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Abstract

Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as
amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are
incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed ‘classic’ features
of apoptosis following exposure to pneumococci. Conversely, purified CD3+ T-cells cultured with pneumococci
demonstrated necrosis with membrane permeabilization. The death of purified CD3+ T-cells was not inhibited by
necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3+ T-cells in PBMC cultures required ‘classical’
CD14+ monocytes, which enhanced T-cell activation. CD3+ T-cell death was enhanced in HIV-seropositive individuals.
Monocyte-mediated CD3+ T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-
cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased
bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis
into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes
were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease.
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Introduction

Innate immunity is critical for the rapid recognition and

response to pathogenic micro-organisms [1]. A complex relation-

ship exists between innate immune responses and T-cells. Innate

immune responses recruit and activate T-cells at sites of infection

but T-cells in turn regulate phagocyte function and can therefore

modify inflammatory responses. Monocytes are key effectors of the

innate immune response to bacteria and contribute to recruitment

of T-cells at sites of infection [2]. In contrast to differentiated

macrophages, however, monocytes have not been viewed as

having a major role in the downregulation of the inflammatory

response [3].

Streptococcus pneumoniae is one of the leading causes of infection-

related mortality globally [4]. T-cells are key to host defense

against pneumococci, making this a useful model with which to

study the regulation of T-cells during bacterial infection [5,6].

CD4+ T-cells are found at sites of pneumococcal colonization in

the upper airway [7] and T-cells migrate to sites of infection in the

lung [8]. In murine models CD4+ T-cell Th17 responses facilitate

clearance of colonizing bacteria [7,9] while CD4+ T-cells enhance

clearance of bacteria from the lungs [5]. Other studies have

emphasised an important role for CD8+ T-cells during pneumo-

coccal pneumonia by demonstrating CD8+ T-cells limit the extent

of the inflammatory response [10]. Despite these observations,

CD4+ T-cell inhibition may also limit inappropriate degrees of

inflammation in some models of pneumococcal infection and

improve disease outcome, emphasizing that numbers of T-cell

populations must be carefully regulated to ensure effective

clearance of bacteria while limiting lung pathology [10,11].

There is limited information on how T-cell numbers are

regulated during the immune response to pneumococci and in

particular what role cell death plays in this process. Lymphocyte

apoptosis has been observed in peripheral blood of patients with

pneumococcal infection [12] and is a well-recognized feature of

bacterial sepsis [13]. Nevertheless it remains unclear whether the

lymphocyte apoptosis described during pneumococcal infection is

part of a non-specific response, associated with microbial products

and the altered cytokine responses that are a feature of infection,

or whether it might be the result of a more specific host

programme regulating the immune response.

We therefore examined whether the interaction of T-cells with

pneumococci results in cell death and have characterized features

of this process. In particular we observed that the pneumococcal

protein pneumolysin induces T-cell necrosis but that in the

presence of monocytes T-cells undergo Fas-dependent apoptosis.
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Moreover we have found a requirement for Fas-signaling in the

regulation of CD3+ T-cell death, during the early T-cell dependent

phases of the host response to pneumococci.

Results

Pneumococci induce T-cell apoptosis
We first examined whether peripheral blood mononuclear

cells (PBMC) incubated with pneumococci demonstrated

features of apoptosis, using a range of morphologic and

biochemical assays of apoptosis. Almost all PBMC became

Annexin V+ after 24 h of incubation with pneumococci

(Figure 1A). PBMC also showed evidence of loss of inner

mitochondrial transmembrane potential (Dym) (Figure 1B) and

of increased caspase activation (Figure 1C), cell shrinkage

(Figure 1D) and DNA strand breaks (Figure 1E), following

exposure to pneumococci. We confirmed cell death of purified

lymphocytes 6 h after exposure to bacteria with evidence of

both early apoptotic Annexin V+/TO-PRO-32 cells and late

apoptotic/necrotic Annexin+/TO-PRO-3+ cells (data not

shown), that was directly proportional to the MOI (Figure 1F).

We also confirmed accumulation of hypodiploid DNA, a feature

of apoptosis [14], in CD3+ T-cells (Figure 1G) and that the

CD3+ T-cell death was caspase dependent (Figure 1H). The

combination of features confirmed an apoptotic form of cell

death. Apoptosis was apparent with an MOI as low as 0.1

(Figure 1B).

Cell death required cell contact between bacteria and PBMC

and was not the consequence of utilization of growth factors in the

media by bacteria since the insertion of transwells between

bacteria and PBMC inhibited cell death at representative early

and late time points after bacterial challenge (Figure S1). In PBMC

cultures as expected T-cells predominated but cultures also

contained 17.561.7% CD19+ B-cells and 8.761.1% CD14+

monocytes. CD19+ B-cells showed a trend towards an increased

rate of cell death following 16 h pneumococcal challenge (Figure

S2A). As we have previously reported during pneumococcal

infection [15], CD14+ monocytes were highly susceptible to cell

death (Figure S2B). We also confirmed that different subsets of T-

cells were highly susceptible with early evidence of cell death

(Figure S2C–E). These subsets included CD161+ cells, which are

Th17 cells or cells with the potential to differentiate into this subset

[16]. We did not find evidence for the selective involvement of any

of these T-cell sub-sets as they were equally susceptible to cell

death following bacterial challenge.

Monocytes in cell cultures are required for the induction
of CD3+ T-cell apoptosis

Since monocytes/macrophages can induce apoptosis in T-cells in

specific circumstances [17,18] we addressed whether monocytes

influenced CD3+ T-cell death in cultures of PBMC following

exposure to pneumococci. The percentage of CD14+ monocytes in

PBMC was 11.861.1%, while the number in the non-adherent

fraction of plastic purified PBMC cultures was reduced to

1.660.4% (Figure S3) and the percentage of CD14+ monocytes in

highly pure CD3+ T-cells cultures was negligible at only

0.160.05%. In these experiments the highly pure CD3+ T-cell

cultures contained 9560.7% CD3+ T-cells. As shown in Figure 2A,

the increase in total Annexin V+ cells, in PBMC cultures following

challenge with pneumococci, was similar in magnitude despite

varying numbers of monocytes. However, the PBMC cultures

demonstrated significantly more Annexin V+/TO-PRO-32 cells

and significantly fewer Annexin V+/TO-PRO-3+ cells than the

highly purified CD3+ T-cell cultures (Figure 2B–C), while purified

CD3+ T-cell cultures showed no increase in Annexin V+/TO-PRO-

32 cells above baseline. Moreover few cells in the purified CD3+ T-

cell culture showed accumulation of hypodiploid DNA or

cytochrome c translocation into the cytoplasm, a specific feature

of apoptosis indicating mitochondrial outer membrane permeabi-

lization [19]. In contrast PBMC or plastic purified PBMC had

significant numbers of cells with hypodiploid DNA and evidence of

cytochrome c translocation (Figure 2D–F). To ensure cytochrome c

translocation was measured only in CD3+ T-cells these cells were

purified from PBMC cultures exposed to bacteria. We confirmed

the lack of apoptotic features, such as hypodiploid DNA accumu-

lation, in the purified CD3+ T-cell culture was not just the result of

altered kinetics of cell death since the differences in accumulation of

hypodiploid DNA between purified CD3+ T-cell cultures and

PBMC were seen at all time points from 6–16 h after pneumococcal

challenge, the latest time point being a time at which cell death was

extensive in both cultures using less selective assays (Figure S4). The

ability of monocytes to induce apoptosis in T-cells was not altered in

the presence of neutrophils or apoptotic neutrophils, demonstrating

this role of monocytes is not subverted during an acute inflamma-

tory response or during the resolution of this response (Figure S5).

CD14+monocytes reconstitute CD3+ T-cell apoptosis in
cell cultures

To prove that monocytes were responsible for the enhanced

levels of apoptotic T-cells we purified both CD3+ T-cells and

CD14+ monocytes and confirmed that addition of monocytes to

CD3+ T-cells was sufficient to induce accumulation of hypodiploid

DNA and caspase 3 activation in CD3+ T-cells (Figure 3A–B).

Apoptosis was not apparent in CD3+ T-cells cultured without

CD14+ monocytes, even when cultured with high doses of bacteria

for prolonged periods. Cultures containing CD14+ monocytes also

showed evidence of a further apoptosis marker, loss of full length

Bid indicative of Bid activation (Figure 3C–D). Bim expression

remained constant in these experiments. In cultures containing

only purified CD3+ T-cells there was no evidence of Bid

activation. We were able to show that as the percentage of

CD14+ monocytes increased the numbers of CD3+ T-cells with

hypodiploid DNA increased (Figure 3E). Our isolation method

Author Summary

T-cells are important contributors to the early host
response to pneumonia, but their numbers must be
tightly regulated to limit inflammatory lung injury. Cell
death regulates T-cell numbers but the mechanism of
execution influences the inflammatory cost with apoptosis
viewed as predominantly anti-inflammatory and necrosis
as pro-inflammatory. We show that monocytes determine
the mechanism of T-cell death during acute bacterial
infection. Monocytes triggered Fas-dependent T-cell ap-
optosis but in the absence of monocytes T-cells died by
necrosis, which required the pneumococcal virulence
factor pneumolysin. We also show that Fas ligand is
required to regulate the early T-cell dependent host
response to pneumococci during pneumonia. Although
monocytes have previously been associated with enhance-
ment of the inflammatory response our results imply that a
key role of monocytes is to dampen the inflammatory
response through induction of Fas-mediated apoptosis of
activated T-cells during S. pneumoniae pneumonia. Our
data identifies a critical and unrecognized regulatory role
for monocytes during pneumonia.

Monocyte-Induced T-cell Apoptosis
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initially only collected ‘classical’ CD14+ monocytes (Figure S6).

‘Non-classical’ CD14loCD16+ monocytes have emerged as impor-

tant effectors of innate immunity [2]. We therefore modified our

isolation protocol to include ‘non-classical’ and also ‘intermediate’

populations [20], as shown in Figure S6. Addition of these sub-

populations to the ‘classical’ monocytes did not alter the level of

CD3 T-cells with hypodiploid DNA in comparison to co-cultures

with only CD14+ monocytes (Figure 3F).

In the absence of monocytes CD3+ T-cells undergo a
form of toxin-mediated necrotic cell death

In the absence of monocytes CD3+ T-cells underwent a form of

necrotic cell death. There was evidence of extensive loss of

membrane integrity in the purified CD3+ T-cells and evidence of

morphological features of necrosis such as prominent membrane

disruption without features of cell shrinkage or of the nuclear

condensation observed in the CD3+ T-cells isolated from PBMC

(Figure 4A). Purified CD3+ T-cells showed prominent membrane

disruption as evidenced by greater levels of Trypan blue staining

(Figure 4B). The cell death in purified CD3+ T-cell cultures was

not altered by necrostatin (Figure 4C) and death was not converted

to apoptosis (Figure 4D) suggesting the death process did not

involve necroptosis. Purified CD3+ T-cells did not demonstrate

caspase 1 activation suggesting pyroptosis was unlikely to be the

mechanism of cell death (Figure S7A). Cell death in PBMC

required live bacteria (Figure S7B).

The pneumococcal virulence factor pneumolysin induces not

only cell lysis with membrane permeabilization but also apoptosis in

mammalian cells [21]. Distinct regions of pneumolysin govern

cytolytic and non-cytolytic activity such as complement activation.

Overall cell death in CD3+ T-cells in PBMC cultures, which we

show above is apoptotic, was partially reduced but not restored to

baseline by a mutant (D6), which produces toxin that lacks cytolytic

activity (Figure 4E and Figure S7C). Purified pneumolysin could

induce cell death of lymphocytes (Figure 4F) but these cells did not

have features of apoptosis such as accumulation of hypodiploid

DNA (Figure 4G). These results demonstrate that the purified T-

cells die by a primarily necrotic process with prominent membrane

permeabilization and implicate pneumolysin in the cell death.

Monocytes enhance CD3+ T-cell activation during
pneumococcal infection and increased activation
enhances apoptosis

We next addressed whether monocytes altered CD3+ T-cell

activation in our model, since monocytes can enhance MHC-

independent T-cell activation [22] and enhanced activation can

alter susceptibility to apoptosis [23]. Monocytes/macrophages can

also induce death receptor mediated cell death in activated T-cells

[18]. We showed enhanced expression of the CD3+ T-cell activation

markers CD69, CD25 and HLA-DR in PBMC cultures exposed to

viable or heat-killed pneumococci (Figure 5A–B). CD3+ T-cells

from HIV-1 seropositive individuals are known to have enhanced

levels of activation and to be particularly susceptible to macrophage-

mediated cell death [18]. In keeping with this we documented that

cells isolated from HIV-seropositive individuals who were not

receiving antiretroviral therapy (since HIV viral load influences

activation state and susceptibility to apoptosis [24]), had increased

levels of CD3+ T-cell death, as compared to controls, when exposed

to pneumococci (Figure 5C). These results suggested T-cell

activation influenced levels of cell death and activation was

enhanced in PBMC co-cultures containing monocytes.

CD3+ T-cell apoptosis is Fas-mediated in PBMC during
pneumococcal infection

To determine the apoptotic pathway inducing monocyte-

dependent CD3+ T-cell apoptosis we next examined the potential

role of Fas ligand (FasL). Fas signaling contributes to T-cell receptor

mediated activation-induced cell death but has also been implicated

in macrophage-induced cell death of activated T-cells [18,23].

PBMC were challenged with pneumococci and then CD3+ T-cells

were purified to prevent other mononuclear cells from confounding

the results. This demonstrated increased levels of caspase 8

activation in CD3+ T-cells co-cultured with monocytes

(Figure 6A), suggesting death receptor-mediated apoptosis [23].

We next examined involvement of Fas in the death process using an

infectious dose at the low end of the range we had shown causes

death (see Figure 1B) to limit competing effects of necrosis. A Fas

blocking antibody prevented Bid activation and cytochrome c

accumulation in the cytosol of CD3+ T-cells present in PBMC

(Figure 6B–E). The numbers of CD3+ T-cells with accumulation of

hypodiploid DNA was also reduced following treatment with anti-

Fas antibody (Figure 6F). In addition, when we supplied a Fas-

blocking antibody and measured the level of Annexin V+ cells in

CD3+ T-cells isolated from PBMC following pneumococcal

infection, there was also a reduction of cell death (Figure 6G).

Similar experiments in purified CD3+ T-cells revealed Fas

inhibition failed to reduce the levels of Annexin V+ CD3+ T-cells

(data not shown). In addition, a granzyme B inhibitor (added since it

has been suggested that pneumolysin can substitute for perforin and

combine with granzyme B to induce lymphocyte apoptosis [25]) did

not alter levels of T-cell apoptosis (Figure S8). TRAIL blocking

antibody or PDL-1 blocking antibody also had no effect on levels of

T-cell apoptosis (data not shown). These results confirmed that Fas

mediated CD3+ T-cell apoptosis in PBMC cultures.

Figure 1. Peripheral blood mononuclear cells undergo apoptosis following challenge with Streptococcus pneumoniae. A) The
percentage of Annexin V+ peripheral blood lymphocytes (PBL) identified by forward (FSC) and side scatter characteristics (SSC) 4 and 24 h after either
mock-infection (multiplicity of infection (MOI) = 0) of peripheral blood mononuclear cells (PBMC) or challenge with D39 Streptococcus pneumoniae
(MOI = 10), n = 6. B) Loss of inner mitochondrial transmembrane potential (Dym) was detected with the cationic dye JC-1 in PBL 16 h post challenge
of PBMC (MOI = 0–10). Representative histograms demonstrate the gain of green and loss of red fluorescence following mock infection (tinted
histogram, MOI = 0) or pneumococcal challenge (filled histogram, MOI = 10), the graph depicts the percent loss of red fluorescence indicative of loss
of Dym, n = 6. C) Caspase 3 activation in PBMC 16 h post challenge (MOI = 0 or 10), recorded as caspase 3 relative luminescence units (Caspase 3
RLU), n = 3. D) Dot plots of the FSC and SSC profile of PBMC demonstrating a loss in FSC 16 h post challenge (MOI = 0 or 10), representative of three
individual experiments. E) Representative images of PBMC 24 h following challenge (MOI = 0 or 10) and stained with DAPI and terminal UTP nick-end
labeling (TUNEL). Results are typical of three independent experiments. F) A representative image showing Annexin V and TOPRO-3 staining is shown
at MOI = 0 and 10 and the mean percentage Annexin V+ PBL gated by FSC and SSC after challenge of plastic purified PBMC (MOI = 0–50) for 6 h, n = 3.
G) Representative histograms and graph of mean percentage CD3+ T-cells with accumulation of hypodiploid DNA (Sub G0/1) following challenge
(MOI = 0 or 50) for 6 h. T-cells were identified by labeling with FITC conjugated anti-CD3, n = 4. H) The percentage Sub G0/1 CD3+ T-cells from PBMC
pre-treated with either vehicle control (DMSO) or the pan-caspase inhibitor Z-VAD-FMK (10 mM) and mock-infected (D392) or challenged with S.
pneumoniae (D39+, MOI = 10) for 16 h, n = 3. Statistical analyses by ANOVA or t-test; * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.ppat.1002814.g001
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Evidence of Fas-mediated T-cell death and a requirement
for Fas ligand during invasive pneumococcal disease

To confirm the relevance of these findings in vivo we

documented T-cell apoptosis in the spleen, an environment where

macrophage-mediated T-cell death would be anticipated to occur

in vivo [26], in mice with invasive pneumococcal disease

(Figure 7A). Differences in levels of bacteremia can influence

levels of T-cell apoptosis [27]. Therefore our investigation of

apoptosis in vivo was carried out using a high dose of serotype 4 S.

pneumoniae, a virulent strain of bacteria that establishes high levels

of bacteremia [28], which we confirmed were similar between

FasL deficient gld and control mice (data not shown). Under these

conditions, which normalized blood bacterial colony counts, we

documented a significant reduction in the levels of hypodiploid

DNA in CD3+ T-cells from gld mice, as compared to TRAIL

deficient or wild-type mice (Figure 7B).

However, T-cells play an important role in the early stages of

pneumonia [5,6]. To test the relevance of FasL to pneumonia

outcomes we confirmed that gld mice had increased levels of

bacteria in the lung and blood in a model when there were very

Figure 2. Monocytes induce CD3+ T-cell apoptosis following Streptococcus pneumoniae challenge. Peripheral blood mononuclear cells
(PBMC), plastic purified lymphocytes (Plastic purified) and highly purified CD3+ T-cells (CD3 enriched) were challenged for 6 h with either mock-
infection (multiplicity of infection (MOI) = 0) or D39 Streptococcus pneumoniae (MOI = 50). A) Total Annexin V+ B) early apoptotic, Annexin V+/TO-PRO-
32 and C) late apoptotic/necrotic Annexin V+/TO-PRO-3+ events were recorded, n = 11. D) Hypodiploid DNA (Sub G0/1) was measured in CD3+ T-cells
under the same conditions, n = 5. E) PBMC and CD3 enriched T-cells were challenged with D39 (D39+) MOI = 10 or mock-infected (D392) for 16 h. CD3+

T-cells were purified from the PBMC and cytosolic and membrane fractions were obtained from the CD3+ T-cells from each sample prior to western blot
analysis probing for cytochrome c, actin and Cox-4 and F) densitometry summarises the cytochrome c/actin ratio for cytosols under each experimental
condition, from four experiments with separate donors.
doi:10.1371/journal.ppat.1002814.g002
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Figure 3. CD14+ monocytes reconstitute apoptosis in CD3+ T-cells following Streptococcus pneumoniae challenge. A) Peripheral blood
mononuclear cells (PBMC), purified CD3+ T-cells (CD3+ CD142) or co-cultures of purified CD3+ T-cells with 10% purified CD14+ monocytes (CD3+ CD14+)
were mock-infected (MOI = 0, white bars) or challenged with D39 Streptococcus pneumoniae (MOI = 50, black bars) for 16 h and accumulation of
hypodiploid DNA (% Sub G0/1) measured in CD3+ T-cells, n = 4. B) caspase 3 activation in CD3+ T-cells under the same condition as A), n = 4. C)
Representative western blot probed for Bid, Bim and actin from CD3+ T-cells isolated from PBMC or CD3 enriched cultures following bacterial challenge as in
A), D) densitometry summarizes the fold change in Bid compared to the mock infected (MI), derived from three separate experiments. E) % Sub G0/1
purified CD3+ T-cells in co-cultures containing 10% or 20% of purified CD14+ monocytes under the same conditions as A), n = 4 or in F) co-cultures of CD3+

T-cells and purified CD14+ monocytes with (CD14+/CD162) or without (CD14+/CD16+) CD16+ monocyte depletion, under the same conditions as A), n = 4,
ns (not significant) * p,0.05, ** p,0.01, *** p,0.001; statistical analysis by ANOVA.
doi:10.1371/journal.ppat.1002814.g003
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low levels of recruited neutrophils (Figure 7C–E). In association

with this gld mice had increased levels of TNF-a (Figure 7F),

though not IL-6 (Figure 7G). We also established that T-cells in

this model play an important role in host defense by establishing

that control mice treated with cyclosporine, a known T-cell

immunosuppressant and cause of T-cell lymphopenia [11], had

reduced control over bacterial replication and that this T-cell

mediated control was lost in the gld deficient mice (Figure 7H–I).

This suggested FasL was critical for T-cell dependent host defense

in the early stages of pneumococcal infection when there are still

relatively few recruited neutrophils.

Discussion

Monocytes are usually regarded as contributing to the ramp up

of inflammatory responses rather than triggering their cessation

[2]. We now demonstrate an important role for monocytes in

controlling the number of activated T-cells during bacterial

infection. Although a variety of T-cell populations contribute to

the immune response to bacteria such as pneumococci [5,7,10],

the regulation of these cell populations and the role of cell death in

this process are incompletely defined. We show that monocytes

play an important and unrecognized role ensuring Fas-dependent

apoptosis to ensure the safe disposal of activated T-cells. In the

absence of monocytes pathogen driven T-cell necrosis predomi-

nates. Moreover we also demonstrate that in mice T-cell

dependent early host responses to pneumococcal infection are

attenuated in the absence of FasL, suggesting that monocyte-

mediated Fas-dependent apoptosis represents a critical component

of the early stages of an effective host response against

pneumococci. We were also able to show this response could

occur in the presence of viable or apoptotic neutrophils, suggesting

it may also be important at later stages of infection.

Cholesterol-dependent cytolysins, including listeriolysin, are

recognized stimuli for T-cell death [27]. We found the related

pneumococcal toxin pneumolysin triggered non-apoptotic death

with early membrane permeabilization in purified T-cells.

Pneumolysin enhanced monocyte-dependent T-cell death, though

in this case via apoptosis without evidence of early membrane

disruption, suggesting apoptosis did not require outer cell

membrane pore formation. Cytolytic activity of pneumolysin has

been traditionally viewed as a virulence determinant but recent

evidence suggests that pneumolysin is also an important trigger for

effective innate immune responses against the pneumococcus,

including those mediated by the nucleotide-binding oligomeriza-

tion domain-like receptor family pyrin domain containing 3

(NLRP3) inflammasome [29]. In our model of monocyte-mediated

apoptosis it appears that the requirement for cytolytic toxin was as

a trigger for the host response that induced maximal levels of

apoptosis. Mutants that lack cytolytic activity such as ST306

serotype 1 and ST53 serotype 8 pneumococci have emerged as

major causes of invasive pneumococcal disease [30]. On the basis

of our findings we would predict these strains would induce less T-

cell apoptosis and that persistence of activated T-cells could

contribute to the invasive potential of these non-cytolytic strains.

In contrast, once these strains have invaded the propensity to

cause lower rates of apoptosis might explain the lower mortality

associated with them since lymphocyte apoptosis may influence

outcomes during sepsis [31]. Surprisingly PBMC needed to be in

contact with the bacteria for the toxin to mediate its effect.

Although the toxin is soluble when released from lysed bacteria it

may also remain associated with the bacterial cell wall [32], which

might explain this finding. Alternatively cell contact with PBMC

might upregulate toxin production or enhance release by

increasing bacterial lysis [33].

LPS can stimulate MHC-independent T-cell activation via a

monocyte-dependent process involving CD80 [22]. Pneumolysin is

also a TLR4 ligand that activates T-cells; therefore a similar

mechanism may explain the enhanced T-cell activation we

observed in PBMC cultures [5,21], although the fact that heat

killed bacteria also activated T-cells suggests active toxin is not

essential. Other microbial factors could also stimulate monocytes

to activate CD3+ T-cells. One consequence of increased T-cell

activation is to enhance susceptibility to apoptosis after a period of

sustained activation and this paradigm is exemplified by the

apoptosis of uninfected CD3+ T-cells during HIV infection [34].

In keeping with this PBMC from HIV-seropositive individuals had

elevated levels of CD3+ T-cell apoptosis following challenge with

pneumococci. In addition to enhancing susceptibility to apoptosis

T-cell activation could increase resistance to the competing toxin-

related cytolytic cell death through cytokine production. For

example, IFN-c, produced by activated Th1 cells, reduces the

susceptibility of epithelial and monocytic cell lines to pneumolysin

associated cytolytic death [35]. Consistent with this possibility mice

lacking IFNc are more susceptible to listeriolysin dependent cell

death [27].

In the presence of ‘classical’ monocytes we found that CD3+ T-

cell death had classic features of apoptosis and this effect was

maintained even in the presence of small numbers of monocytes,

as evidenced by high levels of CD3+ T-cell apoptosis in plastic

purified PBMC. ‘Non-classical’ monocytes played less of a role in

this process though the numbers we isolated were relatively small

so we cannot exclude a possible role when their numbers expand.

The absence of early membrane permeabilization or of inhibition

by necrostatin argued against the cell death being a form of

programmed necrosis and the absence of cell swelling, early loss of

membrane integrity or caspase 1 activation was inconsistent with

pyroptosis, which has recently been described in T-cells [36]. In

contrast cell death in purified CD3+ T-cells which were not co-

cultured with monocytes was characterized by early membrane

disruption without significant mitochondrial outer membrane

permeabilization, Bid activation or accumulation of hypodiploid

DNA, consistent with necrosis.

Figure 4. Purified T-cells undergo a necrotic pneumolysin-dependent death. A) Representative transmission electron micrograph of CD3+

T-cells from peripheral blood mononuclear cells (PBMC) and CD3 enriched cultures (CD3 enriched) following challenge with D39 Streptococcus
pneumoniae (MOI = 50) or mock-infection (MI) for 6 h. CD3+ T-cells from PBMC cultures showed characteristics of apoptosis including nuclear
fragmentation while CD3 enriched T-cells had features of necrosis such as membrane rupture. Images were obtained with an FEI Tecnai transmission
electron microscope. B) T-cell trypan blue exclusion was assessed by brightfield microscopy following challenge of PBMC and CD3 enriched cultures
with D39 (MOI = 50) for 6 h and C) pre-treatment with necrostatin-1 (30 nM) under the same conditions as B) did not reduce CD3+ death measured by
TO-PRO-3 staining or D) convert the death process in CD3 enriched cultures to apoptosis, measured by accumulation of hypodiploid DNA (% Sub G0/
1), n = 4. E) The mean percentage of Annexin V+ CD3+ T-cells 6 h after mock-infection (MOI = 0) or challenge of PBMC with D39 or the D6 mutant
(MOI = 50), n = 5. F) The mean percentage of Annexin V+ and G) % sub G0/1peripheral blood lymphocytes isolated by plastic adherence of PBMC and
gated by FSC and SSC 6 h following challenge with pneumolysin (0–1 mg), n = 3 *p,0.05, **p,0.01, ***p,0.001; statistical analysis by one and two-
way ANOVA or t-test.
doi:10.1371/journal.ppat.1002814.g004
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These results define a novel role for monocytes in downregu-

lating the inflammatory response during acute bacterial infection.

A key role for monocytes in downregulating the inflammatory

response has been previously ignored. Unlike macrophages,

monocytes are not thought to clear apoptotic cells by efferocytosis

[3]. Nevertheless, monocytes express FasL [37] and evidence that

monocytes induce Fas-mediated apoptosis of activated T-cells has

been provided during HIV infection [17] and chronic periodon-

titis [38]. Nevertheless this role of monocytes has not been

demonstrated previously during acute bacterial infections, where

downregulation of the inflammatory response is a critical

component of inflammation resolution. In our model monocytes

did not influence overall T-cell viability (levels of death were

similar in the presence or absence of monocytes) but their role was

to ensure the induction of an injury limiting apoptotic form of cell

death. There are a number of potential benefits to the host of

monocyte-dependent CD3+ T-cell apoptosis: ensuring the timely

removal of activated T-cells downregulates pro-inflammatory

cytokine expression by T-cells, induction of apoptosis rather than

necrosis limits secondary tissue injury and the removal of apoptotic

cells by efferocytosis further detunes pro-inflammatory cytokine

expression by macrophages during pneumococcal pneumonia

Figure 5. Monocytes enhance CD3+ T-cell activation following bacterial challenge and enhanced activation increases apoptosis. The
percentage of CD3+ T-cells positive for CD69, CD25 and HLA-DR in highly purified CD3+ T-cells (CD3 enriched) or peripheral blood mononuclear cells
(PBMC) following either mock-infection (multiplicity of infection (MOI) = 0) or challenge with A) live Streptococcus pneumoniae (MOI = 50) for 16 h,
n = 8 or B) heat killed S. pneumoniae (MOI = 50) for 72 h, n = 4, * p,0.05, ** p,0.01, *** p,0.001; statistical analysis by ANOVA. C) The percentage of
CD3+ T-cells with accumulation of hypodiploid DNA (Sub G0/1) 6 h following mock-infection (multiplicity of infection (MOI) = 0) or challenge with
Streptococcus pneumoniae (MOI = 10 or 50) of peripheral blood mononuclear cells (PBMC) from control (n = 6) or HIV-seropositive individuals, n = 8,
*p,0.05, **p,0.01; statistical analysis by ANOVA.
doi:10.1371/journal.ppat.1002814.g005
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[39]. Consistent with these possibilities we noted that FasL

deficient mice had reduced T-cell apoptosis (when we normalized

the level of bacteraemia to exclude confounding effects of

differences in bacterial number) and that during the early T-cell

dependent stages of pneumococcal pneumonia FasL deficiency

was associated with impaired bacterial clearance, in a model that

had few recruited neutrophils and was therefore unlikely to be

confounded by any direct effects of Fas-signalling on neutrophil

function [40]. FasL deficiency was associated with upregulation of

TNF-a which would be anticipated to in turn upregulate receptors

involved in the translocation of bacteria into the blood such as the

PAF receptor [41]. Activated T-cells enhance TNF-a production

by monocytes, through release of IFN-c, but also through

membrane interactions with monocytes [42,43]. Induction of T-

cell apoptosis not only would be anticipated to reduce these stimuli

but would also provide apoptotic cells which when ingested by

macrophages would further reduce TNF-a expression [39]. IL-6

production, however, was not reduced even though production is

also decreased in the presence of apoptotic cells [39]. The reason

for this finding was not apparent but may reflect the pleiotropic

role of IL-6 both as an inflammatory cytokine and as a cytokine

which can downregulate T-cell responses [44]. It remains possible

that its production was sustained since it is produced as part of a

counter-regulatory response to the sustained presence of activated

T-cells [44], although we were not able to formally test this

possibility.

Recently it has been shown that selective CD4+ T-cell depletion,

non-selective depletion of T-cells or reduction of T-cell activation

can improve survival in murine models of invasive pneumococcal

disease, suggesting excessive T-cell activation can be harmful and

must be tightly controlled [11]. Our observations provide a

mechanism for this process. Prior observations of T-cell apoptosis

and of increased FasL expression in a small cohort of patients with

pneumococcal disease are also consistent with this [12]. We

established a hierarchy of cell death programs such that monocytes

induced apoptosis as the dominant mechanism of T-cell death

during pneumococcal infection. In the absence of monocytes the

combination of non-apoptotic cell death and the unopposed effects

of pro-inflammatory microbial factors, such as pneumolysin,

would be predicted to result in increased tissue injury and

bacterial invasion [21]. In the context of pneumolysin-mediated T-

cell activation [5], and in light of the potential for pneumococci to

induce a predominantly cytolytic cell death in purified CD3+ T-

cells, our observation that monocytes regulate T-cell death,

ensuring Fas-mediated apoptosis predominates, is significant.

These findings emphasise the important and unrecognised role

of monocytes in downregulating the inflammatory response to

bacterial infection by regulating numbers of activated T-cells

during the immune response to infection.

Materials and Methods

Ethics
Human PBMCs were isolated from whole blood donated by

healthy volunteers as previously described with written informed

consent as approved by the South Sheffield Regional Ethics

Committee of Royal Hallamshire Hospital (Sheffield, United

Kingdom). All animal experiments were performed in accordance

with the UK Animals (Scientific procedures) Act, authorized under

a UK Home Office License, and approved by the animal project

review committee of the University of Sheffield.

Bacteria
Experiments were performed with serotype 2 S. pneumoniae,

strain D39 (NCTC7466) or its D6 mutant unless otherwise stated. In

murine experiments serotype 1 (SSISP strain; Statens Seruminstitut)

or serotype 4 S. pneumoniae (TIGR4 strain) were utilized. To test the

contribution of the pneumococcal endonuclease EndA [45] in

increasing the extent of cleavage of hypodiploid DNA we screened a

panel of serotype 1 strains for EndA production using the method of

Beiter et al [45] and used strain NCTC7465 that is EndA negative

and INV104B that expresses EndA. All bacterial stocks were

prepared as described previously [46]. In certain experiments

bacteria were heat-killed by boiling for 10 min prior to incubation

with cells and inhibition of growth was confirmed by documenting

no growth following plating on blood agar.

Construction of D39D6
The D6 mutation refers to deletion of amino acid residues A146

and R147 from pneumolysin, introduced by site-directed mutagen-

esis [47]. The altered gene replaced the chromosomal gene [48].

The Janus cassette, which encodes markers for kanamycin

resistance and streptomycin sensitivity, was linked to 300 bp of

upstream and downstream flanking DNA from the pneumolysin

gene by splice overlap PCR [48]. This construct was transformed

into a streptomycin resistant version of D39. Homologous

recombination in the flanking DNA introduced the Janus cassette

in place of the pneumolysin gene giving an intermediate form of

D39 that was resistant to kanamycin and sensitive to streptomycin.

The intermediate form was isolated by growth on plates containing

150 mg/ml kanamycin and transformed with the D6 gene.

Homologous recombination in the flanking DNA replaced the

Janus cassette with the altered form of the pneumolysin gene giving

D39 that was resistant to streptomycin and sensitive to kanamycin.

Recombinants were selected by growth on plates containing

300 mg/ml streptomycin. The selected strain was checked for

production of pneumolysin by western blot and the toxin produced

was shown to be non-haemolytic using a standard hemolytic assay of

cell extracts as described previously [49], see Figure S7C.

Figure 6. CD3+ T-cells undergo Fas-mediated apoptosis following pneumococcal challenge. A) Mean caspase 8 relative luminescence
units (Caspase 8 RLU) in CD3+ T-cells from peripheral blood mononuclear cells (PBMC), purified CD3+ T-cells (CD3+ CD142) or co-cultures of purified
CD3+ T-cells with 10% purified CD14+ monocytes (CD3+ CD14+) 6 h following mock-infection (multiplicity of infection (MOI) = 0) or challenge with
D39 Streptococcus pneumoniae (MOI = 50), n = 5. B) Representative western blot probed for Bid, Bim and actin from CD3+ T-cells purified from PBMC
16 h following mock-infection (D392) or challenge with D39 at MOI = 0.1 (D39+) in the presence of isotype control (Isotype+) or ZB4 neutralizing
anti-Fas antibody (Anti-Fas+) added at 1 mg/ml. C) Densitometry summarises the fold change in Bid compared to the mock infected (MI) cells from
three separate experiments with different donors. D) Cytosolic and membrane fractions were also probed for cytochrome c, actin and Cox-4, and E)
densitometry was performed, n = 4. F) Hypodiploid DNA accumulation (Sub G0/1) was measured in CD3+ T-cells in PBMC cultured under the same
conditions as B), n = 4. G) The percentage of Annexin V+ CD3+ T-cells in PBMC cultured under the same condition as in B), n = 3, * p,0.05; statistical
analysis by ANOVA or t-test.
doi:10.1371/journal.ppat.1002814.g006
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Cell culture
Peripheral blood mononuclear cells (PBMC) plated at 16106

cells/ml were isolated and cultured as previously described [50].

Plastic purified lymphocytes (PBL) were obtained by plating

PBMC at 26106 cells/ml in 25 cm2 flasks (Costar) for 1 h,

transferring the non-adherent cells to a new flask for a further 1 h,

removing, washing and counting the non-adherent cells and then

resuspending at 16106 cells/ml in a 24-well plate. Purified CD3+

T-cells and monocytes with and without CD16 depletion were

isolated from PBMC by magnetic immunoselection using EasySep

human T cell enrichment kit, EasySep human monocyte

enrichment kit and EasySep human monocyte enrichment kit

Figure 7. FasL regulates T-cell apoptosis and bacterial clearance in a murine model of invasive pneumococcal disease. A)
Representative zebra plots measuring cell death in C57BL/6 mouse CD3+ T-cells isolated from spleens 24 h after mock-infection (MI) or intra-tracheal
instillation with serotype 1 Streptococcus pneumoniae (Spn) (16107 cfu). The zebra plots show Annexin V+ (FL2-H) and TO-PRO-3+ (FL4-H) staining
and the percentage of cells in each quadrant. B) The percentage CD3+ T-cells with accumulation of hypodiploid DNA (% Sub G0/1) isolated from
spleens of mice 24 h after instillation of serotype 4 S. pneumoniae (16107 cfu) to C57BL/6 wild-type (wt), generalized lymphoproliferative disease
(gld) and TNF-related apoptosis inducing ligand deficient (TRAIL2/2) mice. n = 5, * p,0.05; statistical analysis by t-test. C) Colony forming units (CFU)
of bacteria in lung homogenates from wt and gld mice 24 h after intra-tracheal instillation of 56105 CFU serotype 4 pneumococci and D) CFU of
bacteria in blood. E) Percentage of neutrophils (%PMN) in bronchial alveolar lavage in the same experiments as C) and F) levels of TNF-a and G) IL-6 in
bronchoalveolar lavage fluid, n = 6. H) CFU of bacteria in lung homogenates from wt and gld mice 24 h after intra-tracheal instillation of 56105 CFU
serotype 4 pneumococci after treatment with cyclosporine A (CsA). I) CFU of bacteria in blood in the same experiments as H). Statistical analysis by t-
test or Kruskal-Wallis test with Dunn’s Multiple Comparison Test, * p,0.05.
doi:10.1371/journal.ppat.1002814.g007
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without CD16 depletion (Stemcell Techonologies). In the absence

of CD16 depletion monocyte sub-populations corresponding to

‘non-classical’ and ‘intermediate’ monocytes, as described by

Ziegler-Heitbrock and colleagues [20] were identified (Figure S6).

Neutrophils were isolated by dextran sedimentation and plasma-

Percoll (Sigma) density gradient from the peripheral blood of

healthy volunteers and were approximately 98% pure. Neutrophils

were made apoptotic as previously described [51]. In brief

neutrophils were cultured for 20 h to ensure a population that

was approximately 80% apoptotic and ,5% necrotic, as defined

by trypan blue. Neutrophils immediately after isolation or

apoptotic neutrophils were added to PBMC cultures at a ratio of

10 neutrophils per PBMC for the indicated periods.

Infection of PBMC
Freshly isolated PBMC, plastic purified lymphocytes and CD3

enriched T-lymphocytes or cultures of purified CD3+ T-lympho-

cytes and purified monocytes were infected with S. pneumoniae or

mock-infected for 4–24 h. In certain experiments transwells with

0.4 mm pore size (BD Biosciences) were used to separate bacteria

from lymphocytes [52]. To inhibit caspase activation 10 mM of N-

benzyloxycarbonyl-Val-Ala-Asp (O-methyl) fluoromethyl ketone

(Z-VAD-FMK) (R&D Systems Inc.) or DMSO (Sigma) as vehicle

control was added for 30 min before infection. ZB4 neutralizing

Fas antibody at 1 mg/ml (Enzo Life Sciences), or isotype control,

was added to cultures 30 min prior to infection [18]. In additional

blocking experiments, cells were pre-treated for 30 min with

2.5 mg/ml of neutralizing TRAIL antibody 2E5 (Enzo Life

Sciences), 10 mg/ml of mouse anti-human CD274 (PD-L1)

(MIH1, eBioscience), 30 nM of necrostatin-1 (Sigma) to inhibit

necroptosis, or 5 mM of granzyme B inhibitor (Calbiochem). In

experiments involving antibodies monocyte Fcc receptors were

pre-blocked with 100 mg of human IgG1 (Sigma).

Fluorescence microscopy
Cytospin preparations were generated from non-adherent

PBMC after infection (Cytospin 3; Thermo Shandon) and slides

stained with TUNEL (terminal deoxynucleotidyl transferase

dUTP nick end labelling) reagents per the manufacturer’s

instructions (Oncor), counterstained with 4969-diamidino-2-phe-

nylindole (DAPI (Vectashield)) and mounted with cover slips

containing Vectashield. TUNEL and DAPI-positive cells were

viewed via fluorescence light microscopy (Leica DMRB 1000).

Transmission electron microscopy
PBMC or CD3 enriched T-cells were challenged with S.

pneumoniae (serotype 2, D39) or mock-infected for 6 h then fixed in

ice-cold 3% glutaraldehyde/0.1 M phosphate buffer overnight at

4uC. The cell pellets were processed as previously described [15].

Sections (85 nm) were cut on a Reichert Ultracut E ultramicro-

tome and stained with 1% toluidine blue in 1% borax. Sections

were examined using an FEI Tecnai transmission electron

microscope at an accelerating voltage of 80 kV and micrographs

were taken using a Gatan digital camera.

Flow cytometry
Flow cytometric measurements were performed using a four-

colour FACSCalibur flow cytometer (Becton Dickinson). Forward

and side scatter light was used to identify cell populations by size

and granularity. Fcc receptor blockade was with 100 mg/ml

human IgG1 (Sigma). Cell surface marker expression was with

1 mg/ml mouse anti-human anti- CD14 (61D3) phycoerythrin

(PE), (eBioscience), anti-CD3 (SK7) fluorescein isothiocyanate

(FITC), (BD Pharmingen), anti-CD161 (HP-3G10) allophycocya-

nin (APC), (eBioscience), anti-CD4 (CSK3) peridinin chlorophyll

protein (PerCP) and anti-CD19 (HIB19) FITC (BD Pharmingen)

with appropriate isotype controls. To determine percentages of

monocyte sub-populations after each isolation procedure we used

1 mg/ml mouse anti-human anti-CD14 (TuK4) pacific blue

(Invitrogen) and anti-CD16 (B73.1) PE (eBioscience) or appropri-

ate isotype controls. Activation marker expression was with 1 mg/

ml of mouse anti-human anti-CD69 (FN50) APC (eBioscience);

anti-human anti-CD25 (M-A251) APC-H7 (eBioscience) and anti-

human anti-HLA-DR (L243) PE (BD Pharmingen). In murine

experiments T-lymphocytes were identified using rat anti-mouse

anti-CD3 (17A2) eFluor 450 (eBioscience). Annexin V-PE and

TO-PRO-3 was used to assess cell death. Annexin V+/Topro32

cells were regarded as early apoptotic and Annexin V+/TO-PRO-

3+ cells as late apoptotic/necrotic [46]. To measure loss of the

inner mitochondrial transmembrane potential (Dym), the cationic

dye JC-1 was used. Loss of Dym was confirmed by loss of red and

gain of green fluorescence. DNA fragmentation was confirmed by

the hypodiploid peak assay [14]. Apoptotic cells were visible as a

distinct population with low fluorescence compared to healthy cells

in growth phase 0/1. Since the events recorded were predomi-

nantly on the far left of the hypodiploid peak when depicted on a

linear scale, we have presented the histograms on a log scale [53].

We tested the role of the pneumococcal endonuclease EndA in

further degrading the DNA of the apoptotic cells [45]. Using

pneumococcal strains that are sufficient in functional EndA, or

lack significant EndA activity, we confirmed that EndA increased

the degree of DNA degradation, pushing events to the left on a log

scale and that this appearance could be reproduced by incubating

apoptotic cells with 1 mg/ml of DNAse (Promega) (Figure S9). In

all flow cytometry experiments 10,000 events were captured and

analyzed with FlowJo software version 9.3.2 (Tree Star, Inc.).

Caspase 3 and 8 activation
Caspase 3 and 8 activities were measured using the Caspase-Glo

3/7 Assay (Promega, USA) and Caspase-Glo 8 Assay (Promega,

USA). After challenge with D39 (16 h, MOI 10), 46104 PBMC (or

in some experiments CD3+ T-cells isolated from the PBMC by

magnetic immunoselection as above) were suspended in 50 ml of

media and were combined with 50 ml of the Caspase-Glo 3/7 or

Caspase-Glo 8 reagent for 1 h at room temperature. Lumines-

cence was measured with a Packard Bioscience Fusion universal

microplate analyser (Perkin Elmer, Beaconsfield, UK).

Western blot analysis
Cells were lysed, quantified and separated by SDS-PAGE as

described with 15–40 mg protein/lane [49]. Proteins were

transferred to Immobilon-P membrane (Millipore), blocked in

PBST/5% non-fat dry milk powder and incubated with primary

and secondary antibodies. Antibodies used were: mouse anti-

human cytochrome c (7H8.2C12, BD Biosciences), mouse anti-

human Cox-4 (Molecular Probes), rabbit anti-human Bid (Cell

Signalling), rabbit anti-human Bim (Chemicon Ltd.), rabbit anti-

human caspase 1 (Abcam) and actin (A2086, Sigma-Aldrich).

Detection was with HRP-conjugated goat anti-rabbit and anti-

mouse immunoglobulins (Dako), and enhanced chemilumines-

cence (Amersham Pharmacia).

PBMC from HIV seropositive individuals
PBMC were isolated from 8 HIV-seropositive individuals who

were not receiving antiretroviral therapy. Individuals had CD4 T-

cell counts of 498649/ml (Mean 6 SEM) and HIV viral loads of

42379615823 as assessed by Roche Cobas Ampliprep/Cobas
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TaqMan HIV-1 version 2.0. PBMC were challenged with

pneumococci and apoptosis in CD3+ T-cells was measured by

estimating hypodiploid DNA accumulation as above.

Murine model of invasive pneumococcal disease and
isolation of splenocytes

C57BL/6 mice (Harlan, Oxford, U.K.), mice homozygous for

the FasLgld mutation (B6Smn.C3-Faslgld/J, gld) [54] and TRAIL

deficient mice [55] both on a C57BL/6 background, received

56105 or 16107 cfu serotype 1 or 4 S. pneumoniae by intratracheal

instillation for 24 h as described [46]. Excised spleens were

homogenized and splenocytes separated from tissue using a

100 mm cell strainer (BD biosciences) before staining and analysis

by flow cytometry. Bacterial colony counts were estimated in lung

and blood as previously described [46]. Bronchoalveolar lavage

(BAL) was performed by instilling 560.8 ml of ice-cold heparin-

ized-saline intratracheally (Leo laboratories) and total cell counts

estimated by hemocytometer [46]. Cytospins were prepared

(Cytospin 3, Thermo Shandon) and the percentage neutrophils

in the BAL estimated as described [46]. TNF-a and IL-6 were

measured by EIA as described [39].

Statistics
Results were recorded as mean and standard error of the mean

with the number of individual donors cells contributing to each

data set shown as the ‘n’ value. Differences between groups of

treatments were calculated by ANOVA (Bonferroni’s post-test),

with Kruskal-Wallis test with Dunn’s Multiple Comparison Test

for non-parametric comparisons or with paired t-test for compar-

ison of means using GraphPad Prism 5 (Graphpad Software, Inc.).

Significance was defined as p,0.05.

Supporting Information

Figure S1 Cell contact is required for lymphocyte
death. Peripheral blood lymphocytes (PBL) were isolated by

plastic adherence and mock infected (MOI = 0) or challenged with

Streptococcus pneumoniae serotype 2 (D39). (MOI = 0.1–50) in the

presence (TW+) or absence (TW2) of semi -permeable transwell

membranes. A) PBL were challenged for 6 h, MOI = 0, 1, 10 or 50

or B) 24 hours, MOI = 0, 0.1, 1 or 10. Cell death was recorded by

flow cytometry in lymphocytes gated on forward light scatter and

side light scatter characteristics and stained with Annexin V and

TOPRO-3. All Annexin V positive (Annexin V+) cells were treated

as dead, n = 3, *** p,0.001, two-way ANOVA with Bonferroni

post-test.

(TIFF)

Figure S2 Sub-sets of peripheral blood mononuclear
cells are susceptible to cell death following pneumococ-
cal challenge. The percentage Annexin V+ cells in subsets of

peripheral blood mononuclear cells was estimated after mock-

infection (MOI 0) or challenge with Streptococcus pneumoniae

(MOI = 10 or 50 as indicated) and staining with anti -CD19,

anti-CD14, anti-CD3 plus anti-CD4 or anti -CD3 plus anti -

CD161. A) CD19+ B-cells after 16 h challenge, and B) CD14+

monocytes after 6 h challenge, C) CD3+/CD4+ T-cells and D)

CD3+/CD4+ T-cells after 6 h challenge (all MOI = 50) and E)

the percentage CD3+/CD161+ T-cells with hypodiploid DNA

(Sub G0/1) after 16 h challenge (MOI = 10). n = 4, * p,0.05,

*** p,0.001 statistical analysis by t -test.

(TIFF)

Figure S3 CD14+ contaminating monocytes are effec-
tively removed by CD3+ T-lymphocyte magnetic immu-

noselection. Levels of CD14+ monocytes were measured in

peripheral blood mononuclear cell (PBMC) populations subjected

to various purification methods. PBMC, plastic purified lympho-

cytes (Plastic purified) and PBMC highly purified by magnetic

immunoselection to yield CD3+ T-lymphocytes (CD3 enriched) at

high purity were stained with mouse anti-human CD14 or isotype,

and analysed by flow cytometry. A) Representative dot plots and

B) a summary graph n = 7, *** p,0.001, one-way ANOVA with

Bonferroni post test are shown.

(TIF)

Figure S4 Lack of apoptosis in CD3+ purified T-cells is
not due to altered kinetics of apoptosis induction.
Peripheral blood mononuclear cells (PBMC) and highly purified T

-cells (CD3 enriched) were either mock-infected (MI) for 2–10 h A) or

10–16 h B) or exposed to serotype 2 Streptococcus pneumoniae (D39)

(MOI = 50) for 2–10 h C) or 10–16 h D). Apoptosis was recorded in

CD3+ T-cells measuring hypodiploid DNA content (Sub G0/1).

n = 4, ** p,0.01, statistical analysis by two -way ANOVA.

(TIFF)

Figure S5 Neutrophils do not alter the ability of
monocytes to induce T-cell death. Peripheral blood mono-

nuclear cells were mock infected (MOI = 0) or challenged with

Streptococcus pneumoniae serotype 2 (D39) (MOI = 10) for 6 h in the

absence of neutrophils (Control), in the presence of neutrophils (with

PMN) or the presence of apoptotic neutrophils (with apoptotic

PMN). CD3+ T-cell apoptosis was measured as the percentage of

cells with hypodiploid DNA n = 4, * p,0.05, *** p,0.001, ns = not

significant, two-way ANOVA with Bonferroni post-test.

(TIF)

Figure S6 The percentage of monocyte sub-populations
in monocytes isolated using different immunoselection
protocols. A) Representative dot plots showing isotype (left

panel) and CD16 and CD14 positive staining of human peripheral

blood monocytes isolated by magnetic immunoselection using a

pan monocyte isolation kit (middle panel) and a ‘classical’

monocyte isolation kit (right panel); and B) mean and standard

error of the mean percentage cells in each sub-population of

monocytes. Monocyte subsets were divided into ‘classical’

(CD14++ CD162), ‘intermediate’ (CD14++ CD16+), and ‘non-

classical’ (CD14lo CD16+), n = 4.

(TIF)

Figure S7 CD3+ purified T-cells in PBMC cocultures die
by a caspase-1 independent death mechanism that
requires live bacteria. A) Western blot probed for active

caspase 1 and actin from both peripheral blood mononuclear cells

(PBMC) and purified CD3+ T-cells (CD3 enriched) 16 h following

mock-infection (D392) or challenge with serotype 2 pneumococci

(D39+) at MOI = 10 in the presence of isotype control (Isotype+) or

ZB4 neutralizing anti-Fas antibody (Anti-Fas+). The positive control

(+ve) is THP-1 cells infected with E.coli a known stimulus for

pyroptosis [15]. B) Cell death was measured using flow cytometry to

detect Annexin V+ events in peripheral blood lymphocytes (PBL)

gated by forward (FSC) and side scatter (SSC) 4 h after mock-

infection (multiplicity of infection (MOI) = 0) or challenge of

peripheral blood mononuclear cells (PBMC) with live or heat killed

D39 Streptococcus pneumoniae (MOI = 10), n = 5. C) Red blood cells

were incubated with samples from serotype 2 S. pneumoniae (D39), its

Æ6 mutant expressing non-cytolytic pneumolysin, a pneumolysin

deficient D39 mutant (PLY2), 1 mg/ml exogenous pneumolysin

(ply), PBS as a negative control or water as a positive control. n = 3,

* p,0.05, ** p,0.01 statistical analysis by ANOVA.

(TIFF)
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Figure S8 Granzyme B does not induce lymphocyte
apoptosis. Peripheral blood mononuclear cells (PBMCs) were

mock-infected (D392) or infected with serotype 2 Streptococcus

pneumoniae (D39+) at a multiplicity of infection of 50 for 6 h in the

presence of the vehicle control (DMSO) or the granzyme B inhibitor

(GBI) at 5 mM. Cells were harvested and the percentage of cells with

sub G0/1 DNA (Sub G0/1) estimated by PI staining, n = 4.

(TIF)

Figure S9 Characterization of hypodiploid DNA. Periph-

eral blood mononuclear cells (PBMCs) were mock-infected (MI) or

infected with serotype 2 Streptococcus pneumoniae (D39), or serotype 1

strains with (INV104B) or without (NCTC7465) endonuclease A

activity, at multiplicity of infection (MOI) = 50. Some NCTC7465

cultures were also incubated with DNase (+DNase). Six hours

post-infection T-cells were identified by labeling with FITC

conjugated anti-CD3. The percentage of sub G0/1 CD3+ T-cells

was identified using propidium iodide (PI) staining. A) Represen-

tative dot plots showing gating of the PBMC population using FSC

vs SSC (left panel), isotype staining (middle panel) and staining of

CD3+ T-cells (right panel) with the percentage of cells in the

indicated region shown in the upper right hand corner. B)

Representative histograms showing the percentage sub G0/1

CD3+ T-cells including (top gate) and excluding (bottom gate)

events in the far left sub G0/1 peak. C) Graph showing percentage

of sub G0/1 CD3+ T-cells excluding events in the far left sub G0/

1 peak (n = 3) following each treatment.
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