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A widely used approach to analyze single particles in electron microscopy data is 2D
classification. This process is very computationally expensive, especially when large data
sets are analyzed. In this paper we present GPU ISAC, a newly developed, GPU-
accelerated version of the established Iterative Stable Alignment and Clustering (ISAC)
algorithm for 2D images and generating class averages. While the previously existing
implementation of ISAC relied on a computer cluster, GPU ISAC enables users to produce
high quality 2D class averages from large-scale data sets on a single desktop machine
equipped with affordable, consumer-grade GPUs such as Nvidia GeForce GTX 1080 TI
cards. With only two such cards GPU ISAC matches the performance of twelve high end
cluster nodes and, using high performanceGPUs, is able to produce class averages from a
million particles in between six to thirteen hours, depending on data set quality and box
size. We also show GPU ISAC to scale linearly in all input dimensions, and thereby capable
of scaling well with the increasing data load demand of future data sets. Further user
experience improvements integrate GPU ISAC seamlessly into the existing SPHIRE GUI,
as well as the TranSPHIRE on-the-fly processing pipeline. It is open source and can be
downloaded at https://gitlab.gwdg.de/mpi-dortmund/sphire/cuISAC/

Keywords: 2D classification, GPU, CUDA, cryo-EM, SPHIRE, 2D class averages

1 INTRODUCTION

Since the “resolution revolution” (Kühlbrandt, 2014), single particle electron cryomicroscopy (cryo-
EM) has established itself as a prime tool for determining the three dimensional structure of
macromolecular complexes at high resolution. Over time, this success has motivated the
development of novel technologies that fuel a continuous trend of producing ever larger data
sets in ever shorter amounts of time. Consequently, the software developed to process cryo-EM data
sets has to continuously evolve in order to keep up with the computational demand of this trend.

Here we focus on 2D classification, a crucial step when processing cryo-EM data sets for single
particle analysis (SPA). During 2D classification, a stack of particles is sorted into different subsets
that have been determined by the classifier based on apparent similarities. In conjunction with this
class assignment, 2D classification also produces a set of 2D alignment parameters per particle. These
alignment parameters are applied to the individual particles of a class in order to bring them into
register with each other and form a single average for each class. The resulting set of class averages
produced by 2D classification serves two distinct purposes: 1) 2D class averages are usually the first
visual result produced when processing a cryo-EM data set and, consequently, serve as a critical early
indicator about the overall quality of a new data set, as well as its potential to yield a high-resolution
three-dimensional reconstruction. As data sets continue to rapidly increase in size, the required
computational power to process them equally rises. Since computational capacity is usually limited, it
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is therefore essential for experimentalists to be able to quickly
accept or dismiss a new data set for further processing and/or
change the parameters of data acquisition—ideally while data
acquisition is still ongoing. 2) Class averages further depict the
internal consistency of a sample, i.e., whether the data includes
different conformational states of the target protein, unwanted
background proteins or damaged particles. Once classified, such
undesired elements can easily be excluded from a data set. This
not only increases the signal to noise ratio (SNR) of the data set
and thus allows for a higher resolution reconstruction, but also
shortens the required processing time due to the reduced size of
the data set. In addition, 2D class averages are also used in some
cryo-EM processing suites to produce an initial 3D
reconstruction of the targeted macromolecular complex, e.g.,
SPHIRE (Moriya et al., 2017).

2D classification is a computationally expensive procedure
that is routinely used in processing cryo-EM data. Inter alia it is
confronted with the following challenges: The low signal-to-noise
ratio (SNR) inherent to cryo-EM data sets; the ability to cross-
reference an ever-increasing number of images; and an uneven
distribution of particles that should be represented within the
final class averages. As a consequence different strategies are
being employed by the classifiers of different software packages to
overcome these issues (Frank et al., 1996; Hohn et al., 2007; Tang
et al., 2007; Scheres, 2012; Punjani et al., 2017).

Of these, Iterative Stable Alignment and Clustering (ISAC) is
an established 2D clustering algorithm that employs repeated
rounds of clustering coupled with a stability metric for each newly
found cluster (Yang et al., 2012). ISAC has been widely used for
processing cryo-EM data and contributed to multiple high-
resolution reconstructions (Schubert et al., 2018; Roderer et al.,
2019; Pandey et al., 2021; Zhang et al., 2021; Zhao et al., 2021).
However, while ISAC has been received with widespread acclaim,
its use incurs an often prohibitively high computational cost.
Indeed, running ISAC requires a full scale computer cluster,
where execution is usually distributed across hundreds of
CPU cores.

Consequently, we present GPU ISAC: An extended new
version of the existing ISAC algorithm where the primary
computational bottlenecks have been outsourced on any
available GPUs. In conjunction with new internal data
batching mechanisms, GPU ISAC allows users to perform
ISAC 2D classification on a single computer outfitted with one
or more consumer-grade GPUs. This markedly improves the
accessibility of ISAC, as users may simply run the clustering on
their own machines without having to manage a remote queuing
system, and/or a computing cluster. This heightened accessibility
further translates into enhanced flexibility, as shorter runs can
now be executed more freely on single machines in order to
identify suitable hyperparameter settings, or simply produce early
class averages as soon as the data become available during
acquisition. Other than foregoing the need for an expensive
computer cluster, the ability of GPU ISAC to run on a single
machine also greatly simplifies the integration of ISAC-quality
clustering into other workflows. This has been demonstrated in
TranSPHIRE (Stabrin et al., 2020), where GPU ISAC is one of the
key tools enabling on-the-fly cryo-EM processing.

2 MATERIALS AND METHODS

The previous implementation of the original ISAC algorithm
(Yang et al., 2012) was modified and sped up by the original
authors, called ISAC2, and is included in the SPHIRE package
(Moriya et al., 2017; Wagner et al., 2021). This work is based
on ISAC2, which depends on the computational power of a
computer cluster, where data processing is distributed across
the numerous CPU cores of multiple machines using MPI
[Message-Passing Interface (Lusk and Gropp, 1995)]. Access
to a computer cluster, however, is often a prohibitive
requirement: Acquisition and maintenance of a local
cluster are costly endeavors, while accessing an existing,
remote cluster usually implies dealing with queuing
systems and tedious waiting times. Use of a remote cluster
also requires the transfer of (large) cryo-EM data sets, and
computationally expensive cryo-EM jobs are often scheduled
to yield their time to smaller jobs that can be finished faster.

GPU ISAC was specifically developed to forego this
requirement and enable users to run ISAC 2D clustering
on a single machine. To do so, GPU ISAC employs any
locally available graphics cards as co-processors for
addressing the computational bottlenecks of ISAC2. In
addition to this new GPU parallelization, GPU ISAC
retains the original MPI parallelization of ISAC2. However,
multi-node processing is not yet supported. The resulting
hybrid parallelization allows GPU ISAC to make use of both
the available GPU and CPU processing power. In order to
distinguish between these two frameworks below, we
differentiate between “processes” and “threads”: The MPI
parallelization distributes its computation across
“processes” (running on individual CPU cores), while the
GPU parallelization distributes its computation across
“threads” running on the cores of a graphics card. Note
that a graphics card holds many graphical processing units
(GPUs) but we nevertheless refer to the whole graphics card as
“one GPU” as a shorthand. The GPU code itself is
implemented in C++ and uses the Nvidia CUDA
framework to execute parallel code (“kernels”) on the
physical GPUs (Nickolls et al., 2008). The Python ctypes
library is used to communicate between the Python
implementation and the C++/CUDA code.

Profiling the execution of ISAC2 reveals the primary
computational bottlenecks to be the numerous 2D
alignment functions used to ensure the stability and
reproducibility of the ISAC algorithm. At its core, an
alignment function faln (pi,rj) aims to find the geometric
transformation required to bring a given particle pi into
register with a reference rj. To do so, particle pi can be
thought of as moving along the x- and y-axis within a
certain search range [smin, smax] × [smin, smax], and rotated
by 360 degrees at each position. For each permutation of shift
and rotation, the cross-correlation of the modified particle
and the reference is computed. This process is repeated for a
mirrored version of pi. The alignment function then searches
for the highest found cross-correlation value and returns a
tuple
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f aln(pi, rj) � yij � (sijx, sijy, θij,mij)

of alignment parameters, where sijx ∈ [smin, smax] and sijy ∈ [smin,
smax] denote shifts in x- and y-direction, respectively; θij ∈ [0, 360]
denotes angle of rotation; and mij ∈ [0,1] denotes whether the
particle needs to be mirrored. Applying the transformation
described by the alignment parameters stored in tuple yij to
particle pi brings particle pi into register with reference rj.

In the ISAC2 CPU-only framework, the above described
alignment function faln (pi,rj), conceptually, is implemented as
follows: Particle pi is shifted by each combination of shifts
within the [smin, smax] × [smin, smax] search range. Both pi and
rj are then ring-wise re-sampled into a polar representation.
Each ring of these polar-converted images is then transformed
by a fast Fourier transformation (FFT), and the resulting 1D
FFTs are multiplied to compute their cross-correlation (Yang
et al., 2012). The result of this multiplication is a vector ccfij
containing the cross-correlation values for reference rj and all
rotated versions of particle pi. The increment in angle per data
point in ccfij is determined by the number of sample points
per ring during the polar conversion step. The best
rotational match to align pi and rj, given the used shift
values, can then be inferred from the position of the
maximum value in ccfij.

2.1 GPU Framework
In GPU ISAC, the alignment is implemented using a series of
parallel CUDA kernels that are executed on the available GPUs of
the local machine. These kernels implement the following
modularized functions: conversion into a polar representation;
image normalization; image transformation according to given
alignment parameters; cross-correlation computation; maximum
search per class; and extraction of alignment parameters. Taken

FIGURE 1 | GPU alignment pipeline. Pipeline to compute the alignment
parameters to bring a stack of n particles into register with k references, each.
To help illustrate the overall process, the memory used by the same image
throughout the different memory buffers of the pipeline is highlighted in
yellow. The memory to store the computed alignment parameters of this
particle and all references are marked in green. (A) IN: Stack of n input
particles. The pipeline processes substacks of sizem (dark grey) of the overall
data stack until all data is processed. (B) GPU processing: The images of the
next substack to be processed are first transferred to the GPU and stored in
CUDA texture memory (tex). A CUDA kernel then converts all images to their
polar representation while simultaneously applying a translational shift sl ∈ [s0,
..., sz] and normalization. Furthermore an FFT is applied to each image (polar/
FFT). Next, to compute the cross-correlation, a second CUDA kernel
multiplies them transformed particles with k references. The results are stored
in a cross-correlation table where the i-th row contains the cross-correlation
results of particle pi with all k references. A final CUDA kernel searches rowi for
one maximum per reference and computes the alignment parameters used to
produce each of the kmaxima in rowi. (C) OUT: Alignment parameters for the
m particles of the last input substack. For each particle pi we compute k
alignment parameter tuples to best align pi with each of the k references. This
results in an output stack of m x k alignment parameter tuples per substack.

FIGURE 2 | GPU processing embedding. General template of
outsourcing bottleneck computations to available GPUs in GPU ISAC. In all
three columns, time flows from top to bottom. Shown are the different source
code layers (left), the different modes of parallelization (center), and the
data processing flow (right) while GPU ISAC transitions between data
processing on the local CPUs and the local GPUs. Transition times between
the CPU/MPI and GPU/CUDA parallelization are highlighted in light grey; GPU
processing time is highlighted in dark grey. Left: The original ISAC2
implementation is written in Python, with a C++ backend. GPU ISAC employs
an intermediate C++ layer to transfer data between the Python code running
on the CPU and the CUDA kernels running on the GPU. Center: Embedding
GPU processing within the existing MPI parallelization first requires a transition
from MPI to CUDA. This includes a re-distribution of data, as well as switching
over control from using a small set of MPI processes on the CPU to a large
number of threads on the GPU. This translates into initializing all necessary
resources on the GPU and executing the parallel CUDA kernels on the GPU to
perform the actual computations. Afterwards the program transitions back to
the MPI parallelization by having the GPU-controlling MPI processes
broadcast their results to all MPI processes. Right: From top to bottom, the
control flow is depicted as processing switches, in this example, between
eight MPI processes and a grid of 48 CUDA threads (red) spread across two
GPUs (stretched hexagons). Since two GPUs are being used the overall work
load is split into two parts, highlighted in green and blue, respectively. During
the MPI to CUDA transition the data distributed across all MPI threads is
collected in MPI processes p0 and p4. These two MPI processes are
responsible for GPU initialization, data transfer, and executing the CUDA
kernels. While the CUDA kernels are running, the MPI processes remain idle
(stippled lines). Once the kernels have stopped, processes p0 and p4
distribute the data again. Depending on the follow-up needs of the MPI
parallelization this either means sending the GPU results to a chosen subset of
MPI processes, or performing a global data synchronization via MPI
broadcast.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 9199943

Schöenfeld et al. GPU Accelerated 2D Classification

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


together, these kernels offer a full software suite to perform 2D
alignment on the GPU (Figure 1). The necessary memory buffers
are allocated by a separate initialization function beforehand, in
order to allow multiple 2D alignment calls to be executed in rapid
succession without the need to repeatedly re-initialize memory
buffers on the GPU. We make use of CUDA unified memory to
create buffers that can be accessed by code running on the GPU as
well as on the CPU, which greatly simplifies providing the kernels
with their input and retrieving their output. The addresses to
these buffers are communicated to Python using the ctypes
library, allowing Python direct access to memory filled by
CUDA kernels. This memory layout enables the
straightforward embedding of kernel-side GPU computations
into the Python source without the need to employ an
additional library to manage GPU access. Instead, all top-level
GPU functionality to perform 2D alignment is provided in the
form of functions directly callable from within Python.

While individual GPU alignment functions can be called from
within Python, their integration into the existing ISAC2 code
requires a transition from the original MPI parallelization to
using the GPU-parallelized CUDA kernels. This means that data
processing switches from occurring on all MPI processes to only g
MPI processes, each of which employs one of g locally available
GPUs for processing. In GPU ISAC this transition is done via a
multi-step approach: Initially all image data are read into CPU-
side RAM and processing is distributed across as many processes
as the local CPU can provide. When switching over to data
processing using g GPUs, the overall work load of n particles is
split into g subsets of size n:g. We select gMPI processes that each
collect the data of one such subset and transfer it to an assigned
GPU for processing (Figure 2). In this way, the modularized
design of our CUDA kernels allows GPU ISAC to easily distribute
the overall work load across an arbitrary number of local GPUs.
Once the CUDA kernels have completed their computations,
their results are found within a Python-readable data array and
are re-distributed across all MPI processes via MPI broadcasts.

To resolve any 2D alignment bottlenecks we accelerated three
different stages of the overall ISAC algorithm: 1) A one-time pre-
alignment step to align all images of the input stack with a single,
global reference; 2) repeated multi-reference alignment tied to the
k-means clustering at the core of ISAC; and 3) repeated multi-
class alignment to ensure the stability of the classes determined by
the preceding k-means clustering. While the general GPU kernel
suite summarized above is applied in all three of these cases, the
individual top-level functions are adapted to exploit the
particularities of each alignment bottleneck. These C++
functions are called by Python and, in each case, are
responsible for initializing GPU resources; packaging the data
and feeding it to the different CUDA kernels; move the results
into Python-accessible buffers; and finally clear all used GPU
memory.

2.1.1 GPU Pre-alignment
Before ISAC can begin the clustering process, the input data is
read into RAM and pre-processed. This pre-processing in GPU
ISAC has been re-worked to be more efficiently parallelized
across CPU processes using MPI in order to be able to process

larger data sets on a single machine. As a part of this process a
pre-alignment step is called, where all particles of the input stack
are aligned to one common, global reference. Alignment with
only a single reference translates into a much smaller cross-
correlation table on the GPU (Figure 1). The resulting freed up
memory allows the pre-alignment to store a larger number of
particles on the GPU for parallel processing. The exact number of
particles that can be processed on the GPU simultaneously is
dynamically determined during runtime by an initialization
function specifically written to compute the memory
consumption of the pre-alignment procedure. The overall
input stack is then subdivided into batches of the determined
size and all batches are sequentially distributed among the
available GPUs for processing. The pre-alignment iterates
14 times to refine the global average before the final alignment
parameters for each particle are collected and written to disk.

2.1.2 GPU Multi-Reference Alignment
Multi-reference alignment takes place during the k-means
clustering at the core of ISAC. It is the most generic
alignment computation where each of a (large) number of
particles is aligned with a (smaller) number of references. For
each individual particle pi the result of multi-reference alignment
is a set of alignment parameter tuples Yi = [ti0, ..., tik] where tuple
tij stores the parameters to align particle pi with class average rj ∈
[r0, ..., rk] (Figure 1). In addition, multi-reference alignment
provides a vector containing the cross-correlation values of each
particle when aligned with all class averages. These values are
used to determine the best matching class per particle, as well as
the second best match, etc., while any GPU may easily be able to
store all class averages at the same time, the cross-correlation
table grows rapidly with the inclusion of additional alignment
references. Therefore the overall input particle stack is subdivided
into multiple batches, each of which is aligned with a subset of all
references. Reference batches are cycled before particle batches,
ensuring that no particle is transferred to the GPU more than
once when aligned with all references. This order is chosen since
cycling repeatedly through the usually much smaller number of
references is significantly cheaper than cycling the same number
of times through the overall input particle stack.

2.1.3 GPU Multi-Class Alignment
Multi-class alignment is part of the stability test of the ISAC
algorithm. Briefly, ISAC employs k-means clustering to
determine classes and, after a set number of clustering
iterations, performs a “stability test” to confirm the
membership of each particle to its assigned class. The stability
test includes 30 alignment iterations of all particles with their
assigned class averages, and is itself repeated five times (default
values). As can be expected, stability testing is one of the primary
computational bottlenecks of ISAC. Because stability testing
happens after clustering, all particles are assigned their
particular class and the concomitant class average (reference)
for alignment. This translates into the GPU storing a number of
references, but still a reduced cross-correlation table since every
particle is only aligned to a single, pre-determined reference
(Figure 1). In order to avoid memory transfer overhead, the
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GPU multi-class alignment does not determine the number of
particles that can be processed at the same time on the GPU, but
rather the number of fixed-sized classes. Accordingly, the overall
data is split into subsets of classes and their associated particles.
This allows GPU ISAC to guarantee that every particle is
transferred to the GPU only once when computing 30
alignment iterations per class during each stability test
iteration. The global work load is therefore split into subsets
of classes and again distributed across all available GPUs after
ascertaining the available memory at the time.

2.2 Hardware
To assess the performance and scaling behavior of GPU ISAC we
profiled its run time across different data sets and hardware
platforms. We chose three different machines: 1) one machine
featuring an Intel i9-7920X CPU and two Nvidia Geforce GTX
1080 TI graphics cards; 2) a second machine featuring an Intel i7-
6950X CPU and four Nvidia Geforce GTX 1080 TI cards; and 3) a
third machine featuring an Intel i9-7920X CPU and two Nvidia
Quadro GV-100 cards. Note that regardless of the actual number
of available CPU cores, all testing was done using six CPU cores,
translating to six parallel MPI processes. When processing larger
data sets (1M+), we used a high performance machine equipped
with an AMD Ryzen Threadripper 3990X (32 cores) and two
Nvidia Quadro RTX 6000 cards.

2.3 Data
For testing and profiling we used a number of different cryo-EM
data sets: 1) rigor actomyosin-V complex (Pospich et al., 2021), to
represent filamentous structures; 2) hamster sterol regulatory
element-binding protein cleavage-activating protein (SCAP)
(Weyers, 2021), and 3) zebrafish transient receptor channel 4
(TRPC4) in amphipols (Vinayagam et al., 2020), to represent
membrane proteins; 4) myosin-Va-S1 fragment bound to one
essential light chain (~120 kDa), to represent small proteins; 5) a
cell adhesion receptor (CAR), an in-house dataset to represent a
difficult to process data set and estimate an upper bound for
processing, and 6) TdcA1 toxin subunit from Photorhabdus
luminescens (Gatsogiannis et al., 2013) (EMPIAR-10089), to
represent a well-behaving data set. This data set originally
only held 10,000 particles, which were duplicated to artificially
produce data sets matching the respective experiment. Since our
experiments only evaluate the timing rather than the
classification performance, duplicating a dataset is not a concern.

2.4 GPU Iterative Stable Alignment and
Clustering Parameters
If not specified otherwise, all timing runs use GPU ISAC default
parameters. In particular, this means that GPU ISAC will attempt
to produce 200 classes and automatically determine the
maximum class size from the number of particles in the data
set accordingly. The minimum class size is set to 2/3 of the
maximum class size. Further, GPU ISAC by default uses only 95%
of the available GPU memory in order to leave space for any
operating system and/or CUDA library-associated allocations
(e.g., the CUDA FFT library CUFFT).

3 RESULTS

Thanks to the ability of GPU ISAC to employ locally available
graphics cards as co-processors, the ISAC 2D clustering
algorithm can now be successfully executed on individual
desktop computers. Since the previous CPU-only
implementation ISAC2 lacks this ability, we cannot compare
the performance of GPU ISAC and ISAC2 directly. We can,
however, process identical data sets on a computer cluster to
estimate the number of CPU processes that GPU ISAC is able to
compensate for. In addition, in order to determine the general
performance of GPU ISAC, we processed multiple identical data
sets on machines featuring different GPU configurations.
Furthermore, we demonstrate the scaling behavior of GPU
ISAC when processing an increasing number of particles
under different clustering conditions.

3.1 General Performance
3.1.1 GPU Iterative Stable Alignment and Clustering
Execution Profile
To showcase the GPU ISAC execution profile in general and the
performance of the newly developed CUDA kernel specifically,
we processed increasingly larger input stacks of a myosin-Va-S1
data set and extracted all relevant time stamps from the
automatically generated GPU ISAC log files. Here, as well as
in the following, we focus our analysis on the time spent in the
three GPU-accelerated bottleneck functions (Supplementary
Figures S1A–C) and the overall runtime of GPU ISAC
(Supplementary Figure S1D). For more than 200k particles
GPU ISAC is increasingly limited by IO (Supplementary
Figure S1D) and is therefore more dependent on fast data
reading. For example, processing 500,000 myosin-Va-S1
particles using two GV-100 cards amounts to about ten hours.
Of these, GPU ISAC spends a total of about 3.3 h executing its
CUDA kernels where the majority of data processing takes place.
The rest of the time is spent on pre-processing, file operation, and
data structure maintenance across the processes of the MPI
parallelization. In the case of myosin-Va-S1, the default-
parameter induced limit of 200 equal-sized classes is almost
reached when using 200,000 particles, after which an increase
to 500,000 particles only yields a small number of additional
classes (Supplementary Figure S1E).

3.1.2 GPU Selection
Since all bottleneck computations are being performed on GPUs,
the total number and the type of the available graphics cards are
crucial factors for the overall runtime. GPU ISAC will
automatically check the amount of available GPU memory
and configure itself to process as many particles in parallel as
possible, across all available GPUs. Consequently, the more GPUs
are available, and the more powerful they are, the faster GPU
ISAC will be able to process a given data set. To determine the
impact of the selected GPUs on the overall performance of GPU
ISAC, we measured the total runtime when processing the same
data sets on three different GPU configurations: two GTX 1080 TI
graphics cards; four GTX 1080 TI cards; and two GV-100 cards.
GPU ISACwas used to process subsets of 10,000, 50,000, 200,000,
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and 500,000 particles from a myosin-Va-S1 data set. The pre-
alignment (Supplementary Figure S2A), multireference
alignment (Supplementary Figure S2B), stability alignment
(Supplementary Figure S2C), and the total runtime
(Supplementary Figure S2D) of GPU ISAC all scale
linearly with the input size of the processed data set, and four
GTX 1080 TI cards can process 500,000 particles in less than
five hours.

3.1.3 Data Set Impact
Above we have shown the total runtime of GPU ISAC to scale
linearly with the size of the input stack. Next to the capabilities
of the used GPU hardware, the overall quality of the data set will
be the prime factor affecting the slope of the linear function
approximating the runtime scaling. To demonstrate the
differences in total runtime required for different data sets,
we processed six data sets on the same hardware platform. For
each data set, we processed subsets containing 10,000, 50,000,
100,000, and 200,000 particles, respectively. When plotting the
total runtime we can show that processing more data results in
linear scaling of the total runtime, with some variation
depending on the data (Figure 3A). The most difficult to
process data set (CAR) also exhibits the highest variance in
its linear processing trend. Regardless of the data, the vast
majority of the overall runtime can be seen to be spent in
the iterative clustering steps of the ISAC algorithm (Figure 3B).
As above, while processing more data generally results in more
classes, the amount of this increase in returns diminishes the
more particles are added (Figure 3C). The produced averages
can be seen to feature a much higher SNR, depending on how
many particles were processed (Figure 4).

3.1.4 Processing Large-Scale Data Sets (1M+)
To examine the performance of the newly developed CUDA
kernels, as well as stress-test the new data batching mechanisms,
we processed four large-scale data sets containing one and two
million particles and extracted the relevant time stamps from the
automatically generated GPU ISAC log messages. At its core, the
ISAC algorithm operates in iterations, where, at the end of each
iteration, any particles that could not be accounted for during the
clustering step are discarded from future processing. Because of
this, the GPU ISAC CUDA kernels will process the full input
stack only during the very first ISAC main iteration. In addition,
the three GPU-accelerated bottleneck functions—pre-alignment,
multireference alignment, and stability testing—are being applied
iteratively as well. More specifically, the pre-alignment is repeated
14 times; multireference alignment is applied during each of five
k-means clustering repetitions per iteration; and stability testing
involves five repetitions of intra-class alignments, each of which
consists of aligning all particles with their class average 30 times.
In other words, the presented timing results denote the time to
stream and process the data on the available GPUs multiple
times—more than a hundred times, in fact, in the case of stability
testing. To produce large-scale timing results, we processed one
million particles of actomyosin-V, SCAP, CAR, and a repeated set
of TcdA1 (Figure 5A). We processed multiple in order to
demonstrate the overall scaling, and recorded the timings
required by the CUDA kernels to process the data during the
first ISACmain iteration. To process these large data sets, we used
two high-performance Quadro RTX 6000 cards. As shown, these
cards allow us to process one million particles in about seven to
fourteen hours. In addition, the most time-consuming GPU-
accelerated function of stability testing repeatedly processed one

FIGURE 3 | GPU ISAC runtime variance when processing different data sets. To demonstrate the runtime variance across data sets, we processed six different
data sets of varying quality and clustering difficulty: Cell adhesion receptor (CAR) (blue), actomyosin-V (orange), myosin (green), SCAP (red), TcdA1 (purple), and
TRPC4 (brown). For each data set we processed subsets containing 10,000, 50,000, 100,000, and 200,000 particles, respectively. (A)While the runtime of the CUDA
kernels scales strictly linearly (Supplementary Figure S1), full-scale GPU ISAC runs display a higher amount of variance in their scaling across data sets. However,
it can be seen that the runtime still approximates linear scaling rather than exhibiting quadratic (or worse) scaling behavior. (B) The scaling behavior shown for the total
runtime ismirrored in the pure processing parts of GPU ISAC (iterative clustering). For up to 200k particles GPU ISAC is not IO limited and spends themajority of its time in
the actual data processing, rather than data handling. (C)While the number of produced classes across different runs and data sets rises when more data is used this is
not a linear trend. While the default parameters impose an upper limit of 200 found classes, it can be seen that this limit is not reached in all cases and simply using more
particles does not necessarily yield significantly more averages.
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million particles in about 25 min, and two million particles in less
than 50 min (Figure 5B). These results also demonstrate the
overall linear scaling property of GPU ISAC when using the same
parameters across multiple runs processing different amounts of
particles. Across data sets, the pre-set limit of equal-sized classes
is reached when using 200,000 particles. The only exception in
this case is actomyosin-V, where the number of averages stays
constant regardless of the number of used particles (Figure 5C).
The produced averages feature a high signal to noise ratio except
in the case of processing TcdA1/10, which contains the same
subset of 10,000 particles 100 times (Supplementary Figure S3).

3.2 Comparison With Cluster Node
Parallelization
A direct comparison between the existing (cluster/CPU)
implementation ISAC2 and the newly developed GPU ISAC is
difficult, as running ISAC2 on a single machine is not what ISAC2
was developed for. However, we can approximate the number of
processes in our locally available cluster that is required to match
the performance of GPU ISAC on a single machine. Each cluster

node is equipped with high end Intel Xeon Gold 6134 CPUs, each
providing 16 MPI processes. To present our comparison, we
processed 500,000 particles of actomyosin-V on twelve cluster
nodes (192 MPI processes) and measured the overall runtime on
four available GPU platforms: Two GV-100 cards, two GTX 1080
TI cards, four GTX 1080 TI cards, and two RTX 6000 cards. As
can be seen, already a single machine using only two GTX 1080 TI
cards processed the data slightly faster than twelve cluster nodes.
Four GTX 1080 TI cards required 65% of the clusters processing
time, and two RTX 6000 cards only required 60% of the time
spent by the twelve cluster nodes (Supplementary Figure S4).
Regardless of the used ISAC implementation, the produced
averages feature the same quality (Supplementary Figure S5).

3.3 GPU Iterative Stable Alignment and
Clustering Scaling Behavior
While the size of the input data set is a fundamental parameter
determining the overall runtime, it is usually not a parameter
changed by the user—once a data set is obtained (and cleaned),
there is little reason not to use all particles available. Other than

FIGURE 4 | Class averages from different data sets. Averages produced when processing the different data sets in Figure 3 (A–F) Each section depicts a block of
eight representative averages when processing 10,000 particles (top eight averages) and 200,000 particles (lower eight averages) of cell adhesion receptor, actomyosin-
V, myosin, SCAP, TcdA1/10k, and TRPC4, respectively. Scale bars, 20 nm.
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the size of the input stack, the most relevant user-accessible
parameters to determine ISAC runtime are the maximum and
minimum amount of particles used to form individual classes.
These numbers indirectly determine how many ISAC iterations
are required in order to process a data set at hand. Sorting into
more, smaller classes is more effort than sorting into fewer, larger
classes. Unfortunately, the ISAC algorithm itself cannot deduce
the optimal class size for a given data set. It can, however, provide
linear runtime scaling across input dimensions in order to make
sure that determining the correct parameter values and producing
a larger number of classes does not become prohibitively
expensive. We have already seen above that processing larger
input stacks while using default parameters yields a linear scaling
of overall runtime (Supplementary Figure S1). Note that this
also implies linear scaling with increasing class size, as by default
GPU ISAC will always attempt to produce 200
classes—processing more data consequently also means
producing larger classes. In the following we go through the
remaining ISAC input dimensions, examine the runtime behavior
when parameters values are increased, and present the resulting
scaling behavior across both data and hardware platforms.

3.3.1 Scaling With Number of Particles and Number of
Classes
At the very core of the ISAC algorithm operates an equal-sized
k-means clustering function that ensures that no class contains
more than a pre-set number of particles. Choosing the correct
maximum (and minimum) class size imposes a limit on the
number of classes that ISAC will attempt to produce and
consequently significantly influences the runtime behavior.
While the optimal value will always depend on the particular
data set at hand, we can nevertheless examine the impact of
modifying this parameter across multiple data sets. To do so, we

processed increasingly larger substacks of the actomyosin-V data
set, while fixing the number of particles allowed within any
individual class. This results in GPU ISAC producing more
equal-sized classes when given more particles to process
(Supplementary Figure S6D). Of the three GPU-accelerated
bottleneck functions, both the pre-alignment and the stability
test alignment can be seen to scale almost perfectly linearly
(Supplementary Figure S6A,C). The multireference alignment
accompanying the k-means iterations, however, has to not only
deal with a larger data volume, but also a higher number of classes
with which to align every particle. This increase in two input
dimensions simultaneously results in quadratic scaling behavior
(Supplementary Figure S6B).

3.3.2 Scaling With Number of Particles per Class
For practical purposes, the number of particles when processing a
data set is probably the most relevant parameter value to adjust
when using GPU ISAC to produce clean class averages. As stated
above, by default GPU ISAC will attempt to produce 200 classes
and adjust the maximum class size accordingly when reading the
size of the input stack. In order to determine the impact of
choosing a different class size we repeatedly processed a myosin-
Va-S1 data set containing 200,000 particles using a maximum
class size of 250, 400, 500, and 1,000, respectively. When profiling
the runtime spent in the GPU-accelerated bottleneck function we
can see that this choice is irrelevant for the pre-alignment, since
this function is called before any classes have been determined
(Supplementary Figure S7A). The multireference alignment step
requires more processing time the smaller the class size and,
consequently, the higher the number of classes (Supplementary
Figure S7B). The stability test alignments remain mostly
constant, as this function depends much more on the overall
number of particles being processed, as described above

FIGURE 5 | CUDA kernel heavy load processing. Processing four data sets containing up to two million particles using two RTX 6000 cards. (A) Total processing
time can be seen to scale linearly with the input size and processing of one million particles was completed within 8–12 h. (B) To demonstrate the performance of the
GPU ISACCUDA kernels we show the time needed to process 500,000, 1,000,000, and 2,000,000 particles of actomyosin-V, respectively. Shown are processing times
during the first ISAC iteration only, as this is the only time when the ISAC algorithm processes the full stack and no particles have been rejected, yet. Note that the
pre-alignment includes five repetitions of full-stack alignment, and stability testing includes five repetitions of thirty times aligning all data with their designated class
average, each. As is shown, the GPU ISAC CUDA kernels managed to repeatedly align 2,000,000 particles 150 times (stability testing) in less than 40 min. (C)By default,
GPU ISAC is configured to provide 200 classes. As can be seen, once more than 100,000 particles are being processed, GPU ISAC produces a full set of averages.
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(Supplementary Figure S7C). Although an increase in class size
generally results in an increase in runtime, this correlation
exhibits much more variance than our other metrics
(Supplementary Figure S7D). This variation depends on the
processed data set and is a result of the number of main iterations
GPU ISAC requires to successfully cluster the data into stable
classes—the higher the signal to noise ratio throughout the data,
the more reliable this correlation. Finally, as expected, a smaller
class size yields a higher number of classes given no increase in
the number of processed particles (Supplementary Figure S7E).

4 DISCUSSION

In this study, we present GPU ISAC: A computationally more
efficient version of the successful 2D clustering ISAC algorithm
that foregoes its predecessor’s requirement for a computer cluster,
and instead provides high quality class averages on a single
machine. By employing any locally available GPUs as co-
processors, GPU ISAC uses a newly developed set of CUDA
kernels to execute the bottleneck computations of the original
ISAC algorithm. A new set of batch mechanisms divides the
overall data into individual work-load packages that are
distributed evenly to the available GPUs. This dynamic work-
load allocation during runtime enables GPU ISAC to process data
sets of essentially arbitrary size.

Our timing and benchmarking results show that GPU ISAC
is able to process data sets containing millions of particles
overnight, and reliably sort them into classes that produce
clean class averages. Further, the class resolution of ISAC
allows for underrepresented sub-populations present in the
data to be assigned their own classes and be clearly visible in
the overall set of class averages. By providing accurate class
assignments, GPU ISAC can also be used to clean a given data
set on a single machine by identifying the particles that
contribute to stable, clean classes, and, by extension, those
particles that do not. This allows users to reject unusable
particles and thereby enable any computationally expensive
follow-up processing to only focus on the subset of particles
that actually contributes to computing a high resolution
structure.

Comparing the total runtime of GPU ISAC processing data
on a single machine with ISAC2 processing the same data on a
cluster, we showed that using only two GTX 1080 TI
consumer-grade cards is already enough to outperform
twelve high end cluster nodes (192 processes). Using high
performance RTX 6000 cards, GPU ISAC processing time is
further lowered to only 60% of this cluster benchmark line.
Note that increasing the number of cluster nodes also increases
the amount of RAM available to ISAC2 and, consequently, a
large enough cluster will always outpace a single GPU-
equipped computer. However, the single GPU machine can
be stored in an office without additional cooling, can be
acquired for a fraction of the funds, can be set up within a
week, and requires a minimum amount of maintenance when
compared to a full-scale cluster.

In addition to enabling ISAC clustering on single machines,
the overall user experience is further enhanced by improved user
feedback and status messages. Additional sanity checks and
relative default parameters eliminate the most commonly
encountered issues when performing ISAC clustering.
Improved error handling enables users to identify possible
problems more easily with their data set and/or the chosen
parameters. A new standalone installer includes a miniature
example that can be used to confirm successful operation
before a more elaborate run is performed, and further
integrates GPU ISAC into an existing SPHIRE installation,
allowing the program to be configured and executed from
within the SPHIRE GUI.

The results above show that large data sets can be processed
efficiently by GPU ISAC using consumer-grade graphics
hardware. While the exact processing time will always depend
on the convergence behavior of the data set at hand, our results
show that the total runtime scales linearly with the input size. This
holds especially for our newly developed CUDA kernels
performing the bottleneck alignment computations: Processing
times scale almost perfectly linear across almost all tested
parameter variations. This includes using larger data sets,
producing more classes, and producing larger classes—in each
case the user does not have to worry about a sudden increase in
processing time when adapting these parameters to the needs of
the data set at hand. This linear scaling further ensures GPU ISAC
to be future-proof in the face of ever-growing data sets: Rather
than operating in the acceptable range of quadratic or even
exponential scaling, linear scaling allows GPU ISAC to
comfortably keep pace with more data simply by linearly
upscaling its computational resources—such as replacing
current GPUs with their consumer-grade equivalent of the
following hardware generation.

The fact that GPU ISAC enables us to compute high quality
averages on a single machine also allows us to integrate efficient
2D clustering into existing workflows and/or be combined with
other local processes. As an example, GPU ISAC was integrated
in the TranSPHIRE (Stabrin et al., 2020) pipeline, where it was
combined with deep learning tools to enable on-the-fly cryo-EM
reconstructions during data acquisition.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

Conceptualization: FS and SR; software—CUDA implementation
and python integration: FS; software—CUDA/python debugging
and optimizations: FS and MS; software—testing: MS and FS;
formal analysis: MS, FS, TW, and TS; supervision: SR;
writing—original draft: FS; writing—review and editing: TW
and SR; funding acquisition: SR.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 9199949

Schöenfeld et al. GPU Accelerated 2D Classification

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


FUNDING

This work was supported by the Max Planck Society to SR.

ACKNOWLEDGMENTS

We thank Patrick Günther, Birte Weyers, Björn Klink, Sabrina
Pospich, Daniel Roderer, Evelyn Schubert, and Barathy
Vinayagam for kindly providing their collected data sets.

Furthermore, we would like to thank Pawel A. Penczek for
clarifications about the ISAC2 algorithm.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2022.919994/
full#supplementary-material

REFERENCES

Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., et al. (1996).
SPIDER and WEB: Processing and Visualization of Images in 3D Electron
Microscopy and Related Fields. J. Struct. Biol. 116 (1), 190–199. doi:10.1006/
jsbi.1996.0030

Gatsogiannis, C., Lang, A. E., Meusch, D., Pfaumann, V., Hofnagel, O., Benz, R.,
et al. (2013). A Syringe-Like Injection Mechanism in Photorhabdus
Luminescens Toxins. Nature 495 (7442), 520–523. doi:10.1038/nature11987

Hohn, M., Tang, G., Goodyear, G., Baldwin, P. R., Huang, Z., Penczek, P. A., et al.
(2007). SPARX, a New Environment for Cryo-EM Image Processing. J. Struct.
Biol. 157 (1), 47–55. doi:10.1016/j.jsb.2006.07.003

Kühlbrandt, W. (2014). Biochemistry. The Resolution Revolution. Science 343
(6178), 1443–1444. doi:10.1126/science.1251652

Lusk, E., and Gropp, W. (1995). “The MPI Message-Passing Interface Standard:
Overview and Status,”. [Internet] in Advances in Parallel Computing (Elsevier),
265–269. Available from: https://linkinghub.elsevier.com/retrieve/pii/
S0927545206800171. (cited May 28, 2021). doi:10.1016/s0927-5452(06)80017-1

Moriya, T., Saur, M., Stabrin, M., Merino, F., Voicu, H., Huang, Z., et al. (2017).
High-Resolution Single Particle Analysis from Electron Cryo-Microscopy
Images Using SPHIRE. J. Vis. Exp. 123, 55448. doi:10.3791/55448

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable Parallel
Programming with CUDA: Is CUDA the Parallel Programming Model that
Application Developers Have Been Waiting for? Queue 6 (2), 40–53. doi:10.
1145/1365490.1365500

Pandey, S., Kumari, P., Baidya, M., Kise, R., Cao, Y., Dwivedi-Agnihotri, H., et al. (2021).
Intrinsic Bias atNon-canonical, β-arrestin-coupled SevenTransmembrane Receptors.
Mol. Cell 81 (22), 4605–4621.e11. doi:10.1016/j.molcel.2021.09.007

Pospich, S., Sweeney, H. L., Houdusse, A., and Raunser, S. (2021). High-resolution
Structures of the Actomyosin-V Complex in Three Nucleotide States Provide
Insights into the Force Generation Mechanism. Elife 10, e73724. doi:10.7554/
eLife.73724

Punjani, A., Rubinstein, J. L., Fleet, D. J., and Brubaker, M. A. (2017). cryoSPARC:
Algorithms for Rapid Unsupervised Cryo-EM Structure Determination. Nat.
Methods 14 (3), 290–296. doi:10.1038/nmeth.4169

Roderer, D., Hofnagel, O., Benz, R., and Raunser, S. (2019). Structure of a Tc
Holotoxin Pore Provides Insights into the Translocation Mechanism. Proc.
Natl. Acad. Sci. U.S.A. 116 (46), 23083–23090. doi:10.1073/pnas.1909821116

Scheres, S. H. W. (2012). RELION: Implementation of a Bayesian Approach to
Cryo-EM Structure Determination. J. Struct. Biol. 180 (3), 519–530. doi:10.
1016/j.jsb.2012.09.006

Schubert, E., Vetter, I. R., Prumbaum, D., Penczek, P. A., and Raunser, S. (2018).
Membrane Insertion of α-xenorhabdolysin in Near-Atomic Detail. Elife 7, 7.
doi:10.7554/eLife.38017

Stabrin, M., Schoenfeld, F., Wagner, T., Pospich, S., Gatsogiannis, C., and Raunser,
S. (2020). TranSPHIRE: Automated and Feedback-Optimized On-The-Fly
Processing for Cryo-EM. Nat. Commun. 11 (1), 5716. doi:10.1038/s41467-
020-19513-2

Tang, G., Peng, L., Baldwin, P. R., Mann, D. S., Jiang, W., Rees, I., et al. (2007).
EMAN2: an Extensible Image Processing Suite for Electron Microscopy.
J. Struct. Biol. 157 (1), 38–46. doi:10.1016/j.jsb.2006.05.009

Vinayagam, D., Quentin, D., Yu-Strzelczyk, J., Sitsel, O., Merino, F., Stabrin, M.,
et al. (2020). Structural Basis of TRPC4 Regulation by Calmodulin and
Pharmacological Agents. eLife 9, e60603. doi:10.7554/eLife.60603

Wagner, T., Stabrin, M., Shaikh, T. R., Ali, A., Lusnig, L., and Raunser, S. (2021).
SPHIRE 1.4 Installer. [Internet]. Zenodo. Available from: https://zenodo.org/
record/6575638 (cited May 24, 2022).

Weyers, B. (2021). Structural Investitgations on Cholesterol Binding Membrane
Proteins SREBP Cleavage-Activating Protein (Scap) and Patched1 by Cryo-EM.
[Dissertation]. Dortmund: Technical University Dortmund.

Yang, Z., Fang, J., Chittuluru, J., Asturias, F. J., and Penczek, P. A. (2012). Iterative
Stable Alignment and Clustering of 2D Transmission Electron Microscope
Images. Structure 20 (2), 237–247. doi:10.1016/j.str.2011.12.007

Zhang, Y., Daday, C., Gu, R.-X., Cox, C. D., Martinac, B., de Groot, B. L., et al.
(2021). Visualization of the Mechanosensitive Ion Channel MscS under
Membrane Tension. Nature 590 (7846), 509–514. doi:10.1038/s41586-021-
03196-w

Zhao, H., Young, N., Kalchschmidt, J., Lieberman, J., El Khattabi, L., Casellas, R.,
et al. (2021). Structure of Mammalian Mediator Complex Reveals Tail Module
Architecture and Interaction with a Conserved Core. Nat. Commun. 12 (1),
1355. doi:10.1038/s41467-021-21601-w

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Schöenfeld, Stabrin, Shaikh, Wagner and Raunser. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 91999410

Schöenfeld et al. GPU Accelerated 2D Classification

https://www.frontiersin.org/articles/10.3389/fmolb.2022.919994/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2022.919994/full#supplementary-material
https://doi.org/10.1006/jsbi.1996.0030
https://doi.org/10.1006/jsbi.1996.0030
https://doi.org/10.1038/nature11987
https://doi.org/10.1016/j.jsb.2006.07.003
https://doi.org/10.1126/science.1251652
https://linkinghub.elsevier.com/retrieve/pii/S0927545206800171
https://linkinghub.elsevier.com/retrieve/pii/S0927545206800171
https://doi.org/10.1016/s0927-5452(06)80017-1
https://doi.org/10.3791/55448
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1016/j.molcel.2021.09.007
https://doi.org/10.7554/eLife.73724
https://doi.org/10.7554/eLife.73724
https://doi.org/10.1038/nmeth.4169
https://doi.org/10.1073/pnas.1909821116
https://doi.org/10.1016/j.jsb.2012.09.006
https://doi.org/10.1016/j.jsb.2012.09.006
https://doi.org/10.7554/eLife.38017
https://doi.org/10.1038/s41467-020-19513-2
https://doi.org/10.1038/s41467-020-19513-2
https://doi.org/10.1016/j.jsb.2006.05.009
https://doi.org/10.7554/eLife.60603
https://zenodo.org/record/6575638
https://zenodo.org/record/6575638
https://doi.org/10.1016/j.str.2011.12.007
https://doi.org/10.1038/s41586-021-03196-w
https://doi.org/10.1038/s41586-021-03196-w
https://doi.org/10.1038/s41467-021-21601-w
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Accelerated 2D Classification With ISAC Using GPUs
	1 Introduction
	2 Materials and Methods
	2.1 GPU Framework
	2.1.1 GPU Pre-alignment
	2.1.2 GPU Multi-Reference Alignment
	2.1.3 GPU Multi-Class Alignment

	2.2 Hardware
	2.3 Data
	2.4 GPU Iterative Stable Alignment and Clustering Parameters

	3 Results
	3.1 General Performance
	3.1.1 GPU Iterative Stable Alignment and Clustering Execution Profile
	3.1.2 GPU Selection
	3.1.3 Data Set Impact
	3.1.4 Processing Large-Scale Data Sets (1M+)

	3.2 Comparison With Cluster Node Parallelization
	3.3 GPU Iterative Stable Alignment and Clustering Scaling Behavior
	3.3.1 Scaling With Number of Particles and Number of Classes
	3.3.2 Scaling With Number of Particles per Class


	4 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


