuous predic-
tive analytics monitoring achieves early detection of changes in status over time in previously stable patients. 
Keim-Malpas et al.41 recently suggested that an absolute threshold of change from baseline values may not be 
clinically significant in real-world settings and could lead to a high rate of false-positives in patients with high 
baseline values54. In our study, thresholds of change of 25% and 30% from SE-Flowmax and SE-Pawmax respectively, 
proved to be the most accurate for CP-VI detection. The optimization procedure found that r = 0.2 is suitable for 
detecting CP-VI events using SE-Flowmax (m = 2, Th = 25%) or SE-Pawmax (m = 4, Th = 30%) features. Additionally, 
the sensitivity analysis indicates that r = 0.2 proved to be a more robust local maximum for SE-Flowmax feature. 
This might suggest that the algorithm predictions seems to be not influenced by small changes in underlying 
unknown parameters (i.e., different dataset, different measurement equipment or ventilator waveforms) when 
using SE-Flowmax (m = 2, r = 0.2, Th = 25%), and therefore, could be a more suitable feature than SE-Pawmax (m = 4, 
r = 0.2, Th = 30%).

Interestingly, both SE-Flowmax25 and SE-Pawmax30 performed well in detecting CP-VI in Assist-Control Ven-
tilation, while SE-Flowmax25 performed slightly better than SE-Pawmax30 in Pressure Support Ventilation mode. 
The reason for the latter finding may be that during PSV the pressure is constant, and it is the flow waveform that 
exhibits more changes in accordance with patient’s demand and the mechanical properties of the diseased lung. 
However, due to the small sample size these sub-analysis results should be interpreted with care, and further 
research is needed.

Our study has several limitations. First, our algorithm responds to changes in the respiratory rate based on 
transient changes of Flow and Paw waveforms detected by SE, but not on inspiratory effort. This means that 
respiratory drive, the intensity of the neural output from the respiratory center that regulates the magnitude of 
inspiratory effort55, may not have been fully assessed15,56,57. Unfortunately, although many techniques have been 
proposed55,58–60 none have been implemented at the bedside to monitor drive and effort. Our proposed algorithm 
does not include measurements of effort; nevertheless, whenever a diaphragmatic contraction occurs unassisted 
by the ventilator, and an asynchrony develops our algorithm is able to detect it.

Figure 6.   Performance statistics for SE-Flowmax25 (m = 2 and r = 0.2) and SE-Pawmax30 (m = 4 and r = 0.2) for 
detecting CP-VI. Boxplots of (a) Matthews correlation coefficient (MCC), (b) sensitivity (Se), (c) specificity 
(Sp), (d) accuracy (Acc), (e) positive predictive value (PPV), and (f) negative predictive value (NPV) from 15 
repetitions during optimization (white) and 15 repetitions during validation (gray). The red dot represents the 
mean value.
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Second, although our method does not rely on the detection of breathing cycles to measure irregularity and 
is based on changes in SE of Flow and Paw waveforms, none of the features deriving from breath-to-breath vari-
ability were considered. Therefore, their potential importance in detecting CP-VI is yet to be assessed.

Third, while the dataset used for the repeated hold out cross-validation method was paired between segments 
with and without CP-VI, most of them were from tracings of patients who self-extubate, in whom the occurrence 
of events of poor patient-ventilator interactions is highly unpredictable. For that reason, the clinical meaning of 
CP-VI in critically ill patients is yet to be determined and requires more research. Additionally, in the current 
study we have only examined SE, and other promising measures of entropy may also provide adequate diagnos-
tic tool. For instance, multiscale entropy analysis61,62, Fuzzy approximate entropy63, conditional entropy64 and 
distribution entropy65 could be others potentially useful entropy measures to be investigated.

Finally, we did not analyze data from proportional modes of MV. Thus, although it is tempting to speculate 
that ventilatory modes that adapt to patients’ efforts and variability might induce higher changes in SE, the 
performance of our algorithm in patients ventilated in these modes may differ substantially, and it should not 
be implemented in these modes until validated by future research.

Conclusion
Our non-invasive method based on SE measurement of Paw and Flow is able to detect CP-VI, defined as the 
occurrence of transient asynchronies and changes in the respiratory rate, with high accuracy. Clinical relevance 
and usefulness of identifying Complex Patient-Ventilator Interactions in different clinical scenarios deserves 
to be explored.

Data availability
The datasets generated and analyzed in the current study are available from the corresponding author on rea-
sonable request.
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