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Abstract 

Designing a molecule with desired properties is one of the biggest challenges in drug development, as it requires 
optimization of chemical compound structures with respect to many complex properties. To improve the compound 
design process, we introduce Mol-CycleGAN—a CycleGAN-based model that generates optimized compounds with 
high structural similarity to the original ones. Namely, given a molecule our model generates a structurally similar one 
with an optimized value of the considered property. We evaluate the performance of the model on selected opti-
mization objectives related to structural properties (presence of halogen groups, number of aromatic rings) and to a 
physicochemical property (penalized logP). In the task of optimization of penalized logP of drug-like molecules our 
model significantly outperforms previous results. 
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Introduction
The principal goal of the drug design process is to find 
new chemical compounds that are able to modulate the 
activity of a given target (typically a protein) in a desired 
way [1]. However, finding such molecules in the high-
dimensional chemical space of all molecules without any 
prior knowledge is nearly impossible. In silico methods 
have been introduced to leverage the existing chemical, 
pharmacological and biological knowledge, thus forming 
a new branch of science—computer-aided drug design 
(CADD) [2, 3]. Computer methods are nowadays applied 
at every stage of drug design pipelines [2]—from the 
search of new, potentially active compounds [4], through 
optimization of their activity and physicochemical profile 
[5] and simulating their scheme of interaction with the 
target protein [6], to assisting in planning the synthesis 
and evaluation of its difficulty [7].

The recent advancements in deep learning have 
encouraged its application in CADD [8]. The two main 
approaches are: virtual screening, which uses discrimina-
tive models to screen commercial databases and classify 
molecules as likely active or inactive; de novo design, that 
uses generative models to propose novel molecules that 
are likely to possess the desired properties. The former 
application already proved to give outstanding results 
[9–12]. The latter use case is rapidly emerging, e.g. long 
short-term memory (LSTM) network architectures have 
been applied with some success [13–16].

In the center of our interest are the hit-to-lead and lead 
optimization phases of the compound design process. 
Their goals are to optimize the drug-like molecules iden-
tified in the previous steps in terms of the desired activity 
profile (increased potency towards given target protein 
and provision of inactivity towards off-target proteins) 
and the physicochemical and pharmacokinetic proper-
ties. Optimizing a molecule with respect to multiple 
properties simultaneously remains a challenge [5]. Nev-
ertheless, some successful approaches to compound gen-
eration and optimization have been proposed.
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In the domain of molecule generation, Recurrent Neu-
ral Networks (RNN) still play a central role. They were 
successfully applied to SMILES, which is a commonly 
used text representation of molecules  [17, 18]. RNN 
architectures, especially those based on LSTM or GRU, 
obtain excellent results in natural language processing 
tasks where the input is a sequence of tokens that varies in 
length. Unfortunately, generative models built on SMILES 
can generate invalid sequences that do not correspond to 
any molecule. Attempting to solve this problem, gram-
mar-based methods were proposed to ensure the correct 
context-free grammar of the output sequence  [18–20]. 
Another issue with the SMILES representation is its sen-
sitivity to the structure of the represented molecule. Even 
small changes in the structural formula of a compound 
can lead to a very different canonical SMILES, which 
impacts the ordering of atom processing performed by 
RNNs. Arús-Pous et al.  [21] show that randomization of 
SMILES can substantially improve the quality of gener-
ated molecules. Also, several approaches with reinforce-
ment learning at their cores have been used in chemical 
property optimization  [18, 22]. Moreover, RNNs were 
also successfully applied to molecular graphs, which are 
in this case constructed node by node [23]. A promising 
alternative to reinforcement learning is conditional gen-
eration, where molecules are generated with the desired 
properties presented at the input [24, 25].

Variational Autoencoder (VAE) [26] in conjunction 
with SMILES representation has been used to gener-
ate novel molecules from the trained continuous latent 
space  [27, 28]. Additionally, VAE models were also suc-
cessfully realized directly on molecular graphs  [29, 30]. 
Because of the intermediate continuous representation of 
the latent space, molecules with similar properties appear 
in the vicinity of one another. Bayesian optimization can 
be used to explore this space and find the desired prop-
erties [30]. Still, decoding from the latent space is often-
times non-trivial and requires to determine the ordering 
of generated atoms when RNNs are used in this process.

Generative Adversarial Networks (GAN) [31] is an 
alternative architecture that has been applied to de novo 
drug design. GANs, together with Reinforcement Learn-
ing (RL), were recently proposed as models that generate 
molecules with desired properties while promoting diver-
sity. These models use representations based on SMILES 
[32, 33], graph adjacency and annotation matrices [34] 
or are based on graph convolutional policy networks 
[35]. There are also hybrid approaches which utilize both 
GANs and latent vector representation in the process of 
compound generation [36].

To address the problem of generating compounds diffi-
cult to synthesize, we introduce Mol-CycleGAN—a gener-
ative model based on CycleGAN [37]—extending the scope 

of the early version of our method [38] with more advanced 
experiments and detailed explanations. Given a starting 
molecule, it generates a structurally similar one but with a 
desired characteristic. The similarity between these mole-
cules is important for two reasons. First, it leads to an easier 
synthesis of generated molecules, and second, such optimi-
zation of the selected property is less likely to spoil the pre-
viously optimized ones, which is important in the context 
of multiparameter optimization. We show that our model 
generates molecules that possess desired properties (note 
that by a molecular property we also mean binding affin-
ity towards a target protein) while retaining their structural 
similarity to the starting compound. Moreover, thanks to 
employing graph-based representation instead of SMILES, 
our algorithm always returns valid compounds.

We evaluate the model’s ability to perform structural 
transformations and molecular optimization. The former 
indicates that the model is able to do simple structural 
modifications such as a change in the presence of halogen 
groups or number of aromatic rings, and we also consider 
bioisostere replacement, which is relevant to modern 
drug optimization process. In the latter, we aim to maxi-
mize penalized logP to assess the model’s usefulness for 
compound design. Penalized logP is chosen because it 
is a property often selected as a testing ground for mol-
ecule optimization models [30, 35], due to its relevance 
in the drug design process. In the optimization of penal-
ized logP for drug-like molecules, our model significantly 
outperforms previous results. Eventually, experiments 
on increasing bioactivity are conducted with DRD2 as 
the biological target. To the best of our knowledge, Mol-
CycleGAN is the first approach to molecule generation 
that uses the CycleGAN architecture.

Methods
Junction Tree Variational Autoencoder
JT-VAE [30] (Junction Tree Variational Autoencoder) is 
a method based on VAE, which works on graph structures 
of compounds, in contrast to previous methods which uti-
lize the SMILES representation of molecules [19, 20, 27]. 
The VAE models used for molecule generation share the 
encoder-decoder architecture. The encoder is a neural net-
work used to calculate a continuous, high-dimensional 
representation of a molecule in the so-called latent space, 
whereas the decoder is another neural network used to 
decode a molecule from coordinates in the latent space. In 
VAEs the entire encoding-decoding process is stochastic 
(has a random component). In JT-VAE both the encoding 
and decoding algorithms use two components for represent-
ing the molecule: a junction-tree scaffold of molecular sub-
components (called clusters) and a molecular graph [30]. 
JT-VAE shows superior properties compared to SMILES-
based VAEs, such as 100% validity of generated molecules.
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Mol‑CycleGAN
Mol-CycleGAN is a novel method of performing com-
pound optimization by learning from the sets of mol-
ecules with and without the desired molecular property 
(denoted by the sets X and Y). Our approach is to train 
a model to perform the transformation G : X → Y  and 
then use this model to perform optimization of mole-
cules. In the context of compound design X and Y can be, 
e.g., the set of inactive (active) molecules.

To represent the sets X and Y, our approach requires an 
embedding of molecules which is reversible, i.e. enables 
both encoding and decoding of molecules.

For this purpose we use the latent space of JT-VAE, which 
is a representation created by the neural network during the 
training process. This approach has the advantage that the 
distance between molecules (required to calculate the loss 
function) can be defined directly in the latent space. Moreo-
ver, molecular properties are easier to express on graphs 
rather than using linear SMILES representation [39]. One 
could try formulating the CycleGAN model on the SMILES 
representation directly, but this would raise the problem 
of defining a differentiable intermolecular distance, as the 
standard manners of measuring similarity between mol-
ecules (Tanimoto similarity) are non-differentiable.

Our approach extends the CycleGAN framework [37] 
to molecular embeddings of the latent space of JT-VAE 
[30]. We represent each molecule as a point in the latent 
space, given by the mean of the variational encoding dis-
tribution [26]. Our model works as follows (Fig. 1): (i) we 
start by defining the sets X and Y (e.g., inactive/active mol-
ecules); (ii) we introduce mapping functions G : X → Y  
and F : Y → X ; (iii) we introduce discriminator DX (and 
DY  ) which forces the generator F (and G) to generate 
samples from a distribution close to the distribution of X 
(or Y). The components F, G, DX , and DY  are modeled by 
neural networks (see Workflow for technical details). The 
main idea of our approach to molecule optimization is to: 
(i) take the prior molecule x without a specified feature 
(e.g. specified number of aromatic rings, water solubility, 
activity) from set X, and compute its latent space embed-
ding; (ii) use the generative neural network G to obtain 
the embedding of molecule G(x), that has this feature (as 
if the G(x) molecule came from set Y) but is also similar 
to the original molecule x; (iii) decode the latent space 
coordinates given by G(x) to obtain the optimized mol-
ecule. Thereby, the method is applicable in lead optimiza-
tion processes, as the generated compound G(x) remains 
structurally similar to the input molecule.

To train the Mol-CycleGAN we use the following loss 
function:

(1)

L(G, F ,DX ,DY ) = LGAN(G,DY ,X ,Y )+ LGAN(F ,DX ,Y ,X)

+ �1Lcyc(G, F)+ �2Lidentity(G, F),

and aim to solve

We use the adversarial loss introduced in LS-GAN [40]:

which ensures that the generator G (and F) generates 
samples from a distribution close to the distribution of Y 
(or X), denoted by pYdata ( p

X
data).

The cycle consistency loss

reduces the space of possible mapping functions, such 
that for a molecule x from set X, the GAN cycle brings 
it back to a molecule similar to x, i.e. F(G(x)) is close to 
x (and analogously G(F(y)) is close to y). The inclusion 
of the cyclic component acts as a regularization and 
may also help in the regime of low data, as the model 
can learn from both directions of the transformation. 
This component makes the resulting model more robust 
(cf. e.g. the comparison [41] of CycleGAN vs non-cyclic 
IcGAN [42]). Finally, to ensure that the generated (opti-
mized) molecule is close to the starting one we use the 
identity mapping loss [37]

(2)G∗, F∗ = arg min
G,F

max
DX ,DY

L(G, F ,DX ,DY ).

(3)

LGAN(G,DY ,X ,Y ) =
1

2
Ey∼pY

data

[

(DY (y)− 1)2
]

+
1

2
Ex∼pX

data
[(DY (G(x)))2],

(4)

Lcyc(G, F) = Ey∼pYdata
[�G(F(y))− y�1]

+ Ex∼pXdata
[�F(G(x))− x�1],

Fig. 1  Schematic diagram of our Mol-CycleGAN. X and Y are the 
sets of molecules with selected values of the molecular property 
(e.g. active/inactive or with high/low values of logP). G and F are the 
generators. DX and DY are the discriminators
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which further reduces the space of possible mapping 
functions and prevents the model from generating mol-
ecules that lay far away from the starting molecule in the 
latent space of JT-VAE.

In all our experiments we use the hyperparameters 
�1 = 0.3 and �2 = 0.1 , which were chosen by checking a 
couple of combinations (for structural tasks) and verify-
ing that our optimization process: (i) improves the stud-
ied property and (ii) generates molecules similar to the 
starting ones. We have not performed a grid search for 
optimal values of �1 and �2 , and hence there could be 
space for improvement. Note that these parameters con-
trol the balance between improvement in the optimized 
property and similarity between the generated and the 
starting molecule. We show in the Results section that 
both the improvement and the similarity can be obtained 
with the proposed model.

(5)

Lidentity(G, F) = Ey∼pYdata
[�F(y)− y�1]

+ Ex∼pXdata
[�G(x)− x�1],

Workflow
We conduct experiments to test whether the proposed 
model is able to generate molecules that possess desired 
properties and are close to the starting molecules. 
Namely, we evaluate the model on tasks related to struc-
tural modifications, as well as on tasks related to mol-
ecule optimization. For testing molecule optimization, 
we select the octanol-water partition coefficient (logP) 
penalized by the synthetic accessibility (SA) score and 
activity towards DRD2 receptor.

logP describes lipophilicity—a parameter influencing a 
whole set of other characteristics of compounds such as 
solubility, permeability through biological membranes, 
ADME (absorption, distribution, metabolism, and excre-
tion) properties, and toxicity. We use the formulation as 
reported in the paper on JT-VAE [30], i.e. for molecule m 
the penalized logP is given as logP(m)− SA(m) . We use 
the ZINC-250K dataset used in similar studies [19, 30], 
which contains 250 000 drug-like molecules extracted 
from the ZINC database [43].

For DRD2 activity task we use Random Forest classifi-
cation model trained on ECFP fingerprints as the activ-
ity estimator (ROC AUC = 0.92), where the activity data 
were extracted from the ChEMBL database.

The detailed formulation of the tasks is the following:

•	 Structural transformations: We test the model’s abil-
ity to perform simple structural transformations of 
the molecules. To this end, we choose the sets X and 
Y, differing in some structural aspects, and then test 
if our model can learn the transformation rules and 
apply them to molecules previously unseen by the 
model. These are the features by which we divide the 
sets:

–	 Halogen moieties: We split the dataset into 
two subsets X and Y. The set Y consists of mol-
ecules which contain at least one of the following 
SMARTS: ‘[!#1]Cl’, ‘[!#1]F’, ‘[!#1]I’, ‘C#N’, whereas 
the set X consists of such molecules which do not 
contain any of them. The SMARTS chosen in this 
experiment indicate halogen moieties and the 
nitrile group. Their presence and position within a 
molecule can have an immense impact on the com-
pound’s activity.

–	 Bioisosteres: Molecules in set X are molecules with 
‘CN’ and without ‘ CF3 ’ group. The set Y consists of 
molecules which contain ‘ CF3 ’ and does not contain 
‘CN’ group.

–	 CF3 addition: The set X is a random sample from 
ZINC-250K (without ‘ CF3’). The set Y consists of 
molecules which contain ‘ CF3 ’ group. This task is 
used as a control task for the bioisosteric substitu-
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tion to check if the model can learn to generate this 
group at any position.

–	 Aromatic rings: Molecules in X have exactly two 
aromatic rings, whereas molecules in Y have one or 
three aromatic rings.

•	 Constrained molecule optimization: We optimize 
penalized logP, while constraining the degree of 
deviation from the starting molecule. The similar-
ity between molecules is measured with Tanimoto 
similarity on Morgan Fingerprints [44]. The sets X 
and Y are random samples from ZINC-250K, where 
the compounds’ penalized logP values are below and 
above the median, respectively.

•	 Unconstrained molecule optimization: We perform 
unconstrained optimization of penalized logP. The 
set X is a random sample from ZINC-250K and the 
set Y is a random sample from the top-20% molecules 
with the highest penalized logP in ZINC-250K.

•	 Activity: We use the Mol-CycleGAN to create active 
molecules from inactive ones, where DRD2 (dopa-
mine receptor D2) was chosen as the biological tar-
get. Compounds with annotated activity towards the 
target were extracted from ChEMBL database, ver-
sion 25 [45]. We split the dataset into two subsets, 
active (Y) and inactive (X). The set Y consists of mol-
ecules with Ki < 100  , whereas all remaining mole-
cules are delegated to set X.

Composition of the datasets
Dataset sizes In Tables 1 and 2 we show the number of 
molecules in the datasets used for training and testing. 
In all experiments we use separate sets for training the 

model ( Xtrain and Ytrain ) and separate, non-overlapping 
ones for evaluating the model ( Xtest and Ytest ). In CF3 
addition and all physicochemical experiments no Ytest set 
is required.

Distribution of the selected properties In the experi-
ment on halogen moieties, the set X always (i.e., both in 
train- and test-time) contains molecules without halogen 

Table 1  Structural transformations—dataset sizes

Dataset Halogen moieties Aromatic rings Bioisosteres CF3

Xtrain 75,000 80,000 12,454 20,000

Xtest 86,899 18,220 800 800

Ytrain 75,000 80,000 8321 8799

Ytest 12,556 43,193 800 –

Table 2  Physicochemical transformations—dataset sizes

Dataset Constrained 
optimization

Unconstrained 
optimization

Activity

Xtrain 80,000 80,000 4500

Xtest 800 800 333

Ytrain 80,000 24,946 2511

Ytest – – –

Fig. 2  Number of aromatic rings in ZINC-250K and in the sets used in 
the experiment on aromatic rings

Fig. 3  Distribution of penalized logP in ZINC-250K and in the sets 
used in the task of constrained molecule optimization. Note that the 
sets Xtrain and Ytrain are non-overlapping (they are a random sample 
from ZINC-250K split by the median). Xtest is the set of 800 molecules 
from ZINC-250K with the lowest values of penalized logP

Fig. 4  Distribution of penalized logP in ZINC-250K and in the sets 
used in the task of unconstrained molecule optimization. Note that 
the set Xtrain is a random sample from ZINC-250K, and hence the 
same distribution is observed for the two sets
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moieties, and the set Y always contains molecules with 
halogen moieties. In the dataset used to construct the 
latent space (ZINC-250K) 65% molecules do not contain 
any halogen moiety, whereas the remaining 35% contain 
one or more halogen moieties.

In the experiment on aromatic rings, the set X always 
(i.e., both in train- and test-time) contains molecules with 
2 rings, and the set Y always contains molecules with 1 or 
3 rings. The distribution of the number of aromatic rings 

in the dataset used to construct the latent space (ZINC-
250K) is shown in Fig. 2 along with the distribution for X 
and Y.

In the bioisosteres experiment, the set X always con-
tains molecules with CN group and without CF3 group. 
Set Y always contains molecules with CF3 group. In the 
CF3 addition experiment, the set X is a random sample 
from ZINC-250K, and the set Y similarly contains mol-
ecules with CF3 group. In the dataset used to construct 
the latent space (ZINC-250K) 5.1% of molecules contain 
CN group, whereas molecules with CF3 group accounts 
for 3.8% of total dataset.

For the molecule optimization tasks we plot the distri-
bution of the property being optimized (penalized logP) 
in Fig.  3 (constrained optimization) and Fig.  4 (uncon-
strained optimization).

In the activity optimization experiment, the set X con-
tains inactive molecules and the set Y contains active 
molecules. The mean activity prediction equals 0.223 for 
the whole dataset which was used to construct the latent 
space (ZINC-250K), whereas for the Xtest dataset the 
mean predicted activity is 0.179.

Table 3  Evaluation of  models modifying the  presence 
of halogen moieties and the number of aromatic rings

Success rate is the fraction of times when a desired modification occurs. Non-
identity is the fraction of times when the generated molecule is different from 
the starting one. Uniqueness is the fraction of unique molecules in the set of 
generated molecules

Halogen moieties Aromatic rings

X → G(X) Y → F(Y) X → G(X) Y → F(Y)

Success rate 0.6429 0.7161 0.5342 0.4216

Non-identity 0.9345 0.9574 0.9082 0.8899

Uniqueness 0.9952 0.9953 0.9957 0.9954

Fig. 5  Distributions of the number of aromatic rings in X and G(X) (left), and Y and F(Y) (right). Identity mappings are not included in the figures

Fig. 6  Density plots of Tanimoto similarities between molecules from Y (and X) and their corresponding molecules from F(Y) (and G(X)). Similarities 
between molecules from Y (and X) and random molecules from ZINC-250K are included for comparison. Identity mappings are not included. The 
distributions of similarities related to transformations given by G and F show the same trend
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Architecture of the models
All networks are trained using the Adam optimizer [46] 
with learning rate 0.0001. During training we use batch 
normalization [47]. As the activation function we use 
leaky-ReLU with α = 0.1 . In the structural experiments 
the models are trained for 100 epochs and in the physico-
chemical experiments for 300 epochs.

Structural data experiments

•	 Generators are built of one fully connected residual 
layer, followed by one dense layer. All layers contain 
56 units.

•	 Discriminators are built of 6 dense layers of the fol-
lowing sizes: 56, 42, 28, 14, 7, 1 units.

Physicochemical data experiments

•	 Generators are built of four fully connected residual 
layers. All layers contain 56 units.

•	 Discriminators are built of 7 dense layers of the fol-
lowing sizes: 48, 36, 28, 18, 12, 7, 1 units.

Results and discussion
Structural transformations
In each structural experiment we test the model’s ability 
to perform simple transformations of molecules in both 
directions X → Y  and Y → X . Here, X and Y are non-
overlapping sets of molecules with a specific structural 
property. We start with experiments on structural prop-
erties because they are easier to interpret and the rules 

Fig. 7  The most similar molecules with changed number of aromatic rings. In the top row we show the starting molecules, whereas in the bottom 
row we show the generated molecules. Below we provide the Tanimoto similarities between the molecules

Fig. 8  Density plots of Tanimoto similarities between molecules from Y (and X) and their corresponding molecules from F(Y) (and G(X)). Similarities 
between molecules from Y (and X) and random molecules from ZINC-250K are included for comparison. The distributions of similarities related to 
transformations given by G and F show the same trend
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related to transforming between X and Y are well defined. 
Hence, the present task should be easier for the model, 
as compared to the optimization of complex molecular 
properties, for which there are no simple rules connect-
ing X and Y.

In Table  3 we show the success rates for the tasks of 
performing structural transformations of molecules. The 
task of changing the number of aromatic rings is more 
difficult than changing the presence of halogen moieties. 

In the former the transition between X (with 2 rings) and 
Y (with 1 or 3 rings, cf. Fig. 5) is more than a simple addi-
tion/removal transformation, as it is in the other case 
(see Fig.  5 for the distributions of the aromatic rings). 
This is reflected in the success rates which are higher for 
the task of transformations of halogen moieties. In the 
dataset used to construct the latent space (ZINC-250K) 
64.9% molecules do not contain any halogen moiety, 
whereas the remaining 35.1% contain one or more halo-
gen moieties. This imbalance might be the reason for the 
higher success rate in the task of removing halogen moie-
ties ( Y → F(Y ) ). Molecular similarity and drug-likeness 
are achieved in all experiments.

To confirm that the generated molecules are close to 
the starting ones, we show in Fig. 6 distributions of their 
Tanimoto similarities (using Morgan fingerprints). For 
comparison we also include distributions of the Tani-
moto similarities between the starting molecule and a 
random molecule from the ZINC-250K dataset. The 
high similarities between the generated and the starting 
molecules show that our procedure is neither a random 
sampling from the latent space nor a memorization of 
the manifold in the latent space with the desired value of 
the property. In Fig. 7 we visualize the molecules, which 
after transformation are the most similar to the starting 
molecules.

Bioisosteres
As for the more complicated structural transformation, 
we present a bioisosteric substitution task. Here, we 

Table 4  Evaluation of  models performing the  bioisosteric 
substitution

Single step 10 intermediate steps

X → G(X) Y → F(Y) X → G(X) Y → F(Y)

Success rate 0.216 0.450 0.514 0.776

Diversity 0.998 0.996 0.998 1.000

Non-identity 1.000 1.000 0.596 0.816

Table 5  Evaluation of  models modifying the  presence 
of CF3 group

Single step 10 
intermediate 
steps

Success rate 0.191 0.317

Diversity 0.995 1.000

Non-identity 1.000 0.410

Fig. 9  The most similar molecules with changed bioisosteric group. In the top row we show the starting molecules, whereas in the bottom row we 
show the generated molecules. Below we provide the Tanimoto similarities between the molecules
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have sets X and Y with groups CN and CF3 respectively. 
These two moieties have similar electronic effects, CN 
being more hydrophilic. The dataset was constructed so 
that there are no compounds containing both of these 

fragments at once. We want to see whether our method 
can learn to substitute one group with another, or it 
will put the target group at a random position in the 
molecule.

Fig. 10  The most similar molecules with changed bioisosteric group that was created with intermediate steps mode. In the top row we show 
the starting molecules, whereas in the bottom row we show the generated molecules. Below we provide the Tanimoto similarities between the 
molecules

Fig. 11  The most similar molecules with CF3 added. In the top row we show the starting molecules, whereas in the bottom row we show the 
generated molecules. Below we provide the Tanimoto similarities between the molecules
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Three different optimization procedures are per-
formed: (a) bioisosteric substitution conducted as 
described above, (b) generating 10 intermediate steps 
from the bioisosteric substitution optimization path 
(x,  G(x)), and (c) the addition of CF3 group. In the step 
wise variant, molecules from the optimization path were 
taken in equal intervals. In the case of CF3 addition, we 
use X without trifluoromethyl group and Y with the 
group present within the structure. Here, similarly as in 
the halogen example, we check if our model can learn 
to include the given substructure in the generated mol-
ecule. Here, we treat the CF3 addition task as a control 
task for the bioisosteric substitution since it should be 
easier for the model to add the group in some indefinite 
position. Figure 8 shows similarities between original and 
optimized datasets in these three experiments. The plots 
show that this time the trained transformation leads to 

more dissimilar molecules, which is probably caused by 
two major changes in the structure of a compound—first 
we remove one group, and then we add another group. 
Comparing similarity distribution to our control task of 
trifluoromethyl group addition, the latter leads to greater 
similarity of the generated compounds.

Tables  4 and 5 summarize quantitatively the results 
of bioisosteric substitution. All the generated molecules 
maintain high diversity. Interestingly, inverse optimi-
zation (substitution of CF3 group with CN) is an easier 
task. The reason behind that is probably that CF3 frag-
ment contains more atoms, and thus its decoding pro-
cess is more complex. Moreover, it appears that addition 
of the CF3 group is a more difficult task than substitution 
as the success rate is lower here. The higher rates in the 
substitution variant may be caused by high similarity of 
two datasets X and Y, which both consist of molecules 

Table 6  Results of  the  constrained optimization for  Junction Tree Variational Autoencoder  [30] (JT-VAE), Graph 
Convolutional Policy Network [35] (GCPN) and Mol-CycleGAN

The biggest improvements across all methods are italicized

δ JT-VAE GCPN Mol-CycleGAN

Improvement Similarity Success (%) Improvement Similarity Success (%) Improvement Similarity Success (%)

0 1.91 ± 2.04 0.28 ± 0.15 97.5 4.20 ± 1.28 0.32 ± 0.12 100.0 8.30 ± 1.98 0.16 ± 0.09 99.75

0.2 1.68 ± 1.85 0.33 ± 0.13 97.1 4.12 ± 1.19 0.34 ± 0.11 100.0 5.79 ± 2.35 0.30 ± 0.11 93.75

0.4 0.84 ± 1.45 0.51 ± 0.10 83.6 2.49 ± 1.30 0.47 ± 0.08 100.0 2.89 ± 2.08 0.52 ± 0.10 58.75

0.6 0.21 ± 0.75 0.69 ± 0.06 46.4 0.79 ± 0.63 0.68 ± 0.08 100.0 1.22 ± 1.48 0.69 ± 0.07 19.25

Fig. 12  Molecules with the highest improvement of the penalized logP for δ ≥ 0.6 . In the top row we show the starting molecules, whereas in the 
bottom row we show the optimized molecules. Upper row numbers indicate Tanimoto similarities between the starting and the final molecule. The 
improvement in the score is given below the generated molecules
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with one of the two groups with a similar bioactivity 
effect.

We compare the substituted compounds qualita-
tively in Figs.  9 and 10. We observe that the moieties 
are often correctly substituted with only minor changes 
to the overall compound structure. The method learns 
to substitute bioisosteric groups rather than attach the 
new group to other fragments of a molecule. Figure  11 
shows the addition scenario, in which again changes to 
the molecule are small. Additionally, CF3 group also pre-
fers replacing other atoms, e.g. halogen groups or ketone 
groups in the examples provided.

Constrained molecule optimization
As our main task we optimize the desired property under 
the constraint that the similarity between the original and 
the generated molecule is higher than a fixed threshold 
(denoted as δ ). This is a more realistic scenario in drug 
discovery, where the development of new drugs usually 
starts with known molecules such as existing drugs [48]. 
Here, we maximize the penalized logP coefficient and use 
the Tanimoto similarity with the Morgan fingerprint [44] 
to define the threshold of similarity, sim(m,m′) ≥ δ . We 
compare our results with previous similar studies [30, 35].

In our optimization procedure each molecule (given by 
the latent space coordinates x) is fed into the generator to 
obtain the ‘optimized’ molecule G(x). The pair (x,  G(x)) 
defines what we call an ’optimization path’ in the latent 
space of JT-VAE. To be able to make a comparison with 
the previous research [30], we start the procedure from the 
800 molecules with the lowest values of penalized logP in 
ZINC-250K, and then we decode molecules from K = 80 
points along the path from x to G(x) in equal steps.

From the resulting set of molecules we report the mol-
ecule with the highest penalized logP score that satisfies 
the similarity constraint. A modification succeeds if one 
of the decoded molecules satisfies the constraint and is 
distinct from the starting one. Figure 12 shows exemplary 
molecules with highest improvements and high similarity 
to the starting compounds.

In the task of optimizing penalized logP of drug-like 
molecules, our method significantly outperforms the pre-
vious results in the mean improvement of the property 
(see Table 6). It achieves a comparable mean similarity in 
the constrained scenario (for δ > 0 ). The success rates are 
comparable for δ = 0, 0.2 , whereas for the more stringent 
constraints ( δ = 0.4, 0.6 ) our model has lower success 
rates.

Fig. 13  Evolution of a selected exemplary molecule during constrained optimization. We only include the steps along the path where a change in 
the molecule is introduced. We show values of penalized logP below the molecules
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Note that comparably high improvements of penal-
ized logP can be obtained using reinforcement learning 
[35]. However, many methods using reinforcement learn-
ing tend to generate compounds that are not drug-like 
because they suffer from catastrophic forgetting when 
the optimization task is changed, e.g. they learn the prior 
drug-like distribution first, and then they try to increase 
the logP property at the cost of divergence from the prior 
distribution. Nonetheless, this problem can be relatively 
easily alleviated, e.g., by multi-target optimization that 
takes QED [49] into account. In our method (as well as 
in JT-VAE) drug-likeness is achieved “by design” and is 
an intrinsic feature of the latent space obtained by train-
ing the variational autoencoder on molecules from ZINC 
(which are drug-like).

Molecular paths from constrained optimization experiments
In the following section we show examples of the evolu-
tion of the selected molecules for the constrained optimi-
zation experiments. Figures 13, 14, and 15 show starting 
and final molecules, together with all molecules gener-
ated along the optimization path, and their values of 
penalized logP.

Unconstrained molecule optimization
Our architecture is tailor-made for the scenario of con-
strained molecule optimization. However, as an addi-
tional task, we check what happens when we iteratively 
use the generator on the molecules being optimized. This 
should lead to diminishing similarity between the start-
ing molecules and those in consecutive iterations. For 

Fig. 14  Evolution of a selected exemplary molecule during constrained optimization. We only include the steps along the path where a change in 
the molecule is introduced. We show values of penalized logP below the molecules
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the present task the set X needs to be a sample from the 
entire ZINC-250K, whereas the set Y is chosen as a sam-
ple from the top-20% of molecules with the highest value 
of penalized logP. Each molecule is fed into the genera-
tor and the corresponding ‘optimized’ molecule’s latent 
space representation is obtained. The generated latent 
space representation is then treated as the new input for 
the generator. The process is repeated K times and the 

resulting set of molecules is {G(x),G(G(x))}, . . . . Here, as 
in the previous task and as in previous research [30] we 
start the procedure from the 800 molecules with the low-
est values of penalized logP in ZINC-250K.

The results of our unconstrained molecule optimiza-
tion are shown in Fig. 16. In Fig. 16a, c we observe that 
consecutive iterations keep shifting the distribution of 
the objective (penalized logP) towards higher values. 

Fig. 15  Evolution of a selected exemplary molecule during constrained optimization. We only include the steps along the path where a change in 
the molecule is introduced. We show values of penalized logP below the molecules

Fig. 16  Results of iterative procedure of the unconstrained optimization. a Distribution of the penalized logP in the starting set and after 
K = 1, 5, 10, 30 iterations. b Distribution of the Tanimoto similarity between the starting molecules X and random molecules from ZINC-250K, as well 
as those generated after K = 1, 2, 5, 10 iterations. c Plot of the mean value, percentiles (75th and 90th), and the maximum value of penalized logP as 
a function of the number of iterations

Fig. 17  Evolution of a selected molecule during consecutive iterations of unconstrained optimization. We show values of penalized logP below the 
molecules
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However, the improvement from further iterations is 
decreasing. Interestingly, the maximum of the distribu-
tion keeps increasing (although in somewhat random 
fashion). After 10–20 iterations it reaches very high 
values of logP observed from molecules which are not 
drug-like, similarly to those obtained with RL [35]. Both 
in the case of the RL approach and in our case, the mol-
ecules with the highest penalized logP after many itera-
tions also become non-drug-like—see Fig.  19 for a list 
of compounds with the maximum values of penalized 
logP in the iterative optimization procedure. This lack of 
drug-likeness is related to the fact that after performing 
many iterations, the distribution of coordinates of our 
set of molecules in the latent space goes far away from 
the prior distribution (multivariate normal) used when 
training the JT-VAE on ZINC-250K. In Fig. 16b we show 
the evolution of the distribution of Tanimoto similarities 
between the starting molecules and those obtained after 
K = 1, 2, 5, 10 iterations. We also show the similarity 
between the starting molecules and random molecules 
from ZINC-250K. We observe that after 10 iterations the 
similarity between the starting molecules and the opti-
mized ones is comparable to the similarity of random 
molecules from ZINC-250K. After around 20 iterations 
the optimized molecules become less similar to the start-
ing ones than random molecules from ZINC-250K, as 

the set of optimized molecules is moving further away 
from the space of drug-like molecules.

Molecular paths from unconstrained optimization 
experiments
In the following section we show examples of the evolu-
tion of selected molecules for the unconstrained optimi-
zation experiments. Figures 17 and 18 show starting and 
final molecules, together with all molecules generated 
during the iteration over the optimization path and their 
penalized logP values.

Molecules with the highest values of penalized logP
On Fig. 16c we plot the maximum value of penalized logP 
in the set of molecules being optimized as a function of 
number of iterations for unconstrained molecule optimi-
zation. In Fig.  19 we show corresponding molecules for 
iterations 1–24.

Activity
Lastly, we test compound activity optimization for the 
dopamine receptor D2, i.e. we want to increase the bind-
ing affinity of a compound towards DRD2. For this task 
we selected a set X of inactive compounds, and a set 
Y of active molecules which were extracted from the 
ChEMBL database. We used threshold of Ki < 100 nM 

Fig. 18  Evolution of a selected molecule during consecutive iterations of unconstrained optimization. We show values of penalized logP below the 
molecules
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Fig. 19  Molecules with the highest penalized logP in the set being optimized for iterations 1–24 for unconstrained optimization. We show values 
of penalized logP below the molecules
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for selecting active compounds (2738 active compounds 
and 2254 inactive compounds were selected for training 
after filtering out duplicates).

For scoring the generated molecules, we trained a 
DRD2 activity prediction classification model based 
on ECFP fingerprints (generated with RDKit  [50]). We 
chose to use a random forest model with 0.92 ROC AUC 
test score in threefold cross-validation. In this task we 

Table 8  Activity predictions and  statistics for  considered 
datasets

ZINC-250K predicted mean activity 0.223

Xtest predicted mean activity 0.179

G(Xtest) predicted mean activity 0.362

Mean gain in predicted activity 0.182

Fig. 20  Density plots of Tanimoto similarities and predicted activity. X denotes the dataset of inactive compounds, and G(X) is the set of 
compounds with optimized activity. In a X is compared with the optimized compounds G(X) and also with random molecules from ZINC-250K. b 
shows predicted activities before and after the optimization

Fig. 21  Selected molecules with considerable activity increase and novelty from the activity optimization task. The top row shows molecules 
sampled from the inactive dataset Xtest , and corresponding compounds with improved activity are shown in the bottom row. The numbers 
represent the index of the compound, as shown in Table 9

Table 9  Statistics of  the  5 optimized compounds 
presented in Fig. 21

Activity of the original inactive compound along with the predicted activity of 
the optimized compound is shown, as well as change in the predicted activity 
and Tanimoto similarity between each pair of compounds

Index Activity original Activity 
generated

�Activity Tanimoto

1 0.32 0.71 0.39 0.703

2 0.23 0.73 0.50 0.496

3 0.16 0.49 0.33 0.702

4 0.03 0.52 0.49 0.395

5 0.05 0.47 0.42 0.458

Table 7  Quantitative evaluation of  the  compounds 
with optimized activity

Success rate 0.874

Diversity 0.994

Non-identity 1.000
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also add 10 intermediate molecules from the optimiza-
tion path to find more similar compound with improved 
activity. Table  7 quantitatively summarizes the experi-
ment of activity optimization. Table  8 shows that the 
Mol-CycleGAN is able to increase activity of a selected 
inactive drug by a significant margin, based on the pre-
diction of a bioactivity model. Figure  20 shows similar-
ity of the optimized compounds to the starting molecules 
and compares their predicted activities. Examples of 
optimized compounds are presented in Fig.  21. To vali-
date the results of the experiment, we performed docking 
procedures for a number of generated compounds and 
found that, on average, the optimized compounds have 
better docking energies than their progenitors (Fig. 22).

Conclusions
In this work, we introduce Mol-CycleGAN—a new model 
based on CycleGAN which can be used for the de novo 
generation of molecules. The advantage of the proposed 
model is the ability to learn transformation rules from the 
sets of compounds with desired and undesired values of the 
considered property. The model operates in the latent space 
trained by another model—in our work we use the latent 
space of JT-VAE. The model can generate molecules with 
desired properties, as shown on the example of structural 
and physicochemical properties. The generated molecules 
are close to the starting ones and the degree of similarity 
can be controlled via a hyperparameter. In the task of con-
strained optimization of drug-like molecules our model 
significantly outperforms previous results. In the future 
work we plan to extend the approach to multi-parameter 
optimization of molecules using StarGAN [41]. It would 
also be interesting to test the model on cases where a small 
structural change leads to a drastic change in the property 
(e.g. the so-called activity cliffs) which are hard to model.
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