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Abstract Remarkable progress has been achieved for prophylactic and therapeutic interventions against human
immunodeficiency virus type I (HIV-1) through antiretroviral therapy. However, vaccine development has
remained challenging. Recent discoveries in broadly neutralizing monoclonal antibodies (bNAbs) has led to the
development of multiple novel vaccine approaches for inducing bNAbs-like antibody response. Structural and
dynamic studies revealed several vulnerable sites and states of the HIV-1 envelop glycoprotein (Env) during
infection. Our review aims to highlight these discoveries and rejuvenate our endeavor in HIV-1 vaccine design and
development.
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Introduction

Human immunodeficiency virus type I (HIV-1) is the cause
of the global epidemic of acquired immunodeficiency
syndrome (AIDS) [1,2]. Since its discovery in the early
1980s, HIV-1 has infected more than 70 million indivi-
duals and caused 35 millions deaths worldwide [3].
Approximately 1.2 million of all infected cases originated
from China [4,5]. Antiretroviral therapy can achieve
sustained viral suppression, extend the life span of infected
individuals, and reduce HIV transmission [6,7]. However,
the establishment and persistence of a latent viral reservoir
in infected patients pose a huge barrier for eliminating the
virus and ultimately curing this disease [8,9].
A safe and effective vaccine is a remarkable prospect for

blocking HIV-1 infection. However, the high degrees of
sequence and structural diversity within and between
infected individuals enable viral escape from immune
recognition. To date, traditional vaccine approaches have
failed to overcome HIV-1 diversity despite the remarkable
success against a large array of pathogens with minimal
variability [10]. Out of over 100 vaccine trials, only the

RV144 trial has achieved positive yet moderate protection
(31.2%) [11]. Therefore, a sophisticated and rational
approach is needed to develop protective vaccines against
HIV-1. The major focus of vaccine design approaches is
the envelope glycoprotein (Env) because it is the sole
target for broadly neutralizing antibodies (bNAbs) [12,13].
Technical advancements in antibody technology have
facilated identification of a new generation of bNAbs
targeting various regions of HIV-1 Env [13–15]. Structure
and function studies on specific epitope and conforma-
tional states recognized by these bNAbs have provided
unprecedented opportunities for vaccine design to induce
bNAb-like antibody response.

HIV-1 bNAbs

HIV-1 bNAbs can neutralize the majority of HIV-1 strains
from diverse genetic and geographic backgrounds. bNAbs
are broadly classified into two major generations on the
basis of their neutralization activity and the time of their
initial isolation [16]. First-generation bNAbs were isolated
in the 1990s and have exhibited limited neutralization
potency and breadth. However, new potent and broad
neutralization antibodies have been isolated since 2009 and
now represent second-generation bNAbs.
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First-generation bNAbs

First-generation bNAbs include b12, 2G12, 2F5, and
4E10, which were isolated through phage surface display
and Epstein–Barr virus transformation of B cells derived
from HIV-1-infected patients [17–20]. The molecular
characterization of these antibodies helped identify several
vulnerable sites on gp120 and gp41 of HIV-1 Env. These
sites include the CD4 binding site (CD4bs) targeted by b12
[17,21], OD-glycans by 2G12 [18], and membrane
proximal external region (MPER) of gp41 by 4E10 and
2F5 [19,20]. Although these antibodies are relatively weak
in breadth and potency, the passive transfer of high doses
of b12, 2G12, 2F5, and 4E10 produced impressive levels
of protection against simian–human immunodeficiency
viruses (SHIVs) in rhesus macaques [22–27]. Given that
b12 is derived from a phage display antibody, its heavy and
light chain combinations are considered unnatural [17].
2G12 has an atypical structure, especially in the combining
sites of the antigen-binding fragment (Fab) [18,28]. 2F5
and 4E10 are polyreactive [29,30]. Despite encouraging
results in animal models, clinical trial data revealed that the
combinations of these first-generation bnAbs failed to
effectively suppress viremia in humans [31].

Second-generation bNAbs

Approximately 10%–25% of HIV-1-infected individuals
exhibit broad and potent neutralizing activities against a
diverse panel of circulating virus strains [32–37]. Cloning
of antigen-specific antibodies from naturally occurring B
cells has helped obtain dozens of second-generation
bNAbs from HIV-1-infected individuals [13,14]. Sequence
mapping and structural analysis of antibody and antigen
complexes have led to the identification of several
vulnerable targets on HIV-1 Envs, such as N-glycan-
associated epitopes on the V1/V2 (PG9, PGT145) and V3
regions (PGT121, 10-1074), CD4bs (VRC01, N6,
3BNC117), gp120/gp41 interface (35O22, 8ANC195),
fusion peptide (VRC34.01, ACS202), silent face center
(VRC-PG05, SF12), and MPER on gp41 (10E8). The
specific epitopes targeted by each of these bNAbs and their
unique features are summarized in Table 1 and Fig. 1.
Recent developments in the use of bnAbs for HIV-1
prevention and treatment are outlined in Fig. 2 [38,39].

V1V2

The apex V1V2 of Env is masked by glycans and variable
loops [40,41]. Structural analysis shows that V1V2-
specific antibodies, such as PG9, PG16, CH01-04,
PGT141-145, PGDM1400-1412, and CAP256-
VRC26.01-33, utilize the long, anionic complementarity-
determining region 3 loops of heavy chain (CDRH3) to

penetrate the glycan shield and interact with a quaternary
epitope formed by V1V2 and N156/N160 glycans [42–46].

V3-glycan

Glycan-V3-directed bNAbs, such as PGT121- and
PGT128-like antibodies, come in contact with a high-
mannose patch at/near N332 in the V3 region through
protruding loop regions with various angles [44,47].
Common examples in this category include PGT121-like
antibodies, which are bound to the base, and PGT128-like
antibodies, which interact with the C-terminal end of the
V3 loop [47–49]. These antibodies prevent HIV-1
infection by interfering with CD4 and CCR5 co-receptor
binding capabilities [48,50].

CD4bs

CD4 molecules on the cell surface serve as primary
binding targets for HIV-1 Env gp120 [51,52]. CD4bs is
functionally conserved and structurally recessed on gp120,
surrounded by multiple glycans. Despite its recessed
nature, CD4bs is accessible to CD4 molecules and various
CD4bs-specific antibodies [53]. CD4bs exhibits a good
amount of heterogeneity in its sequence and structure
among HIV-1 strains but can induce the largest number of
known bNAbs during infection [54]. Several CD4bs
antibodies neutralize over 90% of HIV-1 strains, including
VRC01, VRC07, N6, 3BNC117, and N49P [55–58]. One
of the most potent ones is the recently identified N49P
antibody that can neutralize nearly 100% of a global panel
comprising 117 pseudoviruses [55]. X-ray crystallographic
analysis showed that N49P7 could bypass the CD4bs
Phe43 cavity and reach deeply into the highly conserved
residues of layer 3 of the gp120 inner domain. These
unique features may explain the extreme potency and
breadth of this antibody. In addition, these CD4bs bNAbs
share some common features in mode of action and
compostion of variable domains such as mimicking CD4
to achieve their known distinguished breadth [59], using
VH1-2 germline origin genes of the heavy chain, and
having a short five-amino-acid complementarity determin-
ing region 3 of the light chain (CDR L3) [55–59].
However, many resistant strains are against this class of
antibodies in naturally infected individuals [60]. Treatment
strategies based on CD4bs antibodies must overcome such
resistance to achieve optimal clinical outcomes.

MPER

MP ER-specific antibody 10E8, which was isolated by
Huang et al. in 2012, neutralized approximately 98% of
tested viruses and had a geometric mean IC50 value of
0.352 mg/mL [61]. Different from the first-generation
MPER-directed bNAbs 2F5 and 4E10, 10E8 is not
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phospholipid- or auto-reactive and recognizes the highly
conserved helix at the C-terminal half of the MPER region
that is proximal to the transmembrane region. The
development of these antibodies and detailed potential
strategies of inducing 10E8-like antibody through vaccina-
tion have been recently highlighted. A multimeric founder
MPER can stimulate B cells bearing the unmutated
common ancestor of the 4E10-like antibody VRC42.
Therefore, immunogens containing the specific founder
MPER can be utilized to stimulate naive B cells to initiate
4E10- and 10E8-like antibodies [62].

GP120/GP41 interface

35O22, which targets the gp120/gp41 interface, was

isolated by Huang et al. in 2014 [63]. This antibody
neutralized 62% of 181 tested pseudoviruses with a
geometric mean IC50 value of 0.033 mg/mL. Similar to
35O22, 8ANC195 also recognized the subunit interface of
the prefusion-closed conformation of Env [64]. Both of
these antibodies are immune to the conformational change
of Env triggered by CD4 molecules, while other bnAbs are
not. 8ANC195 can even bind the gp120 monomer in the
absence of gp41 [65].

Fusion peptide

The 15 to 20 hydrophobic residues, termed fusion peptide,
at the N terminus of the gp41 subunit are another
vulnerable site recognized by bNAbs such as VRC34.01,

Fig. 1 Schematic diagram of HIV-1 and epitopes for bNAbs on trimeric HIV envelope spike glycoproteins.

Fig. 2 Current status of bNAb development in preclinical and clinical studies.
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PGT151, and ACS202 [66–68]. The residual sequences of
fusion peptide are highly conserved and strain-specific
[66]. Interestingly, ACS202 shows broadly neutralization
activity against recombinant CRF01_AE viruses, while
VRC34.01 and PGT151 fails [66–68]. VRC34.01,
PGT151, and ACS202 can approach fusion peptide from
various angles and function in multiple conformations of
fusion peptide [69]. However, the generation of these
antibodies during infection and their mechanism of
neutralization remain largely unknown. Given their
relatively conserved nature among circulating HIV-1,
fusion peptided represents a promising vaccine candidate
[70,71].

Silent face

The silent face represents a relatively new target for
generating bNAbs. This site is not substantially affected by
glycan alteration and therefore can maintain sensitivity to
antibody recognition and neutralization. However, the
potency and breadth of this class of antibodies are
generally less than those of the abovementioned bNAbs.
For example, the VRC-PG05-like antibody, which targets
the center of the silent face, shows ~0.8 mg/mL (geometric
mean IC50s) potency and 27% breadth [72]. In comparison,
the recently isolated SF12 antibody shows greater potency
of ~0.20 mg/mL (geometric mean IC50s) and 62% breadth
[73]. Nevertheless, these two antibodies highlight the silent
face epitope as a new and potential target for vaccine-
directed response.

Common features of HIV-1 bNAbs

HIV-1 bNAbs can neutralize diverse HIV-1 strains that
possess one or more unusual traits, such as uncommon
recombination patterns, extensive somatic hypermutation
(SHM), long IgH CDR3s, and self- or polyreactive nature
[74,75]. The high levels of mutation and long CDRH3 are
the result of multiple rounds of affinity maturation and
selection through interaction with evolving Envs in the
germinal center. Virus escape sometimes induces the
development of neutralizing antibodies in an unusual, co-
evolutionary manner [62,76,77]. This phenomenon high-
lights the complexity in the process and pattern of bNAb
development. Not all Envs or conformational states are
equal to binding and neutralization by bNAbs. Most
bNAbs are prone to binding conformational state 1 of
Envs, indicating conformational vulnerability in addition
to the epitope vulnerability of the Env of HIV-1 [78].

High SHM

HIV-1 bNAbs directed at the Env of the virus are rarely
developed in acutely infected individuals and typically

emerge only after several years of infection [79,80]. HIV-1
bNAbs have high levels of SHM as a result of multiple
rounds of antigen recognition and stimulation [15,81]. For
example, manifold improvement in the neutralizing
potency and breadth of HIV-1 bNAbs has been observed
after 40–100 gene somatic mutations in the heavy chain. In
constrast, most human antibodies often carry 10–20 gene
mutations [82,83]. Amino acid variation greater than 30%–
40% has been observed in the heavy-chain bNAbs
targeting CD4bs [15]. In addition to the expected region
of CDRs, mutations also appear in the framework regions
(FWRs) of these bNAbs [84]. A FWR is typically less
tolerant of mutations because of the potential structural
destruction of the variable domain.
In addition to amino acid substitutions, HIV-1 bNAbs

present a large number of length polymorphisms, such as
insertion and deletions, which could be up to sevenfold
higher than those of most human antibodies [85].
Insertions and deletions could be observed in the heavy
and light chains of CDRs and FWRs [85]. When HIV-1
bNAbs are reverted to their germline ancestor sequences,
their neutralization and binding abilities to most HIV-1
Envs are reduced and even completely lost [86].
The exact mechanism for the high mutation of HIV-1

bNAbs remains unclear. One hypothesis is that only some
specific HIV-1 Envs can activate and trigger germline
antibody-expressing B cells. The activated B cells are
further stimulated by the continuously evolving and
mutating Envs during infection. This phenomenon persists
until the antibody gene has a sufficient and appropriate
number of mutations that can recognize diverse Env
variants. Another hypothesis is that the B cells expressing
germline antibodies first engage with non-HIV-1 antigen
and then develop cross-reactivity with HIV-1 Envs through
a series of mutations [87]. Both hypotheses have some
supporting evidence, although they are not necessarily
mutually exclusive.

Long CDRH3

HIV-1 bNAbs generally have long CDRH3 that enables the
penetration of the glycan shield of the envelope [15]. Most
human antibody CDRH3s range from 8 to 16 amino acids
in length, whereas HIV-1-specific antibodies average at
approximately 17.8 amino acids. In particular, HIV-1
bNAbs have CDRH3 with an average length of 20.9 amino
acids [81]. For example, the CDRH3 of the V2-glycan-
specific antibody VRC26-CAP256 is as long as 36 amino
acids [46]. Such long HCDR3 of HIV-1 bNAbs indicates
major challenges for HIV-1 B cell vaccine development.
To overcome this barrier, some novel vaccine strategies
have been proposed starting with triggering the germline
ancestors followed by boosting various intermediate for
the ultimate induction of bNAbs in human [88].
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Polyreactivity

Polyreactivity is a common but unusual characteristic of
HIV-1 bNAbs that allow promiscuous binding to unrelated
self- and/or foreign-antigens with a fairly low affinity.
Approximately 55%–75% of antibodies produced by early
immature B cells in the nascent repertoire exhibit this
feature. Polyreactive bNAbs are mostly removed from the
system, although approximately 5% of mature B cells
retain the ability to produce such bNAbs [89]. Approxi-
mately 70% of HIV-1 Env-specific antibodies are poly-
reactive [90]. Therefore, the relatively low frequency of
HIV-1 bNAbs in natural infection may be due to the
clearance and deletion of poly- and auto-reactive B cell
clones.
The exact mechanism for the high polyreactivity in

HIV-1 bNAbs is unclear. Evidence suggests that poly-
reactivity may help increase antibody affinity and avidity
for Envs through binding to a second non-HIV-1 antigen
on the virion. The density of Env spikes alone is extremely
low for the bivalent binding of HIV-1 bNAbs. The
estimated density of Env on a mature HIV-1 virion is
approximately 14 per virion [91]. For example, MPER-
specific antibodies 2F5 and 4E10 bind to gp41 and viral
membrane [29,30]. Antibody b12 binds to CD4bs and to
ribonucleoprotein and double-stranded DNA [17]. Other
CD4b antibodies (12A12, NIH45-46, CH103, CH104, and
CH106) and V1V2 antibodies (CH03) also exhibit varying
degrees of polyreactivity [74].

Preferential binding of bNAbs to conformational state 1
of Env

HIV-1 Env on the surface of virion spontaneously transits
through at least three different conformational states: states
1, 2, and 3 [92,93]. All these states are independent of the
ligand interaction status with CD4 molecules. After
interaction and binding to CD4, a particular bias for a
certain state of the Env occurs. State 1 Env predominantly
stays in a “closed” conformation that corresponds to the
CD4-unbound prefusion state; state 2 is an intermediate
state with partially open conformation [94,95]. Binding to
CD4 and modification of Env residues help drive the Env
transitioning into this state [94–97]. State 3 represents an
“open” conformation ready for fusion, having been formed
and stabilized by CD4 molecules and 17b/co-receptor
[94,98].
Recent studies on the dynamics of Env on virion

surfaces show that most bNAbs prefer a certain conforma-
tional state for binding. For example, many bNAbs favor
conformational state 1 over state 2 or 3 of Envs [78,98]. A
dynamic study based on single-molecule fluorescence
energy transfer (smFRET) reported a preferred Env state
for bNAb binding [78], although the exact structural

features and their relationship with the recombinant
trimeric structures remain unclear. In addition to under-
going spontaneous structural changes on the virion, Env
experiences significant structural alterations during HIV-1
entry. Such alterations expose several vulnerable sites on
the Env to various antibody-mediated functions, such as
neutralization, ADCC, and ADPC [14]. Many human
bNAbs bind to CD4 unbound and prefusion-closed Env,
indicating that human bNAbs prefer to bind to conforma-
tional state 1 [78,98]. The exception to this preference is
the bNAb PGT151, which favors Env at states 2 and 3
[78]. The dynamic nature of Env has certainly added
another layer of complexity on top of the known sequence
and structural diversity of Env. It may also indicate the
existence of more vulnerable conformational state where
bNAbs could exert effective roles through direct neutra-
lization or an indirect one through ADCC and ADPC.

HIV Env conformational states and immun-
ogen design

Reported dynamics of HIV Env conformational states

Along with crosslinking/mass spectrometry, X-ray crystal-
lography, and cryo-electron microscopy (cryo-EM), the
recently well-developed technique of smFRET offers the
unique advantage of defining the conformational structure
of HIV-1 Env on the surface of the virion. Furthermore, a
novel conformational state named state 2A was recently
identified, which is largely stabilized by binding to anti-
cluster A antibodies (such as A32 and C11), anti-co-
receptor binding site antibodies (such as 17b), and small-
molecule CD4 mimetics (such as BNM-III-170) [99]. State
2A is asymmetric and exists when the Env is partially
open. State 2A Env mediates ADCC function, whereas
state 1 facilitates bNAbs neutralization [78,98,99].

Current updates on HIV conformational states and
vaccine candidates

The existence of bNAbs shows that the natural B cell
response can generate protective neutralizing antibodies
against HIV-1 infection. Designing an effective vaccine
that induces cross-reactive antibodies is of paramont
interest in the HIV-1 field. Among the present strategies,
the most popular one involves generating a soluble trimeric
form of Env to mimic the native Env on the surface of
virion. The first and best studied Env trimer is BG505
SOSIP.664, which contains a disulfide bond (SOS), an
I559P mutation in gp41 (IP), and a truncation at position
664 to stabilize the trimeric form [100]. Antigenicity
studies showed that the BG505 SOSIP.664 trimer displays
epitopes that are recognized by bNAbs but not by non-
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bNAbs which closely resemble the conformational struc-
ture of the native envelope [100–102]. Additional forms of
soluble trimers, such as native flexibly linked (NFL)
[103,104] and uncleaved prefusion-optimized (UFO) [105]
are also being designed and evaluated. The design of trimer
Envs take advantage of the structural information recently
obtained through high-resolution X-ray crystallography
and cryo-EM [104,106–109]. Many other forms of
envelope, such as gp120 monomers, gp120-monomeric
core (such as RSC3, 2CC, and 426c core), germline-
targeted proteins (such as eOD-GT proteins), epitope-
specific scaffolds (such as FP-KLH), and epitope-based
antigenic domain (such as EAD), are also being designed
and evaluated as potential immunogens [70,103,105,110–
115]. Although each of these immunogens has its own
design features and rationale, the ultimate test of their
potential as vaccine, that is, their safety, immunogenicity,
and protectivity, depends on human studies.
Preliminary results from animals such as mice, guinea

pigs, rabbits, and monkeys immunized with SOSIP.664
failed to elicit satisfactory levels of bNAbs against
heterologous tier-2 viruses [116–122]. However, the
same immunogen can induce broad and potent serum
antibody response in cows and dromedaries, suggesting
that the long CDRH3 of antibodies in these animals may
provide good genetic bases for generating neutralizing
antibodies [123,124]. Translating the findings in cows and
dromedaries into vaccine design for humans remains a
challenge. Cow antibodies isolated from immunized
animals preferably target the conformational state 2 of
Env. Further studies are needed to determine whether this
preference is related to the nature of cow antibody
triggering virus Env conformation state 2 or whether
SOSIP.664 intricately induces state 2-preferred antibodies.
If the former case applies, then it is a possibility that the
cow antibodies would likely trigger Env into unfavored
state. If the latter case applies, then the current SOSIP.664
itself might not be the favored conformation given that
most human bNAbs prefer binding to state 1 Env. This
scenario may provide some explanations for the failure of
SOSIP.664 in eliciting neutralizing antibodies in various
animal models. Future vaccine design is needed to
consider the conformation states of Env.

Conclusions

Despite the significant progress in the current under-
standing of HIV-1 bNAbs, the successful induction of
bNAbs-like immune responses in humans remains as a
daunting challenge. The biggest challenge is our incom-
plete understanding of how exactly these bNAbs are
generated, evolved, and maintained during infection. A
recent study used fusion peptide as immunogen in rhesus
macaques has yielded some encouraging results where an

antibody lineages can neutralize 59% of a panel of 208
strains [71]. Hopefully, these discoveries can be translated
into human studies in the near future.
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